68
Muon g-2 and Electric Dipole Moments in Storage Rings: Powerful Probes of Physics Beyond the SM Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration” and EDM in Storage Rings Collaboration” Oklahoma University HEP Seminar, 25 March 2004 E d B dt s d

Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

  • Upload
    aria

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Oklahoma University HEP Seminar, 25 March 2004. Muon g-2 and E lectric D ipole M oments in Storage Rings: Powerful Probes of Physics Beyond the SM. Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and “EDM in Storage Rings Collaboration”. ‡. - PowerPoint PPT Presentation

Citation preview

Page 1: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Muon g-2 and Electric Dipole Moments in Storage Rings: Powerful Probes of Physics Beyond the SM

Yannis K. SemertzidisBrookhaven National Lab

“Muon g-2 Collaboration” and

“EDM in Storage Rings Collaboration”

Oklahoma UniversityHEP Seminar, 25 March 2004

EdBdtsd

Page 2: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

#

Muon g-2 Collaboration

†Spokesperson ‡Project Manager # Resident Spokesperson

Page 3: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Prof. Vernon W. Hughes (1921 2003)

Page 4: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

g - 2 for the muon

Largest contribution : 800

12

a

Other standard model contributions :

QED hadronic weak

Page 5: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Theory of aµ

• aµ(theo) = aµ(QED)+aµ(had)+aµ(weak)

+ aµ(new physics)

• aµ(had) = aµ(had1) + aµ(had, HO) + aµ(had, LBL)

? -100.6 + 8.6 3.5 in units of 10-10

Page 6: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Cannot be calculated from pQCD alonebecause it involves low energy scales.

Hadronic contribution (had1)

However, by dispersion theory,this a(had1) can be related to

)(e)(

e

hadronseeR

measured in e+e- collisions.or τ decay.

24 2

2

)()(3

)1,(

m

sRsKsdsm

hada

Page 7: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Cannot be calculated from pQCD alonebecause it involves low energy scales.

Hadronic contribution (had1)

However, by dispersion theory,this a(had1) can be related to

)(e)(

e

hadronseeR

measured in e+e- collisionsor τ decay (assuming CVC).

24 2

2

)()(3

)1,(

m

sRsKsdsm

hada

Page 8: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Evaluation of R

M. Davier et al., hep-ph/0208177.v3

Page 9: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Evaluation of R

M. Davier et al., hep-ph/0208177.v3

Page 10: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Difference between e+e- and

M. Davier et al., hep-ph/0208177.v3

Page 11: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

…Difference between e+e- and

M. Davier et al., Eur. Phys. J. C31, 503 (2003)

Page 12: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

• aμ(had1,e+e-)=(696.3±7.)×10-10

• aμ(had1,τ) =(711.0±6.)×10-10

e+e- based τ basedCorrect Correct τ-data interpr. wrongCorrect WrongWrong* CorrectWrong* Wrong T. Blum, hep-lat/0212018*Other (e+e-) collaborations are looking into it see, e.g., the

KLOE Collaboration, hep-ex/0210013

• aμ(exp)- aμ(SM, e+e-)=33.7(11)×10-10

• aμ(exp) -aμ(SM, τ) = 9.4(11)×10-10

M. Davier, hep-ph/0312065

Why?

Page 13: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

• aμ(had1,e+e-)=(696.3±7.)×10-10

• aμ(had1,τ) =(711.0±6.)×10-10

e+e- based τ basedCorrect Correct τ-data interpr. Wrong**Correct WrongWrong* CorrectWrong* Wrong *Other (e+e-) collaborations are looking into it, e.g., the

KLOE Collaboration is about to announce their result.

