63
Year 2 Organic Chemistry ......................................................................................... 3 Dicarbonyl Chemistry – Dr Wyatt...................................................................................... 3 1,3-dicarbonyls .................................................................................................................................... 3 Introduction ...................................................................................................................... 3 pK A values .......................................................................................................................... 3 Alkylation of 1,3-dicarbonyls ............................................................................................. 4 Enones ................................................................................................................................................. 6 Introduction and Synthesis ............................................................................................... 6 1,2 vs 1,4 attack................................................................................................................. 7 Reactivity of enones .......................................................................................................... 7 Cuprates ............................................................................................................................ 8 Michael acceptors ............................................................................................................. 8 Lithium metal .................................................................................................................... 9 1,5-dicarbonyl chemistry ................................................................................................................... 10 Advanced conjugate addition.......................................................................................... 10 1,n-dicarbonyl chemistry ................................................................................................................... 10 1,4-dicarbonyl chemistry................................................................................................. 11 α-halo carbonyls .............................................................................................................. 11 Epoxides .......................................................................................................................... 12 Nitro compounds ............................................................................................................ 12 1,2-dicarbonyl chemistry ................................................................................................................... 14 Benzoin condensation ..................................................................................................... 14 Acyloin Reaction .............................................................................................................. 15 Osmylation (dihydroxylation) .......................................................................................... 15 1,6-dicarbonyl chemistry ................................................................................................................... 16 Ozonolysis ....................................................................................................................... 16 Amines – Professor Willis ............................................................................................... 17 Synthesis of amines ........................................................................................................................... 17 Reductive amination ....................................................................................................... 18 Reduction of amines ....................................................................................................... 18 Hofmann Rearrangement ............................................................................................... 18 Conversion of alcohol to acetate .................................................................................... 20 Mannich Reaction ........................................................................................................... 21 Hofmann Elimination ...................................................................................................... 21 Nitrosation of amines ...................................................................................................... 22 Electrophilic Substitution of Benzene – Professor Simpson .............................................. 23 Introduction....................................................................................................................................... 23 Halogenation ................................................................................................................... 24 Nitration .......................................................................................................................... 24 Sulphonation ................................................................................................................... 24 Friedel-Crafts alkylation .................................................................................................. 25 Friedel Crafts Acylation ................................................................................................... 26 Gatterman-Koch reaction................................................................................................ 27 Further substitution of mono-substituted benzene........................................................ 28 Substituent effects when more than one substituent is present.................................... 29 Ipso substitution.............................................................................................................. 31 Grignards ......................................................................................................................... 31 Substitution via diazonium salts...................................................................................... 32 Aromatic Nucleophilic Substitution ................................................................................ 33 Benzyne ........................................................................................................................... 34 Other methods of synthesising benzene derivatives ...................................................... 35 Miscellaneous Reactions ................................................................................................. 36 Heterocyclic Chemistry – Professor Booker-Milburn........................................................ 37 Heteroaromaticity ........................................................................................................... 37 Electrophilic Substitution ................................................................................................ 38 Halogenation ................................................................................................................... 39

Year 2 Organic Chemistry notes - Ben Mills

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Year 2 Organic Chemistry notes - Ben Mills

Year 2 Organic Chemistry ......................................................................................... 3

Dicarbonyl Chemistry – Dr Wyatt......................................................................................3 1,3-dicarbonyls .................................................................................................................................... 3

� Introduction ...................................................................................................................... 3

� pKA values.......................................................................................................................... 3

� Alkylation of 1,3-dicarbonyls............................................................................................. 4 Enones ................................................................................................................................................. 6

� Introduction and Synthesis ............................................................................................... 6

� 1,2 vs 1,4 attack................................................................................................................. 7

� Reactivity of enones .......................................................................................................... 7

� Cuprates ............................................................................................................................ 8

� Michael acceptors ............................................................................................................. 8

� Lithium metal .................................................................................................................... 9 1,5-dicarbonyl chemistry ................................................................................................................... 10

� Advanced conjugate addition.......................................................................................... 10 1,n-dicarbonyl chemistry................................................................................................................... 10

� 1,4-dicarbonyl chemistry................................................................................................. 11

� α-halo carbonyls.............................................................................................................. 11

� Epoxides .......................................................................................................................... 12

� Nitro compounds ............................................................................................................ 12 1,2-dicarbonyl chemistry ................................................................................................................... 14

� Benzoin condensation ..................................................................................................... 14

� Acyloin Reaction.............................................................................................................. 15

� Osmylation (dihydroxylation).......................................................................................... 15 1,6-dicarbonyl chemistry ................................................................................................................... 16

� Ozonolysis ....................................................................................................................... 16

Amines – Professor Willis ...............................................................................................17 Synthesis of amines ........................................................................................................................... 17

� Reductive amination ....................................................................................................... 18

