59
World Chemicals Sales (2010) 1 400 200 0 1000 800 € billion Asia Europe Latin America Others NAFTA Ʃ € 2 353 billion 1147 128 578 455 45 Source: Cefic Chemdata International 1200 600 China

World Chemicals Sales (2010) - Gesellschaft … · World Chemicals Sales (2010) 1 400 200 0 1000 800 € billion Asia Europe Latin ... (NECC) Shihwa, Korea (HCC) Iselin Ludwigshafen

  • Upload
    lekhanh

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

World Chemicals Sales (2010)

11

400

200

0

1000

800

€ billion

Asia Europe LatinAmerica

OthersNAFTA

Ʃ € 2 353 billion

1147

128

578

455

45

Source: Cefic Chemdata International

1200

600

China

Chemical Industry Sales (2010)Sectoral Breakdown (Europe)

22

Source: Cefic Chemdata International

Basic inorganics13,6 %

Petrochemicals24,0 %

Specialties25,6 %

Polymers24,0 %

Consumer chemicals12,8 %

Large-Scale Catalytic Processes

3

1888 Sulfuric acid production by the contact process

1913 Ammonia synthesis (Haber-Bosch process)

1922 High pressure process for production of methanol

1926 – 1945 Coal liquefaction process for fuel production

1930 Production of synthesis gas for ammonia and methanol

1977 Acrylic acid process

1988 Low pressure production of methanol on the basis of lean gas

1997 Process for decomposition of N2O (greenhouse gas)

2003 High-load process for production of phthalic anhydride

2008 Propylene oxide from propylene and hydrogen peroxide

Heterogeneous CatalystsGlobal Market 2010

4

Polyolefins€ 1,0 bn

Chemicals€ 3,0 bn

Mobile Emissions€ 3,7 bn

Stationary Emissions€ 0,5 bn

Source: BASF estimatesSRI Consulting 2011

∑ € 11,3 bn

ChemicalIndustry€ 4,0 bn35,4 %

Refinery€ 3,1 bn27,4 %

Environment€ 4,2 bn37,2 %

5

Heterogeneous Catalysis (GCC)

New Technologies (GCN)

Chemical and Process Engineering (GCP)

Organic Synthesis and Homogeneous Catalysis (GCS)

Research OrganizationProcess Research and Chemical Engineering (GC)

GCC/CGCC/EGCC/PGCC/S

Major Research Sites for Heterogeneous Catalysis(BASF Group)

6

Beachwood, OH Iselin, NJ

Huntsville, ALShanghai, China

Guilin, China

Nienburg, Germany

Ludwigshafen, Germany

DeMeern, Netherlands

Union, NJ Hannover, Germany

Attapulgus, GA

Numazu, Japan(NECC)

Shihwa, Korea (HCC)

Iselin ShanghaiLudwigshafen

Heidelberg, Germany (hte)Savannah, GA

Vidalia, LAPasadena, TX

Process Research and Chemical Engineering (GC)Research Focus

7

Extension of thevalue chains

Development of newtechnologies

Process optimizationProduct innovation Process innovation

Raw material change

Process Research and Chemical Engineering

Process Research and Chemical Engineering

8

Catalysis

Chem.ReactionEnginee-

ring

ChemicalSynthesis

TechnicalProcess

UnitOpera-tions

Propylene OxideHPPO Process

9

O+ H2O2

- H2O

10

Polyurethanes

Propylene Oxide Product Life CycleTechnologies

11

0

2 000

4 000

6 000

8 000

1965 1975 1985 1995 2005Year

Propylene oxide capacity [kt/a]

Chlorohydrin

MTBE/POSM/PO

Cumene

Total

2010

HPPO

Propylene OxideState-of-the-Art Technologies at BASF

12

Chlorohydrin1930

2.2 t salt/t PO

BASF-HPPOJDA with DOW

2008 water onlyO+ H2O2

- H2O

OH

ClO+ Cl2 + H2O + Ca(OH)2

- CaCl2

OOH

OH

O

+ O2

- H2O

SM/PO1975

2.3 t SM/t PO

Propylene Oxide (HPPO Process)BASF Catalyst

13

Macroscopiccatalyst

CH3O O

SiOSiO

Ti

OSi

O

HH

O+ H2O

Microscopiccatalytic site

+ CH3OH

+ H2O2

Proprietary Ti-zeolite System

Propylene Oxide (HPPO Process)Simplified Process Flowsheet

14

Propylene

H2O2

methanol recycle

pure PO

low boilers

H2O, glycols

pure POoff-gas waterglycols

separation

reactor methanolpurification

crudePO

� Epoxidation using fixed-bed catalyst arrangement

� Full H2O2 conversion and solvent methanol recycle, PO distillation for final purification