• aμ(exp)- aμ(SM, e+e-)10

M. Davier, hep-ph/0312065

**e+e-0 +-, whereas τ-- -0, S.G., F.J., hep-ph/0310181

Page 14: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Theory of aµ

• aµ(theo) = aµ(QED)+aµ(had)+aµ(weak)

+ aµ(new physics)

• aµ(QED) = 11 658 470.6 (0.3) ×10-10

• aµ(had) = 694.9 (8.) ×10-10 (based on e+e-)

• aµ(had) = 709.6 (7.) ×10-10 (based on )

• aµ(weak) = 15.4 (0.3) ×10-10

• aµ(SM) = 11 659 181(8)×10-10 (based on e+e-)

• aµ(SM) = 11 659 196(7)×10-10 (based on )

Page 15: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Theory and Experiment vs. Year

Page 16: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Experimental Principle

Page 17: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Beamline:Polarized Muon Beam Production

Page 18: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

• The Muon Storage Ring: B ≈ 1.45T, Pμ≈3.09 GeV/c

• Inner Ring of Detectors

•High Proton Intensity from AGS

•Muon Injection

Page 19: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Spin Precession in g-2 Ring(Top View)

Bmeaa

Momentumvector

Spin vector

Page 20: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Spin Precession in g-2 Ring(Top View)

Bmeaa

Momentumvector

Spin vector

Page 21: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

4 Billion e+ with E>2GeV

aa

t

tAeNdtdN

cos1/ 0

Page 22: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

5-parameter Function Not Quite Adequate. Fourier Spectrum of the Residuals:

nff Ccbo 11

fg-2 ≈229 KHz fcbo≈466 KHz

Data of 2000,n = 0.137

Page 23: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Amplitudes of AN, AA, A , Consistent with Values from MC Simulations (10-2, 10-3, 10-3 respectively)

Modulation of N0, A, with fcbo:

tttAetNdtdN aa

t

cos1/ 0

a

tfeAt cbo

t

aacbo 2cos)(

Ncbo

t

N tfeANtN cbo 2cos1)( 00

Acbo

t

A tfeAAtA cbo 2cos1)(

Page 24: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

2001 Run with Negative Muons

• In 2001 we have collected 3.7 Billion electrons with E>1.8GeV from a run with negative muons (μ-). Run at n=0.122 and n=0.142.

Page 25: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Vertical vs. Horizontal Tune

Page 26: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Systematic/Statistical Uncertainties for the ωa Analysis.

Systematic Uncertainties

Size [ppm]

Coherent Betatron Oscillations (CBO)Pileup (Overlapping Signals) Gain ChangesLost MuonsOthersTotal Systematics

0.07 0.080.120.090.110.210.66

0.21 0.130.120.100.080.310.62

2001 2000

Statistical Uncertainty

Total Uncertainty: 0.7 0.7

Page 27: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Magnetic Field measurement

The B field azimuthal variation at the center of the storage region. <B>1.45 T

The B field averagedover azimuth.

Page 28: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Magnetic Field MeasurementSystematic Uncertainties for the ωp Analysis.

Source of ErrorsSize [ppm]

Absolute Calibration of Standard ProbeCalibration of Trolley ProbeTrolley Measurements of B-fieldInterpolation with Fixed ProbesUncertainty from Muon DistributionOthersTotal

0.050.150.10 0.10 0.030.100.24

0.050.090.05 0.07 0.030.100.17

2001 2000

Page 29: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Computation of aμ:

• Analyses of ωa and ωp are Separate and Independent (“Blind Analysis”). When Ready, only then, Offsets are Removed and aμ is Computed.

pap

paa

Bme

a

///

Page 30: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Computation of aμ:

R

R

Bm

eapap

paa

///

Data of 2001:aμ(exp)=11 659 214(8)(3)×10-10 (0.7 ppm)

(26) 3 208 707 0.003 / paR

(10) 39 345 3.183 / p W.L. et al., PRL 82, 711 (1999)

Page 31: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Average of aμ:

Exp. World Average:aμ(exp)=11 659 208(6)×10-10 (0.5 ppm)

aμ(exp)- aμ(SM) = 27 (10)×10-10, 2.7σ, based on e+e- data

aμ(exp)- aμ(SM) = 12 (9) ×10-10, 1.4σ, based on -data

CPT? 910)4.35.3( RRR

Page 32: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

G.B. et al., hep-ex/0401008, PRL in Press

Page 33: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Recent KLOE Results

Page 34: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

• aµ(had, LBL) = +8.6(3.5)10-10 Large N QCD+Chiral

• aµ(had, LBL) = +13.6(2.5)10-10 Melnikov + Vainshtein

• aµ(had, LBL) = +11.1(1.7)10-10 Dubnicka et al

• aµ(had, LBL) = +9.2(3.0)10-10 T+Ynd.

