Transcript

1

Strange Quark Contribution to the

Electromagnetic Properties of the

Nucleon,

G0 Results

Fatiha Benmokhtar

Carnegie Mellon University

Hall C Summer workshop, Aug 6-7th 2009

[email protected]

F. Benmokhtar

2

• Physics Motivation

• G0 Backward angle Setup

• Some Analysis

• From Physics Asymmetry to Strange FFs

• Results

• Summary

Outline

F. Benmokhtar

3

Nucleon Constituents

- The sea contains all flavors, but

• the u and d sea are hard to distinguish from the valence

• the heavier quarks (c,b,t) are too heavy to contribute much

• Strange quark is the natural candidate to study the sea.

With how much do virtual strange pairs contribute

to the structure of the nucleon ?

.....+ gssdduuuudp

« sea= virtual pairs »valence

F. Benmokhtar

4

Strange Quark Contribution to the Nucleon Properties

NssNσ s Hyp ->

p-N -> Up to 30 % with big theoretical

uncertainties.

DI -Nucleon scattering (NuTeV)

%~dx))x(s)x(s(x 421

0

• Mass:

• Longitudinal Momentum:

F. Benmokhtar

5

09.015.0 s

N|ss|N 5

. -p elastic scattering (E734 BNL)

• Polarized Semi-Inclusive DIS (HERMES)

• PQCD predicts -0.1

** Accepted JLab HallB 12GeV proposal ( E09-007 )

(H. Avagian, F. Benmokhtar, K. Hafidi, A. El-Alaoui, M. Marazita )

F. Benmokhtar

0.02 0.006 0.029 0.007s

• Spin:

6

Strangeness Contribution to the Nucleon Electromagnetic

Properties

??NssN s

M

s

EGG ,

Goal: Determine the contributions of the strange quark sea ( )

to the charge and current distributions in the nucleon :

“strange form factors” GsE and Gs

M

ss

How do we measure them?F. Benmokhtar

7

Strange Form Factors

Z

sin2qW = 0.2312 ± 0.00015

Charge symmetry ->

measured

?

(see G. A. Miller PRC 57 (98) 1492.)

F. Benmokhtar

s

MEW

d

MEW

u

MEW

Z

ME GGGG

,

2

,

2

,

2

, sin3

41sin

3

41sin

3

81

q

q

q

s

ME

d

ME

u

ME

p

ME GGGG ,,,

,

,3

1

3

1

3

2

nspsnupdndpu GGGGGG ,,,,,, ;;

pZnp

W

sMEMEMEME GGGG ,,,2

,,,, sin41 q

8

Parity Violation Asymmetry

2

Z

2

EM

NC

PV

LR

LRPV

M

Q~

M

M~

σσ

σσA

• Scatter polarized electrons off unpolarized target,

• Asymmetries (R,L) of the order of ppm

Electric Magnetic Axial

5

Z

10M

M,

• Proton target

• Deuteron target

(static case)

• Helium target

)(2sin

2

22

n

E

p

E

s

EW

FPV

GG

GQGA q

p

-Complete calculation by R. Schiavilla et al.,

is available ( priv. communication)

- Enhanced sensitivity to Axial form factor.

p

AME

2

FPV

σ

AAA

24π

QGA

s

EG

np

nnpp

PV

AAA

ss

ss

e

AM

e

AWA

s

MM

Z

MM

s

EE

Z

EE

GGG)sin(A

GGGA

GGG)(A

q

t

q

241

Left

Handed

spi

nRight

HandedDirection of motion

Left

Handed

spinRight

HandedDirection of motion

F. Benmokhtar

9

PV. Experiments

H, DHH, 4HeHH,DTarget

F/BF/BFFBAngle

Ges, GM

s , GA(p+n)GE

s, GMsGE

s , GMsGE

s + 0.4 GM

sGM

s, GA

(p+n) Separation

0.12 - 1.0

(0.23, 0.62)

0.1, 0.23

(0.23,0.6)0.10.480.04, 0.1Q2 (GeV/c)2

G0

(JLab)