� Reduction of amines ....................................................................................................... 18

� Hofmann Rearrangement ............................................................................................... 18

� Conversion of alcohol to acetate .................................................................................... 20

� Mannich Reaction ........................................................................................................... 21

� Hofmann Elimination ...................................................................................................... 21

� Nitrosation of amines...................................................................................................... 22

Electrophilic Substitution of Benzene – Professor Simpson..............................................23 Introduction....................................................................................................................................... 23

� Halogenation ................................................................................................................... 24

� Nitration .......................................................................................................................... 24

� Sulphonation ................................................................................................................... 24

� Friedel-Crafts alkylation .................................................................................................. 25

� Friedel Crafts Acylation ................................................................................................... 26

� Gatterman-Koch reaction................................................................................................ 27

� Further substitution of mono-substituted benzene........................................................ 28

� Substituent effects when more than one substituent is present.................................... 29

� Ipso substitution.............................................................................................................. 31

� Grignards ......................................................................................................................... 31

� Substitution via diazonium salts...................................................................................... 32

� Aromatic Nucleophilic Substitution ................................................................................ 33

� Benzyne........................................................................................................................... 34

� Other methods of synthesising benzene derivatives ...................................................... 35

� Miscellaneous Reactions ................................................................................................. 36

Heterocyclic Chemistry – Professor Booker-Milburn........................................................37

� Heteroaromaticity ........................................................................................................... 37

� Electrophilic Substitution ................................................................................................ 38

� Halogenation ................................................................................................................... 39

Page 2: Year 2 Organic Chemistry notes - Ben Mills

� Nitration .......................................................................................................................... 39

� Mannich reaction ............................................................................................................ 39

� Friedel-Crafts Acylation ................................................................................................... 40

� Vilsmeir reaction ............................................................................................................. 40

� Selective 3-substitution................................................................................................... 41

� Substituted aromatics ..................................................................................................... 41

� Metallation...................................................................................................................... 42

� Reduction ........................................................................................................................ 42 Synthesis of Heterocycles.................................................................................................................. 43

� Paal-Knorr Synthesis........................................................................................................ 43

� Paal-Knorr retrosynthesis................................................................................................ 44

� Furans – Feist-Benary synthesis ...................................................................................... 45

� Pyrroles – Knorr synthesis ............................................................................................... 45

� Pyridine and derivatives .................................................................................................. 45

� Reactions with electrophiles: .......................................................................................... 45

� Indirect substitution methods......................................................................................... 46 Nucleophilic substitutions ................................................................................................................. 47

� Chichibaben reaction ...................................................................................................... 47

� Use of Lithium ................................................................................................................. 47

� Leaving group in 2/4 positions ........................................................................................ 48

� Substitution of the 3 position.......................................................................................... 48

� Alkyl pyridines ................................................................................................................. 49

� Vinyl Pyridines ................................................................................................................. 49

� Pyridinium salts ............................................................................................................... 49 Synthesising pyridine rings ................................................................................................................ 50

� Hantzch pyridine synthesis.............................................................................................. 51

� Gaureschi-Thorpe Pyridone synthesis............................................................................. 51

Carbocations and Rearrangements – Dr Craig Butts ........................................................52 Introduction....................................................................................................................................... 52

� Carbocations ................................................................................................................... 52

� Radicals ........................................................................................................................... 52

� Carbanions ...................................................................................................................... 52

� Substituent effects .......................................................................................................... 52

� Inductive effect ............................................................................................................... 52

� Resonance Stabilisation .................................................................................................. 53

� Hyperconjugation............................................................................................................ 53

� Radicals ........................................................................................................................... 54

� Carbanions ...................................................................................................................... 54

� Reactions of carbocations ............................................................................................... 55

� Pinacol rearrangement.................................................................................................... 56

� More Wagner-Meerwein shifts....................................................................................... 56

� Demjanov reaction .......................................................................................................... 56

� Asymmetric examples ..................................................................................................... 57

� Control features .............................................................................................................. 58

� Stereoelectronic factors .................................................................................................. 58

� Timing / Synchronicity of rearrangements (concerted or stepwise)............................... 59

� Compare pinacol rearrangement to Tiffeneau/Denjanov............................................... 59 Common rearrangements – migrations to e

- deficient C .................................................................. 60

� Wolff rearrangement ...................................................................................................... 60

� Arndt-Eistert homologation ............................................................................................ 60

� Corey-Fuchs reaction....................................................................................................... 61 Migrations to e

- deficient N............................................................................................................... 62

� Curtius rearrangement.................................................................................................... 62

� Schmidt rearrangement .................................................................................................. 62

� Lossen rearrangement .................................................................................................... 63

� Beckmann rearrangement .............................................................................................. 63 Migration to e

- deficient O ................................................................................................................ 63

� Baeyer-Villiger rearrangement........................................................................................ 63