• aµ(had, LBL) = +11.0(2.0)10-10 W. Marciano, prelim.

• Use +12.0(3.5)10-10 WM

• aµ(QED) = 11 658 472.07(0.04)(0.1)10-10 Recent Kinoshita Update

Recent Developments in Theory

Page 35: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

• aµ(had,1) = 696.3(6.2)(3.6)×10-10 DEHZ

• aµ(had,1) = 696.2(5.7)(2.4)×10-10 HMNT

• aµ(had,1) = 694.8 (8.6) ×10-10 GJ

• aµ(had,1) = 692.4(5.9)(2.4)×10-10 HMNT inclusive

• aµ(had,1) = 693.5(5.0)(1.0)×10-10 TY

• Use = 694.4 (6.2)(3.6)×10-10 WM

• aµ(SM) = 11 659 184.1 (7.2)VP (3.5)LBL (0.3)EW,QED ×10-10

• aµ(Exp) = 11 659 208.0 (5.8)×10-10

aµ= aµ(Exp) - aµ(SM) = 23.9 (9.9)×10-10 or 2.4 deviation

Recent Developments in had1

Page 36: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Beyond standard model, e.g. SUSY

tanGeV1001013sgn2

susy

10susy

ma

W. Marciano, J. Phys. G29 (2003) 225

Page 37: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Current Status and Future Prospects

Page 38: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

SUSY Dark Matter

Following Ellis,Olive, Santoso,Spanos. Plot by K. Olive

Page 39: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

SUSY Dark Matter

Following Ellis,Olive, Santoso,Spanos. Plot by K. Olive

Page 40: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

SUSY Dark Matter

Following Ellis,Olive, Santoso,Spanos. Plot by K. Olive

Upper Limits onSUSY Mass Scalesare set by Muon g-2

Page 41: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

• Experimental measurement of the anomalous magnetic moment of negative muons to 0.7 ppm.

• Combined with the positive muon result: 0.5ppm

• More data from the theory front are/will be analyzed: Novosibirsk, KLOE, BaBar, Belle.

• The g-2 collaboration is working towards reducing the experimental error by a factor of 2.

Prospects and Summary

Page 42: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Electric Dipole Moments in Storage Rings

•EDMs: Why are they important?

•EDMs in Storage Rings

Page 43: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Spin is the only vector…

0d

+

-

dd

Page 44: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

A Permanent EDM Violates both T & P Symmetries:

+

-

+

-

+

-T

P

Page 45: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

T-Violation CP-ViolationCPT

Andrei Sakharov 1967:

CP-Violation is one of three conditions to enable a universe containing initially equal amounts of matter and antimatter to evolve into a matter-dominated universe, which we see today….

Page 46: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

EDM Searches are Excellent Probes of Physics Beyond the SM:

One CP-Violating Phase (CKM), Needs loops with all quark families for a non-zero result (Third Order Effect).

SM:

42 CP-Violating Phases, Needs one loop for a non-zero result (First Order Effect).

SUSY:

Page 47: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

la Fortson

d

Page 48: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

EdBdtsd

Usual Experimental Method

Small Signal

Compare the Zeeman FrequenciesWhen E-field is Flipped:

dE421 +

-

TNEd

11

Carrier Signal

Page 49: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Electric Dipole Moments in Storage Rings

e.g. 1T corresponds to 300 MV/m!

Buddtsd

Page 50: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

B

a edm

Ron McNabb’s Thesis 2003: C.L. 95% cme107.2 19

x

y

z

edm

me

Ba Bu

c

2

Indirect Muon EDM limit from the g-2 Experiment

a

edm

tan

Page 51: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Two Major Ideas:• Radial E-field to Cancel the g-2 Precession• Injecting CW and CCW

• Sensitivity: 10-24 e·cm statistical (1 yr, 0.75MW)• Sensitivity: 10-27 e·cm systematic error

• Muon EDM LOI: (http://www.bnl.gov/edm) to J-PARC.