off-gas

methanol

HPPO Pilot Plant Ludwigshafen

15

HPPOProduction Plant Antwerp

16

HPPOEconomic and ecological advantages300 kt/a Plant in Antwerp

17

� 75% reduction of waste water

� 35% lower energy consumption

� 25% lower capital investment

� Only water as co-product

Recognition of HPPO Technology

18

IChemEAward 2009

York, GB, Nov. 2009

40th KirkpatrickHonor Award 2009

New York, Nov. 2009

US Presidential GreenChemistry Award

Washington, June 2010

Process Research and Chemical Engineering (GC)Research Focus

19

Extension of thevalue chains

Development of newtechnologies

Process optimizationProduct innovation Process innovation

Raw material change

Process Research and Chemical Engineering

Acrylic Acid

20

Colourless liquid with perceptible odour (Tm = 13°C, Tb = 141°C)

� corrosive

� flammable (flash point ~ 49°C)

Acrylic acid, stabilized839

2218

corrosive flammable

CH2 CCHO

HO

21

Polyacrylates

Life Cycles of Acrylic Acid Technologies

22

Propylene oxidation

Capacity (Mio. t/a)

4.2

3.6

3.0

2.4

1.8

1.2

0

0.6

1950 1960 1970 1980 1990 2000 2010

4.8

5.4

Cyanhydrin,Acrylonitrile andPropiolactoneprocess Reppe

process

Acrylic Acid from Propene

23

CCHO

HCH2 + 0.5 O2

Acrolein

CHCH2 CH3 + O2

� Process developed by SOHIO and Nippon Shokubai

Bi-Fe-Mo-O

300 - 350 °C

� Since 1977 at BASF

Step 1:

CCHO

HCH2 + H2O

Propene Acrolein∆H = - 341 kJ/mol

Mo-V-O

250 - 300 °C

Step 2:

Acrylic Acid∆H = - 254 kJ/mol

CCHO

OHCH2

Improvement of Acrylic Acid (AA) Catalysts

24

120

110

100

90

67 %

100 %

CO2 Emission / t AA [%] Propene load [Index]AA Yield [Index]

33 %

1976 1981 2001 200619911986 1996

50

200

150

100

50 %

2011

30 %

ElectricityCity with275 000two personshouseholds

Process Research and Chemical Engineering (GC)Research Focus

25

Extension of thevalue chains

Development of newtechnologies

Process optimizationProduct innovation Process innovation

Raw material change

Process Research and Chemical Engineering

26

Light Duty Engine Production (Million)

Source: JD Power, Engine & Transmission Forecast, Q4/2011

2016

102

2015

98

2014

15

66

18

1

60

17

57

17

92

2013

85

2012

77

2011

74

2010

72

2009

57

2008

66

78

23

1

75

22

1

71

20

1

56

16

45

12

51

Gasoline

Diesel

Others

27

Engine out emissions

CO 5,15 0,95 2,79 1,40

Hydrocarbons 1,05 0,16 0,20 0,10

NOx 1,35 0,13 6,78 3,50

Soot Insign. 0,05 0,06 0,03

Gasoline(Audi / 2,0 l)

Diesel(BMW / 2,0 l)

Diesel(MAN / 12,4 l)

Passenger Cars

NEDC

g/km “g/km”

