Transcript
Page 1: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Interaction of laser pulses with atoms and molecules and spectroscopic applications

Page 2: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Raman scattering

1 12 3

Vibrational levels

Pump StokesPump

anti-Stokes

Page 3: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Raman frequencies in spectrum due to modulation of scattered light by molecular vibrations

P q E dIc

d P dt n

dI I N d

d q d

( ) , [( / ) ]1

4 32 2 2

0

2

( ' ) ( ' )

( ' ) ' 4

P ' 0 Inelastic scattering

Page 4: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Electronic-resonance Raman scattering

n transitioelectronic of

frequency resonance is where iiL ,

i iLisI

221

t coefficien absorption sI

Page 5: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Characteristic Raman shifts for different bonds

A. Fadini and F.-M.Schnepel, Vibrational spectroscopy (Wiley, New York, 1989).

Page 6: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Impulsive excitation of low-frequency modes and pump-probe study of oscillations of molecules and n-particles

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0 =72cm-1=28cm

-1

=20fs

=50fs=100fs

Spe

ctra

l com

pone

nt (

norm

aliz

ed)

Frequency (cm-1)

Page 7: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Schematic of femtosecond spectroscopy in a pump โ€“probe configuration

Delay

Pump

Probe

DetectorSample

0 10 20 30 40 50 600

1

2

3

4

5

6

7

8

Am

plitu

de,

a.u

.

Delay time, picosec

0 250 500 750 10000.00

0.05

0.10

0.15

0.20

0.25

Frequency, GHz

Am

plit

ud

e, a

.u.

Temporal response Spectrum

Femtosecond pump-probe spectroscopy of n-particles (d~15 nm)

N-particle breathing mode oscillations

The same principle is applicable for n-particles and molecules

Page 8: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Schematic of the energy levels and optical transitions in CARS

1 12 3

1 2, waves are all sent

Page 9: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Example: wave interaction in CARS,Phase matching conditions

Requirement of phase matching condition k3=k1+k1โ€™-k2; three waves create polarization wave (w3,k3)

Page 10: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Coherent anti-Stokes Raman spectroscopy (CARS)

Plane waves signal

2 2

2 2 1

2

2 /

) 2 / sin( ~

kL

kL L I I I CARS CARS

where

CARS i d d

2 1

1 ~

2 1 2 k k k

For gaussian beams

2

~ 2 a

L confocal parameter

2

2 2 1

2 2

d d

P P P CARS

But the CARS signal is limited by limitations on the intensity!!!The object can be destroyed.

- nonlinear susceptibility tensor

- wave vector mismatch

Page 11: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Physical values and processes for strong-field laser physics

atomic field strength (Hydrogen atom)

Intensity required for ionization (Ar)

Example: bandwidth requirement for an attosecond pulse:

Typical atomic time-scale: Bohr orbit time

Typical displacement of an ionized electron in the laser field

๐ธ๐ป=6.1ร—109 ๐‘‰๐‘๐‘š

๐ผ โ‰ˆ 1014 ๐‘Š๐‘๐‘š2

Corresponding field strength

๐ธ=1.9ร—108 ๐‘‰๐‘๐‘š

๐œ=2๐œ‹๐‘Ž๐‘

=152๐‘Ž๐‘ก๐‘ก๐‘œ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘๐‘ 

๐‘ฅ0=๐‘’๐ธ๐‘š๐œ”2=2.7๐‘›๐‘š

๐œ [๐น๐‘Š๐ป๐‘€ ]=50๐‘Ž๐‘ ๐œร—๐›ฅ ๐‘“ โ‰ฅ 0.44

๐›ฅ ๐‘“ =0.44 /50๐‘Ž๐‘ =โˆ’>๐œ†โ‰ˆ 30๐‘›๐‘š

h๐œˆ [800๐‘›๐‘š ]=1.55๐‘’๐‘‰

New phenomena: ionization, high harmonic generation (HHG), fragmentation of molecules.

Page 12: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Ionization: Multiphoton and tunnel MECHANISMS

Leonid Keldysh, 1964: adiabaticity parameter

multiphoton ionization,

probability

tunnel ionization, probability

๐›พ=โˆš ๐ผ๐‘2๐‘ˆ๐‘

๐›พ 2โ‰ซ1 ,

ยฟ๐›พ 2โ‰ช 1 , ๐‘ƒ โˆexp [โˆ’ 2 (2๐ธ๐‘– )

2/3

3๐น ]Atomic system of units๐‘=๐‘š๐‘’=โ„=1

L V Keldysh, Soviet. Physics โ€“ JETP, 20(5), 1307 (1964) [Cited 3341 times!]