Page 3: Year 2 Organic Chemistry notes - Ben Mills

Year 2 Organic Chemistry

Dicarbonyl Chemistry – Dr Wyatt

1,3-dicarbonyls

Introduction

• 1,3-dicarbonyls have many synthetic uses due to the two carbonyl groups present.

o 1,3-dicarbonyls, e.g. diethylmalonate (Figure 1 - diethyl malonate)

Figure 1 - diethyl malonate

• Malonates are cheap and readily available as starting materials, and can easily be synthesised

from mono-carbonyl compounds.(Scheme 1 - Synthesis of a 1,3-dicarbonyl)

EtO

O

baseH

Base

EtO

O-

EtO

O

EtO

OO

Scheme 1 - Synthesis of a 1,3-dicarbonyl

pKA values

Scheme 2-pKA values of mono- and di- carbonyls

• Addition of a second carbonyl makes the adjacent proton much more acidic, so it can be removed

by weaker bases.

• Alternatively, the anion produced by deprotonation is more stable when two carbonyl oxygens

are present due to conjugation of the enolate (Scheme 2-pKA values of mono- and di- carbonyls)

Page 4: Year 2 Organic Chemistry notes - Ben Mills

O O-

H2O

OEt

OO

99.9996% 0.0004%

OEt

OH O

92.5% 7.5%

OO OHO

5%95%

Scheme 3 - effect of structure on existence of deprotonated (enol) form

Alkylation of 1,3-dicarbonyls

Scheme 4 - Alkylation of 1,3-dicarbonyl

• Mild base may be used to form enolate which can then react with electrophiles giving the

alkylated product A. Scheme 4 - Alkylation of 1,3-dicarbonyl

• Further reactions can then be done (Scheme 5 - decarboxylation of 1,3-dicarbonyls)

Page 5: Year 2 Organic Chemistry notes - Ben Mills

Scheme 5 - decarboxylation of 1,3-dicarbonyls

• Alkylation of 1,3-dicarbonyls can be used to synthesise rings

Scheme 6 - Ring synthesis by alkylation of 1,3-dicarbonyls

• Other control groups are available:

Figure 2 - other groups available and their pKA values

• Other ways to decarboxylate:

Scheme 7 – decarboxylation

Page 6: Year 2 Organic Chemistry notes - Ben Mills

Enones

Introduction and Synthesis

• Enones are α,β-unsaturated carbonyl compounds.

• Enones can be made in several ways:

• Self condensation of aldehydes:

• Mannich reaction:

Scheme 8 - Mannich Reaction

Page 7: Year 2 Organic Chemistry notes - Ben Mills

1,2 vs 1,4 attack

1,2 attack (direct) 1,4 attack (conjugate, Michael addition)

• Occurs with more reactive nucleophiles

and nucleophiles with unstabilised

charges, i.e. hard nucleophiles.

• E.g.

• Organometallics

• E.g. organolithium

• Occurs with nucleophiles with no charge

or stabilised charge, i.e. soft nucleophiles

• E.g.

Stable enols

Enamines

Silyl enol ethers

Amines

• Organometallics

• E.g. organocuprates

Reactivity of enones

• Double bond present in enones is not as in a normal alkene due to conjugation with carbonyl

• 1,2 addition (direct):

Scheme 9 - Direct attack on an enone

• 1,4 addition (Michael/conjugate addition)

O

Nu

O-Nu OHNu

Scheme 10 - 1,4 attack

Page 8: Year 2 Organic Chemistry notes - Ben Mills

• 1,4 and 1,2 attack are often in competition, leading to two possible products (thermodynamic

and kinetic products)

Thermodynamic vs. Kinetic

O

Nu

Nu

O-

Kinetic product

O

Nu

Nu O-Thermodynamic product

Scheme 11 - thermodynamic (1,4 addition) and kinetic (1,2) products

Cuprates

• Organometallic reagents are very reactive and can undergo 1,2 and 1,4 addition.

• Organocuprates are used to achieve smooth 1,4 addition.

Scheme 12 - 1,4 addition with organocuprate

Michael acceptors

• Less electrophilic carbonyls make better substrates for Michael addition:

• Anything that stabilises negative charge has potential to be a good Michael acceptor, e.g. NO2

group.

Page 9: Year 2 Organic Chemistry notes - Ben Mills

CN

Nu

Nu

CN H+

Nu

CN

NO2

Nu

Nu

NO2 H+

Nu

NO2

No reaction

Lithium metal

• Lithium provides a way to reduce enones:

O

i) Li / liquid NH3

ii) NH4Cl

O

Mechanism

O

e-

O-

H+

OH

e-

OH

O-

O

O

Me-I

Scheme 13 - reduction of enones by Li

• This is a useful way of making enones react as a nucleophile rather than undergoing direct or

conjugate addition.