2003-2007

PVA4

(MAMI)

2002-2008

HAPPEX II

(JLab)

2004-2005

HAPPEX I

(Jlab)

1998-2002

SAMPLE

(MIT-Bates)

1998-2002

Beam

LH2Target

SuperconductingCoils Particle

Detectors

• HAPPEX-III in preparation: 2009 at 0.6 GeV2

e

AM

e

AWA

s

MM

Z

MM

s

EE

Z

EE

GGG)sin(A

GGGA

GGG)(A

q

t

q

241

Forward

Backward

F. Benmokhtar

)1()1(

tan)1(21

4

2

12

2

2

2

tt

t

t

q

M

Q

10

Results from the Forward Angle

Compared to ANVS (“No VectorStrange”)

EM form factors : Kelly PRC 70 (2004) 068202

D.S. Armstrong, et al., PRL 95, 092001 (2005)

G0 Backward

NVSphys

V

p

E

p

M

p

E

F

s

M

s

E AARG

GG

QGGG

)0(

22

2 1

24

tp

Examining full data set,

probability that

GEs+GM

s ≠ 0 is 89%F. Benmokhtar

11

G0 Backward Angle Experiment

(06-07)

F. Benmokhtar

12

12

Experimental Setup

• Electron Beam: 362 and 687 MeV -> Q2: 0.23 and 0.62 GeV2

• Electron off 20 cm LH2 or LD2 target, electron detection : Θ =108°, W ~ 0.5 sr.

•Turn-around of the magnet, change polarity

• Add Cryostat Exit Detectors (9 CEDs per Octant)-> separate elastic

and inelastic electrons in the CED*FPD space.

• Aerogel Cerenkov detector per octant for p/e separation. (pp < 500 MeV/c)

Cerenkov

CED

FPD

electrons

pions

FPDC

ED

CE

D

Elastic

Inelastic

13

G0 beammonitoring

Spokesman

Target service module

Detectors(Mini-Ferris wheel)

CED+Cherenkov

Sup. Cond. Magnet(SMS)

Detectors(Ferris Wheel)

FPD

14

Beam Specifications

Acor Ameas -1

2Yi

Y

PiPi

• Helicity correlated beam properties

-> false asymmetry.

Correction : linear regression:

• 2ns beam structure

• 86 % longitudinal polarization

• Helicity changed every 1/30 sec (MPS).

• Form Asym. from a pseudo-random

quartet structure in helicity (+--+ or -++-).

• Slow helicity reversal: 1/2 wave plate IN and OUT

~0.1ppm

F. Benmokhtar 10-6

< 0.3 x 10-6

Beam halo

34 eV2.5 +/- 0.5Energy difference

4 nrad0.0 +/- 0.1y angle difference

4 nrad-0.8 +/- 0.2x angle difference

40 nm-17 +/- 2y position difference

40 nm-19 +/- 3x position difference

2 ppm0.09 +/- 0.08Charge asymmetry

“Specs”Achieved (IN-OUT)/2Beam Parameter

1515

Recorded Data(Hz/μA/Oct)

45 C

LH2, 687 MeV

LD2, 687 MeV

LH2, 362 MeV

LD2, 362 MeV

90 C 120 C

70 C 45 C

1616

Raw Blinded Asymmetries

per Kinematics

octant # (azimuthal distribution)

F. Benmokhtar

LH2 362 MeV

LD2 687 MeVLH2 687 MeV

LD2 362 MeVLH2 362 MeV

1717

Blinding Factors

X0.75-1.25

H, D Raw Asymmetries, Ameas

CorrectionsScaler counting correction

Rate corrections from electronics

Helicity-correlated corrections

Background asymmetry

Beam polarization

Nucleon EM form factors

Q2 Determination

Analysis Strategy

H, D Physics Asymmetries, Aphys

Unblinding

F. Benmokhtar

~10-50 ppm

P= 0.8578 ± 2.1(1.4)%

< 0.1 ppm

< 1% of Aphys

~3.5% on asymmetry

± 0.003 GeV2

, ,s s e

E M AG G G

1 to 10%

0.5 to 1.5% on asymmetry

Electromagnetic radiative corrections

ElectroWeakradiative corrections Forward measurements

181818

CFD

CFD

CFD

CFD

MT

MT

Coincidence

pion

electron

CED

FPD

• DT from Constant Fraction Discriminators,

• DT from Mean Timers,

• DT from Trigger module , MultiHits.