Page 13: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Multiphoton Ionization

๐‘›โ„๐œ”+๐ดโ†’๐‘’โˆ’+๐ด+ยฟ ยฟ photons ionize an atom: Kinetic energy of the electron:

๐พ๐ธ=๐‘›โ„๐œ”โˆ’๐‘‰ ๐ผ๐ธ

๐‘ƒ ( ๐ผ )โˆ๐ผ๐‘›Ionization probability from perturbation theory:๐›พโ‰ซ1Multiphoton condition

(from Keldysh theory):

Photoelectric effect

(C)

Multiphoton Ionization Above Threshold Ionization (ATI)

Courtesy of Nathan Hart and Gamze Kaya

Page 14: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Ionization of Argon by femtosecond pulses

Ionization of Ar, 200 fs pulses from a Ti:sapphire laser (800 nm). The theoretical ion yields are, from left to right, calculatedfrom Szokeโ€™s model (Perry et al 1988), Perelomov, Popov, Terentโ€™ev, 1966 (PPT) model, Ammosov, Delone Kraynov, 1986 (ADK) theory and strong-field approximation (SFA, Reiss, 1980).

๐ด๐‘Ÿ +ยฟ ยฟ๐ด๐‘Ÿ +ยฟ ยฟ

๐ด๐‘Ÿ 2+ยฟยฟ

๐ด๐‘Ÿ 3+ยฟยฟ๐ด๐ท๐พ

๐‘ƒ๐‘ƒ๐‘‡

S F J Larochelle, A Talebpoury and S L Chin,J. Phys. B: At. Mol. Opt. Phys. 31, 1215 (1998)

Multiple ionization of Ar at higher peak intensities of 200 fs pulses from a Ti:sapphire laser (800 nm).

S Larochelle, A Talebpoury and S L Chin, J. Phys. B: At. Mol. Opt. Phys. 31 1201 (1998)

Page 15: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Ar

Dynamics of Ar ionization by femtosecond pulses

Calculated ionization levels in argon for a 19 fs laser pulse at a peak laser intensity of , using ADK rates: laser pulse envelope (black); Ar(blue); (green); (red); (pink); (brown). The right axis shows the predicted HHG cutoff energy for the chosen laser intensity, calculated from the cutoff rule (Ecutoff=Ip+ 3:2Up).

Arpin et al. PRL 103, 143901 (2009)

Page 16: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Electron trajectories after ionization

Page 17: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Cut off for high harmonic generation (HHG)

Cut off energy for HHG

๐‘ˆ๐‘ [๐‘’๐‘‰ ]=๐‘š2 (๐‘’๐ธ๐œ” )

2

=9.33 ร—10โˆ’ 14 ๐ผ [ ๐‘Š๐‘๐‘š2 ] (๐œ† [๐œ‡๐‘š ] )2

h๐œˆ [800๐‘›๐‘š ]=1.55๐‘’๐‘‰

๐ธ๐‘๐‘ข๐‘ก ๐‘œ๐‘“๐‘“=๐ผ๐‘+3.17๐‘ˆ๐‘

๐‘๐ป๐ป๐‘๐‘ข๐‘ก ๐‘œ๐‘“๐‘“ [ ๐ด๐‘Ÿ , 1014๐‘Š /๐‘๐‘š2]=ยฟ๐‘๐ป๐ป๐‘๐‘ข๐‘ก ๐‘œ๐‘“๐‘“ [ ๐ด๐‘Ÿ , 1015๐‘Š /๐‘๐‘š2]=ยฟ

Page 18: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Energy of electron returning parent atom

Page 19: Interaction of laser pulses with atoms and molecules and spectroscopic applications

HHG in Argon (15.6 eV)

โ€ข Cutoff energy is at 23rd harmonic, eV (34.8 nm)โ€ข The laser power at 800 nm is 930 mW and a pulse duration 50 fs.

4 0 5 0 6 0 7 0 8 00

2 0

4 0

6 0

8 0

W a v e l e n g t h n m Inte

nsi

tyarb.un

it11th

13th

15th 17th 19th 21th

(b)

19th21st 17th 15th

13th 11th23d cutoff

Page 20: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Three step model

Step 1 Step 2 Step 3

Recombination Electron acceleration in laser field

Tunnel ionization

XUV

P. B. Corkum โ€œPlasma perspective on strong field multi-photon ionizationโ€P. B. Corkum, F. Krausz, โ€œAttosecond Scienceโ€S. Haessler et. al., โ€œAttosecond imaging of molecular electronic wavepacketsโ€

Courtesy Muhammed Sayrac

Page 21: Interaction of laser pulses with atoms and molecules and spectroscopic applications

Experiments on H2+ in intense laser fields

(simplest molecule)โ€ข Photodissociation: H2

+ + nhฮฝ H+ + H

โ€ข Coulomb explosion: H2+ + nhฮฝ H+ + H+ + e-

(Pavicic, 2005)At intensities (>1012 W/cm2) the coupling between 1sฯƒg and 2pฯƒu becomes very strong


Recommended