Scheme 14 - reaction of enone with electrophile

Page 10: Year 2 Organic Chemistry notes - Ben Mills

1,5-dicarbonyl chemistry

• Instead, to synthesis 1,5-dicarbonyls, use α,β-unsaturated carbonyl (enone)

• Enones can be made using Mannich reaction, 1,3-dicarbonyls can be prepared using Claisen

chemistry. Alternatively, enamines can be used.

Advanced conjugate addition

• Conjugate addition with preservation of the enone can be achieved using a leaving group to allow

enone to re-form.

1,n-dicarbonyl chemistry

Page 11: Year 2 Organic Chemistry notes - Ben Mills

1,4-dicarbonyl chemistry

• Preparation of 1,4-dicarbonyls requires reversing the natural polarity of the carbonyl group, so is

more tricky.

Scheme 15 - Synthesis of 1,4 dicarbonyl

• Reagents which reverse natural polarity of carbonyl group:

α-halo carbonyls

• Very reactive compounds, need special care.

Page 12: Year 2 Organic Chemistry notes - Ben Mills

Epoxides

Nitro compounds

• Carbonyl is normally electrophilic at carbon, so to make it nucleophilic, replace carbonyl oxygen

with a nitro group.

Page 13: Year 2 Organic Chemistry notes - Ben Mills

• To re-form the carbonyl from a nitro group, there are 2 main routes: the Nof and McMurray

reactions:

Nof reaction:

NO2 O

?

NO2

HO-

NO2

H+/H2O

O

N

O--O

H2O

N

O--O

H

OH

Page 14: Year 2 Organic Chemistry notes - Ben Mills

1,2-dicarbonyl chemistry

Benzoin condensation

Ph H

O

-CN

Ph

O

Ph

OH

Mechanism

Ph H

O

-CN

Ph CN

O-

Ph CN

OH

Ph CN

OPh

Ph

O-

OHCN

Ph

Ph

OH

O-

CN

Ph

Ph

OH

O

Benzoin

Scheme 16 - The benzoin condensation

Page 15: Year 2 Organic Chemistry notes - Ben Mills

Acyloin Reaction

Scheme 17 - The acyloin reaction

Osmylation (dihydroxylation)

• Other ways to 1,2 dicarbonyls:

Epoxides:

R

OH+, H2O

R

OH

OH

Pinacol:

O

Mg

O-O- -O O-

HO OH

Page 16: Year 2 Organic Chemistry notes - Ben Mills

1,6-dicarbonyl chemistry

Ozonolysis

• Reaction of an alkene with ozone splits the alkene double bond leaving two aldehydes.

i) O3

ii) Me2S

H

O

O

Mechanism

-O

O

O

O

O

O

O

O

O-

O

O

O

O

H O

H+, H2O

Page 17: Year 2 Organic Chemistry notes - Ben Mills

Amines – Professor Willis

Synthesis of amines

• Amines can be synthesised using azides:

• Gabriel amine synthesis:

• With the use of cyanide

Page 18: Year 2 Organic Chemistry notes - Ben Mills

Reductive amination

• Via formation of an iminium ion

Reduction of amines

Hofmann Rearrangement

Page 19: Year 2 Organic Chemistry notes - Ben Mills

• Mechanism:

R

NH2

O

HH

pKA = 23

pKA = 30

NaOHR

NH

O

HHCl

Cl

R

N

O

HH

Cl

R

N

O

HH

nitrene

migration

O N

R

H2O

HNO

OH

R

carbamic acid

H2N R

CO2

• The basicity of nitrongen’s lone pair is affected by the environment around nitrogen.

• The lone pair will be less available for protonation (and therefore the nitrogen less basic) if:

• The lone pair is in an sp or sp2 hybridised orbital

• The lone pair is involved in the aromaticity of the molecule

• The nitrogen is bonded to an electron-withdrawing group.

Example:

Page 20: Year 2 Organic Chemistry notes - Ben Mills

• It is possible to separate mixtures of compounds based on their differing acidity/basicity:

Ph

CO2H

acidic, pKA = 5

Ph NH2

basic, pKB = 4

Cl

neutral

HH

ClCl

organic solvent

i) wash with NaCO3H (aq)

aqueous organic

Ph ONa

O

i) HClii) Extract with CH3Cl

Ph OH

O

Ph NH2

Cl

HCl (aq)

Ph NH2Cl

NaOHExtract in CH2Cl2

Ph NH2

Cl

aqueous organic

Conversion of alcohol to acetate

• Using pyridine as both base and nucleophile

Page 21: Year 2 Organic Chemistry notes - Ben Mills

Mannich Reaction

• Uses formaldehyde and HNMe2 to form a reactive iminium ion which is used to add an amine.

H

O

H O

NHMe

Iminium ion:

H H

O

MeNH2 N

Me

H

Mannich reaction

H

O

H

O

N

Me

H

H

HCl

O

NH2

Me

H O

NHMe

Hofmann Elimination

Generation then elimination of tertiary amine (good leaving group) to produce alkene.