• DT and randoms in the cerenkov electronics.

• Random coincidences subtraction: contamination from pion signal in the scintillators

in coincidence with random signals from Cerenkovs.

Rate Corrections

• Rate correction study for counting experiment is complicated!

- Tools:- Simulate the full electronics chain. (inputs from real measurements)

- Study rate changes with current scans. - Introduce large charge Asymmetry and see what is the effect on the

detector asymmetry (Well’s plot).- Delay the cerenkov signal to measure random coincidences. F. Benmokhtar

1919F. Benmokhtar 19

A

Corrected

Measured

Electron Measured-Corrected Yield Electron Measured-Corrected Yield

LD

2-6

87 M

eV

(

Hz/

A)

A

Measured

Corrected

No Dead Time

No Dead Time

• Current Scans:

• Random coincidences:

– LH2 randoms small

– LD2 randoms significant

• higher pion rate

– Direct (out-of-time) measurement

Examples

• Multihit corrections smaller (yield)Arise because of trigger:(any CED) and (any FPD)

2020F. Benmokhtar 20

Dataset

Correction to Yield (%)

AsymmetryCorrection

(ppm)

systematic error (ppm)

H 362 6 0.3 0.06

H 687 7 1.4 0.17

D 362 13 0.7 0.2

D 687 9 6 1.8

•Linear regression will then take care of any residual corrections.

Total rate correction is up to ~ 10 % to the asymmetry

Total Rate Correction:

LH2, 687

MeV

LH2, 362 MeV

Deadtimes (%) (yield)

contamMHTrigglesyst AAAAA sin

21F. Benmokhtar

Backgrounds: Magnetic Field ScansD-687CED 7, FPD 13

Data set Asymmetry Correction (ppm)

systematic error (ppm)

H 362 0.50 0.37

H 687 0.13 0.78

D 362 0.06 0.02

D 687 2.03 0.37

• Primary background from Al

target windows:

- about 12% of yield for all

target/energy combinations

• p- contamination in D 687 MeV

-5% contribution (measured),

nearly 0 asymmetry (measured)

< 1%

22F. Benmokhtar

Physics Asymmetry (Preliminary Results)

Data Set Asymmetry Stat Sys pt Global

H 362 -11.01 0.84 0.26 0.37

D 362 -16.50 0.79 0.39 0.19

H 687 -44.76 2.36 0.80 0.72

D 687 -54.03 3.22 1.91 0.62

H: systematic uncertainties dominated by beam polarizationD: rate corrections also contribute to uncertainty.

all entries in ppm

23

From Asymmetry to Strange Form Factors

R. Schiavilla (priv. communication)

See: J. Liu PhD. thesis, UMD 2006.

• Proton

q

TTLL

A

TTW

V

TT

V

LLF

RvRv

qRvqRvqRvQGA

),(')sin41(),(),(

22

22

• Deuteron

s

A

Te

A

s

M

s

E GaGaGaGaaA 4

)1(

3210

Isoscalar

strange ffto be extracted23F. Benmokhtar

e

A

p

MW

)(

V

s

M

s

E

p

E

n

V

n

M

p

M

n

E

p

E

p

V

p

M

p

EWp

M

p

E

F

GGθε

RηGGεGRGGτGGε

RGτGεθGτGεπα

QGA

2

0

222

22

2

sin41

11

1sin411

24

• Proton&Deuteron

Choice of Nucleon Form Factors

• These results: Kelly’s form factors from (PRC 70 (2004)) simple parameterization +

Galster for GnE

- used in R. Schiavilla deuterium calculation.

