Transcript
Page 1: Keywords :  FRP, GFRP, Frame, Pushover, FRP Joint, FRP Bolt

FC1

F : Frame

C : Chemical

1 : One Span

FC1T

F : Frame

C : Chemical

1 : One Span

T : Tension

FC1C

F : Frame

C : Chemical

1 : One Span

C : Compression

FB1

F : Frame

B : Bolt

1 : One Span

FB1T

F : Frame

B : Bolt

1 : SOne Span

T : Tension

FB1C

F : Frame

B : Bolt

1 : One Span

C : Compression

A Study on Pushover Test and Numerical Analysisof GFRP Frame with FRP Joints

Yeou-Fong Li1 and Bo-Shiang Wang2

Keywords : FRP, GFRP, Frame, Pushover, FRP Joint, FRP Bolt

Abstract :This study uses Glass Fiber Reinforced Plastic (GFRP) composites to produce a framework the behavior of which was analyzed in a pushover experiment and by using a numerical analysis software. In the specimental plan, double-web FRP I-beams are used for the beams and columns of the frame but the joint are made from an GFRP deck cut into the desired form, bonded together and wrapped with carbon fiber sheet. Three types of frame specimens with braces in compression, tension and no bracing were used for each joint type – chemically bonded joint or a hybrid joint using GFRP bolts in addition to epoxy resin. When making the specimens the double-web I-beam is given a 45 ° cut at the ends to let joint fit in the frame. The joint is then bonded to the frame by chemical bonding or by hybrid bonding. The experimental results showed that the mechanical behavior of the hybrid joint is better than the chemically bonded joint and that tension bracing has a better performance. This study also uses numerical analysis software SAP2000 for the pushover simulation analysis of the frames and it was learned that the ultimate stength and force-displacement curce of the analytical results were similar to that of the experimental ones.

1Professor of the Department of Civil Engineering , NTUT, Taipei, Taiwan .

2 Master of the Department of Civil Engineering, NTUT, Taipei, Taiwan.

Experiment Plan

Experiment Result

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

F C 1F C 1 TF C 1 C

SpecimensPmax (kN)

K (kN/cm)

Energy Dissipation

Specimens Cost (NTD)

FC1 14.2 12.9 42.62 5811

FC1T 22.3 51.6 73.72 6304

FC1C 19.38 44.3 50.58 6304

FB1 17.75 17.8 42.62 5845

FB1T 30.24 59.7 73.72 6344

FB1C 24.7 50.7 50.58 6344

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

F B 1F B 1 TF B 1 C

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

E x p e r im e n tA n a ly sis

Numerical Analysis Result

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

E x p e r im e n tA n a ly sis

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

E x p e r im e n tA n a ly sis

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

E x p e r im e n tA n a ly sis

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

E x p e r im e n tA n a ly sis

0 2 4 6 8 1 0D isp la cem en t (cm )

0

1 0

2 0

3 0

For

ce (

kN)

0 2 4 6 81 3 5 7D rift R a tio (% )

E x p e r im e n tA n a ly sis

FC1 FC1T FC1C

FB1CFB1TFB1

側向支撐千斤頂

Load Cell

Dial Gauge40 cm

LVDT

反力剛架

122.5 cm

鋼床板

SpecimensExperiment Pmax

(kN)Analysys Pmax

(kN)Error (%)

FC1 14.2 14.18 0.1

FC1T 22.3 22.4 0.4

FC1C 19.38 19.45 0.35

FB1 11.68 12.55 0.7

FB1T 30.24 30.4 0.5

FB1C 24.7 24.9 0.8

0 1 2 3 4 5 6

D rift R a tio (% )

0

5 0

1 0 0

1 5 0

2 0 0

En

ergy

dis

sip

atio

n

F C 1F C 1 TF C 1 C

0 1 2 3 4 5 6

D rift R a tio (% )

0

5 0

1 0 0

1 5 0

2 0 0

En

ergy

dis

sip

atio

n

F B 1F B 1 TF B 1 C

Recommended