Page 22: Year 2 Organic Chemistry notes - Ben Mills

Nitrosation of amines

R

NH2 NaNO2

HCl R

HN

N

OR N N

N-nitrosamine diazonium salt

Na+O- N O

Nitrosation:

HCl

Na+O- N O

H+

N O

nitrosyl cation

R

NH2

R N N O

H

H+

R N N OH

H+

R N N

Cl

Page 23: Year 2 Organic Chemistry notes - Ben Mills

Electrophilic Substitution of Benzene – Professor Simpson

Introduction

• Benzene has delocalisation or resonance stabilisation, making it more stable than the analogous

non-delocalised ‘cyclohexatriene’

• Reactions of benzene are different from the typical alkenes, for example:

• A Lewis acid must be used to brominate benzene

Br2

AlBr3

Br

Br Br AlBr3 Br Br AlBr3

Br+ AlBr4

H

H

Br Br

H

Br

Br

H

Resonance structures

• All reactions with benzene occur in the order:

• Addition + Elimination = Substitution

Page 24: Year 2 Organic Chemistry notes - Ben Mills

Halogenation

• The Lewis acid method works for:

• Cl - exothermic

• Br – exothermic

• I - endothermic

Nitration

• Reaction occurs via a reactive nitro cation

• Trinitrophenol (picric acid) is explosive

• Nitrobenzene can be reduced with LiAlH4 to aniline

Sulphonation

• Sulphonation is reversible

Page 25: Year 2 Organic Chemistry notes - Ben Mills

Friedel-Crafts alkylation

• Method of bonding alkyl chains to aromatic rings

• Limitations:

• Alkyl group activity, caused by positive induction effect, means that the product is more

reactive than the starting material, so multi-alkylations can occur

• Carbocation rearrangement – alkyl chain will rearrange to give most stable carbocation,

meaning desired alkylation will not always occur.

• Example: n-propyl benzene:

Page 26: Year 2 Organic Chemistry notes - Ben Mills

Friedel Crafts Acylation

• Using acylation prevents the effects of carbocation rearrangements, allowing, for example, n-

propyl benzene.

• Acyl groups are deactivating, so poly alkylation is avoided.

• Reduction of the carbonyl can be done in several ways:

• Elemmensen: Zn (Hg) / HCl

• Wolff-Kischner reduction: H2N-NH2, KOH, ethylene glycol

Page 27: Year 2 Organic Chemistry notes - Ben Mills

• Acylated benzene is very versatile:

O

Br2

NaOHOH

O

benzoic acidRCO3H

O

O

H+/H2OOH

O

O

HF

OO

Gatterman-Koch reaction

• Produces benzaldehydes using carbon monoxide and HCl in a Friedel-Crafts acylation-type

method.

Page 28: Year 2 Organic Chemistry notes - Ben Mills

Further substitution of mono-substituted benzene

Xipso

ortho

meta

para • Substituent X has two main effects:

• Activate or deactivate

• Direct position of future substitution

• Substituents are divided into two types depending on their effects on further substitution:

• Those that activate/deactivate by inductive effects

• Those that activate/deactivate by resonance effects

X

X

E+

E+

X

H

E

X

EX

Ortho/Para directing

For ortho/para direction,must have resonance formwith +ve charge at ipso

ortho

para

X

E+

X

E

Hmeta

Meta directing

+ve charge can't delocalise onto ipso position

• If X donates electrons: destabilisation and therefore o/p directing

• If not, then m directing

Page 29: Year 2 Organic Chemistry notes - Ben Mills

• In the case of phenol, the resonance effects >> inductive effects, making phenol a very activating

substituent.

• Halogens are deactivating due to their electronegativity but can donate lone pairs. The resonance

effects this causes mean halogens direct o/p

• Other activating groups (o/p directing)

• NH2, NHR, NR2, OH, OR

• Other deactivating groups (m directing)

• CO2H, NO2

Substituent effects when more than one substituent is present

• If substituent effects reinforce each other, i.e. two o/p directing groups, then no problems arise.

• If there is a clash, strongly activating/deactivating groups will dominate over weak

activating/deactivating groups.

• It can be useful to manipulate the substituents and use blocking groups to achieve the desired

product if substituent effects cause a problem.

Page 30: Year 2 Organic Chemistry notes - Ben Mills

• How do you make o,m-nitrobenzene?

• Use of blocking groups can improve the yield. Sulphonic acid groups can be removed easily and in

the case above block the para position from substitution under nitration, meaning only ortho

nitration can occur.

• For example, in bromination:

Page 31: Year 2 Organic Chemistry notes - Ben Mills

Ipso substitution

Grignards

Page 32: Year 2 Organic Chemistry notes - Ben Mills

Substitution via diazonium salts

• Diazonium salts provide a means of achieving a range of substitutions selectively.