Trucks

g/kWh

WHTC

28

Euro 3

Vietnam

Euro 5Euro 4China

Japan

Global, 4bGlobal, 4aEuro 6

Euro 5

Euro 3

Euro 4Euro 3

Euro 4Euro 3

Euro 3

Euro 4

Euro 5Euro 4Euro 3

Euro 5Euro 4Euro 3

Euro 5Euro 4

Euro 5Euro 4Euro 3

Global, 4bEuro 6Euro 4Global, 4aEuro 5Euro 5Euro 3

Global, 4bGlobal, 4aUS 2010US 2007

CA LEV IIIUS Tier 2, CA

LEV II

201620152014

Euro 6

201320122010

Euro 4

200920082007

India

2011

Thailand

South Korea

Russia

Brazil

Europe

USA

Euro 3

Vietnam

Euro 5Euro 4China

Japan

Global, 4bGlobal, 4aEuro 6

Euro 5

Euro 3

Euro 4Euro 3

Euro 4Euro 3

Euro 3

Euro 4

Euro 5Euro 4Euro 3

Euro 5Euro 4Euro 3

Euro 5Euro 4

Euro 5Euro 4Euro 3

Global, 4bEuro 6Euro 4Global, 4aEuro 5Euro 5Euro 3

Global, 4bGlobal, 4aUS 2010US 2007

CA LEV IIIUS Tier 2, CA

LEV II

201620152014

Euro 6

201320122010

Euro 4

200920082007

India

2011

Thailand

South Korea

Russia

Brazil

Europe

USA

Worldwide Emission Regulations

Light-duty Heavy-duty Motorcycle

Current regulations Future regulations

Phase in

Euro 7 - to be decided in 2016

Transition State Motorcycle

29

Main Reactions in Vehicle Exhaust Gas Treatment

30

CO + O2 CO2

Pt / Pd

Hydrocarbons + O2 CO2 + H2OPt / Pd

NOx + CO CO2 + N2

Rh (Pd)

Gasoline engines:

TWC

NO + O2 NO2

Pt

Diesel engines:DOC

NH3 + O2 N2 + H2OPt

AMOX

NO + NO2 + O2 + NH3 N2 + H2OCu/Fe/V

SCR

C + NO2 CO + NO CSF

(1)

(2)

(3)

(1), (2)

(4)

(5)

(7)

(8)

(1), (2), (4)

C + O2 CO2(6)

Vehicles and Catalyst Families

31

Catalysts Applications

Gasoline Engine

LDG TWC

Diesel Engines

LDD

HDD

DOCDOC + CSFDOC + CSF + SCR

DOC + CSF + SCR + AMOX

Motorcycles TWC

Emission Control in Trucks (Euro VI)

32

Diesel Oxidation Catalyst (DOC)

� Oxidation of- carbon monoxide- hydrocarbons

� Oxidation of NO to NO2

Catalyzed Soot Filter (CSF)

� Soot filtration

� Soot burn off

� Oxidation of CO and hydrocarbons

� Oxidation of NO to NO2

Ammonia Oxidation Catalyst (AMOX)

� Oxidation of ammonia to nitrogen

Selective Catalytic Reduction (SCR)

� Reduction of NOx to nitrogen

� Hydrolysis of urea

DOC CSF SCR

Diesel(for soot burn off)

AMOX

Urea

33

General Structure of Automotive Catalysts

Coatings on honeycomb

Exhaust gas

from engineBottom coat

Honeycomb

Top coat

Middle coat

Catalyst

34

Soot-laden gas

Soot-free gas

Gas must filter

through wall

Plug

Porous Filter Wall

Catalyst

General Structure of Catalytic Soot Filters (CSF)

Inlet

channel

Outlet

channelSoot

layer

35

Price ($/tr.oz.)

Year

0

2 000

4 000

6 000

1985 1990 1995 2000

Rhodium

2005 2010

Rhodium Platinum Palladium

Fluctuation of Precious Metal Prices(Average prices p.a.)

Emission Limits and Precious Metal Contentof Light Duty Gasoline Catalysts

36

EURO 1

1992

EURO 2

1996

EURO 3

2000

EURO 4

2005

EURO 5

2009

Ford, Engine displacement ≤ 2 l

Total Hydrocarbons + NOx None Methane Hydrocarbonsg/km g/ft3

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

20

40

60

80

100

120Pt + Pd + Rh

Rh

CO

37

Key Features of Automotive Catalysts

Automotive catalysts have:

� To manage different chemical reactionsat the same time (oxidation and reduction)

� To work under varying reaction conditions

- Low feed concentrations from 100 to 3 500 v ppm but high conversions and selectivities needed

- Rapid oscillations between lean and rich atmospheres

- Temperatures from ambient to 1000 °C

- Space velocities from 10 000 h-1 to 200 000 h-1

� To cope with “other challenges”

Operator of Chemical Catalysts

38

Operator of Automotive Catalysts

39

Process Research and Chemical Engineering (GC)Research Focus

40

Extension of thevalue chains

Development of newtechnologies

Process optimizationProduct innovation Process innovation

Raw material change

Process Research and Chemical Engineering

Primary Energy Share

41

1850 200019501900 2050

80

60

40

20

0

Primary energy share [%]

TraditionalCoal Gas

Oil HydroNuclear

New RenewablesBiofuels

Source: Royal Dutch/Shell Group, “Energy Needs, Choices and Possibilities“

Syngas to Olefins

42

CO + 2 H2 Kohlenwasserstoffe + H2OReaktion:

Mechanismus:

Produkte: Breite Produktverteilung: C1 (Methan) – C100 (Wachse)

Katalysator

C2H4

Katalysator

C3H6CO

C* C2*

CO

C100*

C100H200CO

CH4CO

C* Katalysator

Methanisierung

C2H6 C3H8

Fe* Katalysator

Wassergas Shift

CO + H2O H2 + CO2

C3*

CO

Benzene from Methane

43

CH4

CHx C2Hy C2+Hz5,5 A5,5 A5,5 A

Mo2C

Zeolite (HZSM-5)

Mo2C

Zeolite (HZSM-5)HZSM-5HZSM-5

Process Research and Chemical Engineering (GC)Research Focus

44

Extension of thevalue chains

Development of newtechnologies

Process optimizationProduct innovation Process innovation

Raw material change

Process Research and Chemical Engineering

PEM Fuel CellProton Exchange Membrane

45

HydrogenHydrogen

HH22 2H2H++ + 2e+ 2e--

Electrolyte(Cell division)

CathodeCathode AnodeAnode

Protons

ElectronsElectrons

AirAir

OO22 + 2H+ 2H++ + 2e+ 2e-- HH22OO1122

WaterWaterWater

Cost Target for Fuel Cell Systems

46

< 1.500 €/kW

< 50 €/kW< 500 €/kW

< 750 €/kw

Car Car -- PEMPEM

Bus Bus -- PEMPEM

Laptop Laptop -- DMFCDMFC BHPP BHPP -- MCFCMCFC

PEMPEM

HomeHome

APU APU -- PEMPEM

Submarine Submarine -- PEMPEM

SOFCSOFC

mobile portable stationary

Electrocatalysts for Fuel Cells

47

0.05µm

Pt /C

PEM Fuel CellProton Exchange Membrane

48

HydrogenHydrogen

HH22 2H2H++ + 2e+ 2e--

Electrolyte(Cell division)

CathodeCathode AnodeAnode

Protons

ElectronsElectrons

AirAir

OO22 + 2H+ 2H++ + 2e+ 2e-- HH22OO1122

WaterWaterWater

Metal Organic Framework (MOF)

49

++ZnOZnO

COOHCOOH

COOHCOOH

MOFMOF--55

MOFUnique Properties

50

World record values in surface areastyp. 1 500 - 3 000 m²/g

200 µm

MOFMilestones by Prof. O. Yaghi (Berkeley)

51

MOF-53,000 m²/g

MOF-1775,000 m²/g

201020041999 Year

SurfaceMOF-210

10,000 m²/g

2009

MOF-2008,000 m²/g

Zeolite 13X

1950

600 m²/g

World record

MOFUnique Properties

52

World record values in surface areastyp. 1 500 - 3 000 m²/g

200 µm

Dead-volume-free structuresin contrast to zeolites and activated carbons

Low solid densities300 - 500 g/l

53

MOFUnique Properties

54

World record values in surface areastyp. 1 500 - 3 000 m²/g

200 µm

Dead-volume-free structuresin contrast to zeolites and activated carbons

Low solid densities300 - 500 g/l

High thermal stabilitydecomposition only at 350 - 500°C

Variable designmore than 2 000 structures annually

MOFHydrogen Storage Capacities (50 bar, 77K)

55

H2, liq(1 bar, 20K)

COOH

COOH

COOH

COOHHOOC

COOH

COOH

Zn Cu AlZn Zn

2002 20022002 2005

g H2 / ℓTank

H2, gas(700 bar, 298K)

H2, gas(350 bar, 298K)

2007

1417 19

23

33

23

37

71

0

10

20

30

40

50

60

70

80

42

Zn

2009

OHO

O

OHO

OH

COOH

COOH

COOH

COOH

OH

OH

MOFNatural Gas Storage

56

Properties: water-stable, thermally stable up to 350 °C

BasoliteTM A520

Metal: Aluminum

Linker: Fumaric acid

20 µm20 µm20 µmHO2C

CO2H

MOFNatural Gas Storage (Mercedes Sprinter, 295 K)

57

Pressure [bar]

Tank

0

10

40

50

70

60

30

20

0 10 20 30 40 500

100

200

400

300

Methane [gCH4/ ℓtank] Distance [km]

Tank + MOF A520

Customer value: higher distance or lower pressure

MOFNatural Gas Storage

58

Cooperation with

� Agility: US manufacturerof alternative fuel systems

� 1 Truck equipped withMOF A520 pelletsto store natural gas

� Successful operationsince summer 2010

59