Page 52: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Parameter Values of Muon EDM Experiment

• Radial E-Field:• E=2MV/m• Dipole B-field: B ~ 0.25T , R ~ 10m

• Muon Momentum:

• F. Farley et al., hep-ex/0307006

2aBcE

5 MeV/c,500 P

Page 53: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Muon EDM Letter of Intent to J-PARC/Japan, 2003

• †Spokesperson

• # Resident Spokesperson

#

Page 54: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

SUSY: EDM, MDM and Transition Moments are in Same Matrix

Page 55: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Expected Muon EDM Value from a

)tan( 10 27

cme 10 2 10

SUSY22

CP

ad

CPiSUSYSUSY

DM

eDD

Dd

Dmea

FDDL

,

,2

and ,21 where

,2

12

121 5*5

Page 56: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Predictions in Specific Models

The predicted value for the electron is 10 times lessthan the current experimental limit.

50 effect at 10-24 ecm Exp. Sensitivity!

Page 57: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

g-2 Values• Electron 0.00116 done

• Muon 0.00117 doing

• Proton 1.8 ------

• Deuteron -0.15 OK!

Page 58: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Deuteron Coherence Time• E, B field stability

• Multipoles of E, B fields

• Vertical (Pitch) and Horizontal Oscillations

• Finite Momentum Acceptance ΔP/P

At this time we believe we can do p~10s

Page 59: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Deuteron Statistical Error (200MeV):

TotcRpd fTNAPaE

a2

2

15.6

p : 10s. Polarization Lifetime (Coherence Time)A : 0.3. The left/right asymmetry observed by the polarimeterP : 0.55. The beam polarizationNc : 1011d/cycle. The total number of stored particles per cycleTTot: 107s. Total running time per yearf : 0.01 Useful event rate fractionER : 3.5MV/m. Radial electric field

cme105 28 d per year

Page 60: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Deuteron EDM to 10-27 ecm Sensitivity Level is 100 times better than 199Hg

• T-odd Nuclear Forces: dd =210-22 ξ e·cm with the best limit for ξ<0.5 10-3 coming from the 199Hg EDM limit (Fortson, et al., PRL 2001), i.e. dd < 10-25 e·cm.

(Sushkov, Flambaum, Khriplovich Sov. Phys. JETP, 60, p. 873 (1984) and Khriplovich and Korkin, Nucl. Phys. A665, p. 365 (2000)).

Page 61: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

dd = dp + dn (I. Khriplovich)

It Improves the Current Proton EDM Limit by a Factor of ~10,000 and a Factor 60-100 on Neutron.

Page 62: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Deuteron (D) EDM at 310-

27ecm

Relative strength of various EDM limits as a function of left handed down squark mass (O. Lebedev, K. Olive, M. Pospelov and A. Ritz, hep-ph/0402023)

Page 63: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Possible Locations for a Deuteron EDM Experiment:

• Brookhaven National Laboratory

• Indiana University Cyclotron Facility

• KVI/The Netherlands

Proposal This Year…

$20-30M

Page 64: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Effect of Vertical Component of E• Clock Wise and Counter-Clock Wise Injection:

Background: Same Sign Signal: Opposite Sign

• Protons β=0.15, γ=1.01, ω=115105 θE rad/s• Deuterons β=0.2, γ=1.02, ω= 13105 θE rad/s• Muons β=0.98, γ=5, ω= 2105 θE rad/s

• Other Diagnostics Include Injecting Forward vs Backward Polarized Beams as well as Radially Pol.

Page 65: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

We are Studying

• Target and Polarimetry (Deuteron case)

• E-field Directional/Amplitude Stability

• Beam and Spin Dynamics

Page 66: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

E-field Stability: Major Breakthrough Idea by Neil Shafer-Ray

E-field Stability of Order 10-8 to 10-9

Page 67: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

EDMs

Questions Physicists Ask:

Page 68: Yannis K. Semertzidis Brookhaven National Lab “Muon g-2 Collaboration” and

Electric Dipole Moment Searches:

• Exciting Physics, Forefront of SUSY/Beyond SM Search.

• Revolutionary New Way of Probing EDMs, Muon and Deuteron Cases-Very Exciting.

• Sensitive EDM Experiments could bring the Next Breakthrough in Elementary Particle Physics.

Summary