NO2 NH2

NaNO2

HCl, 0°C

N N

H2O

CuCl

CuBr

NaBH4

HBF4

CuCN/KCN

OH

Cl

Br

H

F

C

N

• Mechanism:

Page 33: Year 2 Organic Chemistry notes - Ben Mills

Aromatic Nucleophilic Substitution

• Can be done when a good leaving group is present with a deactivating (electron withdrawing)

group which can stabilise the anion.

• Mechanism:

Cl

N

O O-

Nu

Cl

N-O O-

Nu

N-O O-

Nu

Page 34: Year 2 Organic Chemistry notes - Ben Mills

Benzyne

• Elimination can yield an alkyne-type triple bond in a ring:

Page 35: Year 2 Organic Chemistry notes - Ben Mills

Other methods of synthesising benzene derivatives

• Diels-Alder (cycloaddition)

• Carbonyl condensation chemistry:

• Pd catalysis

Page 36: Year 2 Organic Chemistry notes - Ben Mills

Miscellaneous Reactions

• Aromatic rings are resistant to reduction and oxidation

KMnO4

CO2H

Benzoic acid

RCO3H

O

OsO4

OH

OH

CO2Me

H2/Pd

CO2Me

LiAlH4

OH

Page 37: Year 2 Organic Chemistry notes - Ben Mills

Heterocyclic Chemistry – Professor Booker-Milburn

• Two classes of heterocycles:

• Aromatic:

• 5-membered:

• 6-membered:

N

Pyridine

• Saturated:

Heteroaromaticity

• Recall benzene:

• For a system to be aromatic, Huckel’s rule must be obeyed:

Number of conjugated pi-electrons = 4n + 2

• Pyridine:

Page 38: Year 2 Organic Chemistry notes - Ben Mills

• 5 membered heteroaromaticity:

• 5-membered heterocycles are more electron-rich than benzene – “pi-excessive” heterocycles

• These heterocycles are much more reactive than benzene in aromatic substitution

Pyrrole > Furan > Thiophene >> Benzene

Electrophilic Substitution

• Reaction occurs at the 2 position in first instance

• It is possible to predict that the 2 position is favoured for reaction over the 3 position by

considering resonance forms.

• The 2 position is favoured because there are 3 ways of delocalising the positive charge around

the ring compared with only 2 when substitution occurs at the 3 position

Page 39: Year 2 Organic Chemistry notes - Ben Mills

Halogenation

O

S

HN

Cl2

0°C

SOCl2

SOCl2

O

S

HN

Cl

Cl

Cl

• Since these heterocycles are more reactive than benzene, a Lewis acid catalyst is not needed.

Nitration

Mannich reaction

Page 40: Year 2 Organic Chemistry notes - Ben Mills

Friedel-Crafts Acylation

• No Friedel-Crafts reaction exists for R = H, i.e. aldehydes cannot be made via a Friedel-Crafts

reaction

• Instead, the Vilsmeir reaction must be used

Vilsmeir reaction

Mechanism:

Page 41: Year 2 Organic Chemistry notes - Ben Mills

Selective 3-substitution

• Large bulky groups can be used to block the 2 position so only 3-substitution can occur

Substituted aromatics

• Similar to benzene, already-present substituents on heteroaromatics direct the position of

further substitution.

• For 2-substituted heteroaromatics:

• Electron-withdrawing groups favour 4 position substitution

• Electron-donating groups favour 5 position substitution

• For 3-substuted aromatics:

• Electron donating groups favour 2 position

• Electron withdrawing groups favour 5 position

• These results can be predicted by considering resonance structures.

Page 42: Year 2 Organic Chemistry notes - Ben Mills

Metallation

Reduction

Cycloaddition

• Furan readily participates in cycloaddition reactions; for pyrrole and thiophene it is much harder

to achieve.

• Pyrrole:

Page 43: Year 2 Organic Chemistry notes - Ben Mills

Synthesis of Heterocycles

Paal-Knorr Synthesis

• Advantages: one common starting material

• Disadvantages: availability of starting material

• Mechanism – Pyrrole:

Page 44: Year 2 Organic Chemistry notes - Ben Mills

• Mechanism – furan:

• Mechanism – thiophene:

Paal-Knorr retrosynthesis

• Break bonds to go from product to starting material

Page 45: Year 2 Organic Chemistry notes - Ben Mills

Furans – Feist-Benary synthesis

• Condensation of a dicarbonyl with an alpha-halo carbonyl

Pyrroles – Knorr synthesis

R2

R3

OR-O-NO

H+

R2

R3

O

NOH

Zn/AcOH R2

R3

O

NH2

made in situ

-amino ketone, v. unstable

OR

O

O R 1

N

OR

O

R 1

R2

R3

R

H+

Pyridine and derivatives

• Pyridine is very stable and unreactive around the ring. It is soluble in water and organic solvents,

and has an unpleasant odour.

