25
WMAP Implications for Reionization WMAP Implications for Reionization Columbia University ing on Cosmic Inflation Zolt Zolt á á n Haiman n Haiman

WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Embed Size (px)

Citation preview

Page 1: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

WMAP Implications for ReionizationWMAP Implications for Reionization

Columbia University

The Davis Meeting on Cosmic Inflation 22-25 March, 2003

ZoltZoltáán Haimann Haiman

Page 2: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Looking for Electrons with WMAPLooking for Electrons with WMAP

Z(reion)=6 0.04

[marginalized errors from TE correlation]

(Spergel et al. 2003)

Page 3: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Outline of TalkOutline of Talk

1. Theoretical Modeling of Reionization

– what were the sources?

– what are the key feedback processes?

2. Observational Signatures

– distribution of neutral hydrogen

– distribution of free electrons

Page 4: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

The Dark Age The Dark Age

Current horizon:

Reionization:

Recombination:

(Chandra)

z=6.6

z 7-20

z 1000

Page 5: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

What were the sources of reionization?What were the sources of reionization?

• Not a stringent energetic requirement - 13.6 eV (chemical) vs >MeV (nuclear or grav.)

• Non-linear structures are present early in most cosmologies(*)

- 2-3 peaks above Jeans scale collapse at z=20-30

• Photo-ionization natural candidate - consistent with Lyman forest at lower z - stars vs quasars - decaying particles require fine-tuning of , m

(*) Interesting exceptions

Page 6: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Quasar space density Star formation rate

(Haiman, Abel & Madau 2001)

log

[dlo

g [d

* * /d

t/d

t // MM

y

ryr-1-1 M

pc M

pc-3-3]]

log

[n(z

) / n

(pea

k)]

log

[n(z

) / n

(pea

k)]

redshiftredshift redshiftredshift

Extra Stars or Quasars are NeededExtra Stars or Quasars are Needed

Z Z

0

-1

1

2

? ?

Page 7: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Relevant Halo Mass ScalesRelevant Halo Mass Scales

• Jeans Mass 104 M ⊙ Tvir=20 K x 20x 20

• H2 cooling 105 M ⊙ Tvir=102 K TYPE II 17TYPE II 17

• HI cooling 108 M ⊙ Tvir=104 K TYPE IaTYPE Ia 99

• Photo-heating 1010 M ⊙ Tvir=2x105 K TYPE Ib 5TYPE Ib 5

(masses at redshift z=10)

22 peak peakredshiftsredshifts

Page 8: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

What forms in these early halos?What forms in these early halos?

• STARS: FIRST GENERATION METAL FREE - massive stars with harder spectra - boost in ionizing photon rate by a factor of ~ 20 - return to “normal” stellar pops at Z 10≳ -4 Z⊙

(Tumlinson & Shull 2001 ; Bromm, Kudritzki & Loeb 2001; Schaerer 2002)

• SEED BLACK HOLES: PERHAPS MASSIVE (~106 M ⊙ ) - boost by ~10 in number of ionizing photons/baryon - harder spectra up to hard X-rays - effects topology, IGM heating, H2 chemistry - connections to quasars and remnant holes [especially z~6 super-massive BHs; also gravity waves] (Oh; Venkatesan & Shull; Haiman, Abel & Rees; Haiman & Menou)

Page 9: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Feedback ProcessesFeedback Processes

• INTERNAL TO SOURCES - UV flux unbinds gas - supernova expels gas, sweeps up shells - H2 chemistry (positive and negative) - metals enhance cooling - depends strongly on IMF

• GLOBAL - H2 chemistry (positive and negative TYPE II) - photo-evaporation (TYPE Ia) - photo-heating (TYPE Ib) - global dispersion of metals (pop III pop II) - mechanical (SN blast waves)

}

Page 10: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

First Global FeedbackFirst Global Feedback

Soft UV background:

H2 dissociated by 11.2-13.6 eVphotons:

“sawtooth spectrum”

H2+ H2(*) H+H+’

this background inevitablethis background inevitableand it destroys moleculesand it destroys molecules

~ 1 keV photons promote free electrons more H2

H+ H++e- +’

H + e- H- +

H- + H H2+ e-

Soft X-ray background:

this background from quasarsthis background from quasarspromotes molecule formationpromotes molecule formation

⊝ ⊕

Haiman, Abel & Rees (2000)Haiman, Abel & Rees (2000)

Page 11: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Second Global FeedbackSecond Global Feedback

PHOTO-IONIZATION HEATING:

- IGM temperature raised to ≳104K

- Gas in-fall suppressed in halos with

velocity dispersion ≲ 50 km/s

- [or: Jeans mass increased…]

0D: Efstathiou 19921D: Thoul & Weinberg 19953D: Navarro & Steinmetz 1997

Page 12: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Reionization Histories (electron fraction)Reionization Histories (electron fraction)

(Haiman & Holder 2003)

TYPE IbTYPE Ib

TYPE IITYPE II

TYPE IaTYPE Ia

Page 13: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Outline of TalkOutline of Talk

1. Theoretical Modeling of Reionization

– what were the sources?