24F. Benmokhtar

• Including all published low Q2 data:- Arrington , Melnitchouk & Tjon

for proton (Phys. Rev. C 76035205(2007))

- Arrington & Sick for the neutron

(Phys. Rev. C 76, 035201 (2007) )

-> Changes are from 0.5 to 1% to the

Asymmetry in our Backward and Forward

angle kinematics.

- With the addition of the preliminary Hall A unpublished proton FFs, the

asymmetry changes within only fraction of a % from AMT.

25

Electroweak Radiative Corrections and Two Boson Exchanges

F. Benmokhtar

e

A

p

MW

)(

V

s

M

s

E

p

E

n

V

n

M

p

M

n

E

p

E

p

V

p

M

p

EWp

M

p

E

F

GGθε

RηGGεGRGGτGGε

RGτGεθGτGεπα

QGA

2

0

222

22

2

sin41

11

1sin411

24

W

Wp

V

du

n

V

R

R

q

qr

r

2

2

11

sin41

sin411

,221

-PDG values of (r,) contain vertex corrections, corrections to the propagators,

and Z exchange corrections at Q2=0. They do not contain corrections or recent evolutions on the Z box diagrams. - Be Careful of double counting!

Marciano et al., Phys. Rev. D 29, 75 - 88 (1984)

2626

Addition of two Boson Corrections

11

1

Z Z

meas Born BornA A A

26F. Benmokhtar

Two groups use hadronic calculation with finite size of the nucleon:- Blunden, Melnitchouk & Tjon (Phys. Rev. C 79, 055201 (2009))

- Nagata, Zhou, Kao & Yang (Phys.Rev.C79.062501,2009)

-To avoid double counting, one has to remove the ‘hadronic’ part of the Z box diagram from r,

r, ) = (0.988210, 1.003520), and feed them back the Asymmetry then apply the new corrections as follows:

For G0 Kinematics:

H forw H back D backLow Q2 -0.64% 1.46% 0.41%High Q2 -0.16% 1.20% 0.62%

27

Form Factor Results• Using interpolation of G0 forward measurements

Global uncertainties

G0 forward/backward

SAMPLE

Zhu, et al. PRD 62 (2000)

G0 forward/backward

PVA4: PRL 102 (2009)

Q2 = 0.1 GeV2 combined

F. Benmokhtar

Calculations: - Leinweber, et al. PRL 97 (2006) 022001

- Leinweber, et al. PRL 94 (2005) 152001

- Wang, et al arXiv:0807.0944 (Q2 = 0.23 GeV2)

- Doi, et al, arXiv:0903.3232 (Q2 = 0)

28

Global uncertainties

u

EGd

EGs

EGp

EG

n

EG

28

u

MGd

MGs

MGp

MGn

MG

Contributions to the Magnetic FFContributions to the Charge FF

Flavor Decomposition

Global uncertainties

F. Benmokhtar

2 1 2 1

;3 3 3 3

p u d s n d u s

E E E E E E E EG G G G G G G G 2 1 2 1

;3 3 3 3

p u d s n d u s

M M M M M M M MG G G G G G G G

2929

Additional Program to the

G0 Experiment

F. Benmokhtar

• PV Asymmetry in the N- transition:– Inelastic electron asymmetry from 687MeV H is being used to extract

the axial transition form factor GAN

– Represents the first measurement of GAN in the neutral current sector

• Pion Photoproduction:– Pion data from 362MeV D is being used to determine the scale of the

low energy constant characterizing the PV N coupling– Represents the first time this constant has been studied experimentally

• Transverse Measurements:– Transverse beam polarization data is being used to study the 2

exchange– Represents one of the first measurements with neutron

Results to come soon!

30

Summary

• Comparison of electromagnetic and weak neutral elastic form factors allows determination of strange quark contribution to the proton:

• Small and positive at higher Q2

• consistent with zero

• First interesting measurements of up to high Q2

• Publication is underway!