• The lone pair on nitrogen is not involved in the aromaticity of the ring and so is available for

bonding.

Reactions with electrophiles:

• Pyridine is very unreactive compared to benzene – “pi-deficient” heterocycle, c.f. “pi-excessive”

heterocycles mentioned earlier.

Page 46: Year 2 Organic Chemistry notes - Ben Mills

• There are 3 problems which have to be overcome to make pyridine react in high yield:

1. Frequently the lone pair on nitrogen rather than the ring reacts with the electrophile,

forming a salt.

2. Due to electronegativity of nitrogen, the ring is electron deficient compared to benzene.

3. Resonance structures show that positive charge must be delocalised onto a divalent nitrogen

when substitution on the ring occurs – very high energy and highly unfavourable.

Indirect substitution methods

• Oxidising the nitrogen lone pair makes nitrogen more able to support the positive charge after

substitution:

• This method has the same scope as do substitutions on benzene, e.g. bromination, Friedel-Crafts,

nitration etc.

Page 47: Year 2 Organic Chemistry notes - Ben Mills

Nucleophilic substitutions

• 2 position:

• 3 position:

• 4 position:

Chichibaben reaction

• The mechanism of this reaction is not known for certain, however needs some more explanation

as hydride is not a good leaving group.

Use of Lithium

• Organolithium compounds can be used to do nucleophilic substitution with pyridine:

Page 48: Year 2 Organic Chemistry notes - Ben Mills

Leaving group in 2/4 positions

• 2 position

• 4 position

• The presence of the leaving group makes the substituted position much more electrophilic, and

the addition/elimination mechanism of aromatic nucleophilic substitution occurs.

• The 3 position however cannot be substituted in this way, as charge cannot reside on N

Substitution of the 3 position

• Substitution can be done via diazonium salts formed from nicotinic acid or nicotinamide.

• Diazonium salts have a large variety of reactions leading to many substituents.

Page 49: Year 2 Organic Chemistry notes - Ben Mills

Alkyl pyridines

• This resonance stabilisation makes the intermediates stable and so further reactions can be done

on the alkyl chain

• The same reactions can occur at the 4 position, and any good electrophile can be used.

Vinyl Pyridines

Pyridinium salts

Page 50: Year 2 Organic Chemistry notes - Ben Mills

Synthesising pyridine rings

• From 1,5-dicarbonyls (comparable to Paal-Knorr)

Mechanism:

• 1,5 dicarbonyls may be produced in several ways:

Page 51: Year 2 Organic Chemistry notes - Ben Mills

Hantzch pyridine synthesis

EtO

R O

OR1

O H

NH3

OEt

RO

O

Mechanism

OR

O= Z

EtO

R O

O

R1

OH EtO

R O

O R1

OEt

RO

O

-H2O

ALDOL

EtO

R O

O R1

OEt

RO

O

reduction

NH3

EtO

R

O R1

OEt

R

O

N

EtO

R

O R1

OEt

R

O

N

Gaureschi-Thorpe Pyridone synthesis

• The mechanism proceeds via an aldol reaction and then intramolecular attacks.

Page 52: Year 2 Organic Chemistry notes - Ben Mills

Carbocations and Rearrangements – Dr Craig Butts

Introduction

Carbocations

• Composed of 3 filled bonding orbitals and 1 vacant sp2 hybridised orbital.

• Planar.

• Stabilised by electron donors, destabilised by electron withdrawing groups

Radicals

• 6 electrons in bonding orbitals

• 1 electron in a non-bonding orbital

• Sp3 hybridiised – tetrahedral

• Stabilised by electron donors

• Destabilised by electron withdrawing groups

Carbanions

• 3 filled bonding orbitals, one filled non-bonding orbital

• Sp3 hybridised orbitals, tetrahedral

• Stabilised by electron withdrawing groups

• Destabilised by electron donating groups.

Substituent effects

• N is electron donating via its lone pair

• N is also electron withdrawing

• Overall effect is a combination of these effects.

Inductive effect

• Depends on relative electronegativity

H 2.20 O 3.44 Br 2.96

C 2.55 F 3.98 I 2.66

N 3.04 Cl 3.16 Si 1.90

N C

• Short range effect (1-2 bonds)

• N also has lone pair:

Page 53: Year 2 Organic Chemistry notes - Ben Mills

Resonance Stabilisation

• Pi-electron donation/withdrawl – mesomeric effects

• Mesomeric effects effectively spreads/delocalises the +ve charge over one or more atoms

• Much stronger effect than inductive effect BUT the donor must be conjugated with the accepting

orbital.

• Also depends on the ability of the atom to donate their lone pair, i.e. depends on

electronegativity. So N > O > F

Hyperconjugation

• How do you explain stability of carbocations?