• Other results from G0 program will come soon! (publish apart)

s

EG

e

AG

s

MG

F. Benmokhtar

3131

The G0 Backward Angle

Collaboration

G0 Spokesperson: Doug Beck (UIUC)

California Institute of Technology, Carnegie-Mellon University, College of William and Mary, Grinnell College, IPN Orsay, JLab,

LPSC Grenoble, Louisiana Tech. Univ., New Mexico State University, Ohio University, TRIUMF, University of Illinois,

University of Kentucky, University of Manitoba, University of Maryland, University of Winnipeg, Virginia Tech, Yerevan Physics

Institute, University of Zagreb

Analysis Coordinator: Fatiha Benmokhtar Carnegie Mellon (Maryland)

Students:

Carissa Capuano (W&M), Alexandre Coppens (Manitoba), Colleen Ellis(Maryland) , Juliette Mammei (VaTech), Mathew Muether (UIUC), John

Schaub (NMSU), Maud Versteegen (LPSC),

Stephanie Bailey (Ph.D. W&M, Jan ’07)

32

Backup Slides

F. Benmokhtar

33

0sinˆ ss

ss

nen

m AnpAA

)()F~

F~

Im()F~

F~

Im(GA 2

5453Mn t

)(

1)1(22

22

1

2

EM

e

GGQ

m

t

t

iF~

-contains intermediate

hadronic state information

magnitude of transverse asymmetry

depends on direction of transverse beam polarization

Transverse Polarization Data

(G0 backward)

F. Benmokhtar

34

π

)(

π

)(

π

)(F

inel Δ+Δ+Δπα

QG=A 321

2

24

(1) = 2(1sin2qW) = 1 (Standard Model)

(2) = non-resonant contrib. (small)

(3) = 2(14sin2qW) F(Q2,s) (N- resonance)

)(QGs),F(Q A

22

At tree-level:

expected precision

•F contains kinematic information & all weak transition form factors

→Extract GAN from F

Measurement of theParity Violating Asymmetry

in the N →Δ Transition

BLINDED

Asymmetry (ppm) vs Octant (LH2 @ 687MeV)

Raw Blinded Asymmetry (averaged over

inelastic region)

Q2 Range of G0 Measurement

22   )  ( QvsQGA

N

F. Benmokhtar

3535

Scaler Counting issue • An occasional bit drop in a North American scaler

was traced down to trigger electronics. At high

rates: LD2 target at 362 MeV. This was fixed during

the run (Jan07)

• Problem blind to helicity.

Exaggerated

re-production

with a Pulser

-Pulser data

-Simulation

5s cut removes ~1% of our data for

362MeV LD2,which is the worst case!

Uncut 7s 6s 5s 4s 3s

Cut on yield

• Test by cutting data; compare with

French octants.

• Confirmed by unchanged

asymmetry after fix

Effect on Asymmetry F. Benmokhtar

• asymmetry is <0.01 Aphys

36

Helicity-correlated Beam Properties: Linear Regression

• Cross check with sensitivities determined from natural beam motion and from deliberate ‘coil-pulsing’ runs

• Sensitivities smaller at backward angles

– ~ 1/5 of slopes at forward angles

– Kinematic correlation (momentum/angle) combined with spectrometer acceptance

1

% /Y

mmY x

1

% /Y

mmY y

Simulation

37

Anapole form factor FA(Q2)

2. FA(Q2) is flat

(Riska, NPA 678 (2000) 79)

1. FA(Q2) is like GA(Q2)

3. FA(Q2) ~ 1 + Q2

(Maekawa, Viega, van Kolck, PLB 488 (2000) 167) – (shown here are the most extreme set of model parameters)

Three scenarios

383838

Scaler Counting issue • An occasional bit drop in a North American scaler

was traced down to trigger electronics. At high

rates: LD2 target at 362 MeV. This was fixed during

the run (Jan07)

• Problem blind to helicity.

Exaggerated

re-production

with a Pulser

-Pulser data

-Simulation

5s cut removes ~1% of our data for

362MeV LD2,which is the worst case!

Uncut 7s 6s 5s 4s 3s

Cut on yield

• Test by cutting data; compare with

French octants.

• Confirmed by unchanged

asymmetry after fix

Effect on Asymmetry F. Benmokhtar

39

s Predictions Jan 2000

Model number

40

G0 Predictions 2003