• Not inductive or mesomeric!

• Caused by hyperconjugation.

• This is the donation of a pair of bonding electrons into an unfilled or partially filled orbital.

• Only occurs when the C-H bond aligns with the carbocation orbital.

• Weaker than pi-donation as the electrons are localised in a bond.

• The donor bond must be able to overlap with the acceptor orbital, so rigid structures that hold

the donor out of alignment are less stable.

• Silicon is very good at stabilising β-carbocations.

• β-silyl carbocation is very stable because Si is electropositive relative to C, therefore it is able to

donate electrons into the bond, making it ‘electron rich’.

• α-silyl carbocations is actually destabilised relative to β-Si effect.

Beta-Si effect

Si

alpha-Si effect

Si

Page 54: Year 2 Organic Chemistry notes - Ben Mills

H2Ncan pi-donate

H2N

Can't pi-donate

EtO O

N-O O

pi withdrawal

EtO O

F

sigma-withdrawal not long range

Radicals

Carbanions

Page 55: Year 2 Organic Chemistry notes - Ben Mills

Reactions of carbocations

Nu-

H

Nu

H

SN1

E1

Me

H

[1,2] shift

'Wagner-Meerwein'shift

• It is possible for the electrons in a C-C bond to migrate into the unfilled carbocation orbital,

forming a new C-C bond and a new carbocation where the old C-C bond was.

• For example, the rearrangement of camphene hydrochloride:

• This is the reason why Friedel-Crafts alkylation cannot reliably synthesise n-propyl benzene:

Page 56: Year 2 Organic Chemistry notes - Ben Mills

Pinacol rearrangement

• Rearrangement reactions usually occurs by the formation of a more stable carbocation, so the

mechanism must be one that takes a less stable C+ to a more stable C+

More Wagner-Meerwein shifts

Demjanov reaction

• Another example:

Page 57: Year 2 Organic Chemistry notes - Ben Mills

• Variations:

NH2

OH

OHOH

+ +

A BC

via diazonium salt

OH2

B

OH2

C

H2O

B

Asymmetric examples

• Example:

Mechanism:

Page 58: Year 2 Organic Chemistry notes - Ben Mills

Control features

• Migratory aptitude:

• In general, more electron donating groups migrate faster

• i.e. R3C > R2CH > RCH2 > CH3

Stereoelectronic factors

• Generally, migrating group must be anti-periplanar to the C+ orbital, e.g.:

• R1 will always migrate in preference to R2 because it is anti-periplanar to the C-X bond.

Ar Retention Inversion Rate

100% 0%

60% 40%

1% 99%

Fast

Slow

Page 59: Year 2 Organic Chemistry notes - Ben Mills

• Acyl group can act as a participating neighbour:

HMeTsO

MeH

AcO-

XX

AcO

Ar

HMe

HMe

Retention

Stabilised more by resonanceif X is an e- donor.Destabilised by e- withdrawing

groups

Inversion

TsO

Me

H

AcO-

SN2

Inversion

Timing / Synchronicity of rearrangements (concerted or stepwise)

• The reaction shown above is synchronous, i.e. Ar forms a bond as TsO leaves.

• Corresponding asynchronous (stepwise) reaction:

• Time for bond to rotate leads to inversion of configuration, so product is a racemate.

Compare pinacol rearrangement to Tiffeneau/Denjanov

• Pinacol is non-selective for regiochemistry, but is synchronous, giving stereochemical control.

• A superior alternative:

• This homologation of a ketone Is driven by ring strain in the 4-membered ring.

Page 60: Year 2 Organic Chemistry notes - Ben Mills

Common rearrangements – migrations to e- deficient C

Wolff rearrangement

• There are 2 possibilities for the mechanism:

• Stepwise:

• Concerted:

Arndt-Eistert homologation

• Used to convert carboxylic acids into a higher carboxylic acid homologue, i.e. contains one

additional carbon atom with retention of stereochemistry

Page 61: Year 2 Organic Chemistry notes - Ben Mills

Corey-Fuchs reaction

• Need 2 equivalents of BuLi to prevent mixture of products forming:

Page 62: Year 2 Organic Chemistry notes - Ben Mills

Migrations to e- deficient N

• One common mechanism applies to several named rearrangements:

Curtius rearrangement

• X = N2+

Schmidt rearrangement

• X = N2+

Page 63: Year 2 Organic Chemistry notes - Ben Mills

Lossen rearrangement

• X = OAc

Beckmann rearrangement

O

H2N-OH

NOH

H+ HN O

Mechanism

NOH

oxime

H+ NOH2

migration of the group antito the H2O leaving group

RN

R

N

C

R

RH2O

R OH2

NR

R OH

NR

R O

NHR

• One application of this is in the manufacture of nylon:

Migration to e- deficient O

Baeyer-Villiger rearrangement