– what are the key feedback processes?

2. Observational Signatures

– distribution of neutral hydrogen

– distribution of free electrons

Page 14: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

““Percolation” is occurring at z~6-7Percolation” is occurring at z~6-7

• Spectra of z~6 quasars in SDSS

- Gunn-Peterson troughs at z > 6 - Compared to HI opacity in 5.5 z 6 sources≲ ≲ (Becker et al. 2001; Fan et al. 2002, Songaila & Cowie 2002)

• IGM Temperature

- IGM inferred to be warm from z~6 Lyman forest - It would be too cold for single early reionization (Hui & Haiman 2003; Zaldarriaga et al. 1997; Theuns et al. 2002)

looking for hydrogenlooking for hydrogen

Page 15: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Evolution of the Ionizing BackgroundEvolution of the Ionizing Background

• Sharp drop at z~6

• Natural post-percolation

• Difficult to explain otherwise

Similar conclusions in:Lidz et al. 2002 Cen & McDonald 2002Gnedin 2002Songaila & Cowie 2002

redshift

Ion

izin

g b

ack

grou

nd

(10

-12

s-1

)

Fan et al. (2002)

Page 16: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Another Piece of Evidence for zAnother Piece of Evidence for zr r ≲ ≲ 1010

IGM quite warm at z~4

- measured T 20,000 K - adiabatic cooling vs. photo-ionization heating

- requires a percolation at low redshift (z<10)

(Zaldarriaga et al. 2001; Theuns et al. 2002)

Hui & Haiman (2003)

Page 17: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Reionization HistoryReionization History

Wyithe & Loeb; Ciardi et al.Somerville et al.; Sokasian et al. Fukugita & Kawasaki; Cen

Haiman & Holder 2003

NN=4000=4000ff**=20%=20%ffescesc=10%=10%C=10C=10

NNff**ffescesc/C=8/C=8

0.080.08 0.080.08

redshiftredshift redshiftredshift

elec

tron

fra

ctio

nel

ectr

on f

ract

ion

Page 18: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Reionization HistoryReionization History Haiman & Holder 2003

0.170.17 0.080.08TYPE IITYPE II

N=40000f*=0.005fesc=100%C=10

=20=20

redshiftredshift redshiftredshift

elec

tron

fra

ctio

nel

ectr

on f

ract

ion

Page 19: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Reionization HistoryReionization History Haiman & Holder 2003

N=40000f*=0.005fesc=100%C=10

=20=20

0.170.17TYPE IITYPE II0.170.17

TYPE IaTYPE Ia

=480=480

N=40000f*=20%fesc=10%C=3

redshiftredshift redshiftredshift

elec

tron

fra

ctio

nel

ectr

on f

ract

ion

Page 20: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Reionization HistoryReionization History

Wyithe & Loeb 2002Cen 2002redshiftredshift

elec

tron

fra

ctio

nel

ectr

on f

ract

ion

Haiman & Holder 2003

=8 for z<14=8 for z<14

=160 for z>14=160 for z>14

Sudden Transition fromSudden Transition froma Metal Free to a Normala Metal Free to a NormalStellar PopulationStellar Population0.170.17

Page 21: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

WMAP implicationsWMAP implications

• Complex reionization history required by WMAP + SDSS - significant activity at high redshift (“3” result) either : metal-free stars, mini-quasars with x60 “boost” or : H2 molecules form efficiently in Type II halos

• Some cosmogonies can be ruled out - dark age = test-bed of small-scale P(k) - WDM (~3? keV), Mixed DM (?) (Barkana, Haiman, Ostriker)

- Running Index (requires x 50 boost and H2 formation) or x 3000 boost (Haiman & Holder 2003)• Future promise - WMAP is sensitive only to (total electron column) - But if ≳0.1, then future EE/TE can distinguish xe(z) (Kaplinghat et al. 2002 ; Holder et al. 2003)

no ‘crisis’ no ‘crisis’

Page 22: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Future Polarization MeasurementsFuture Polarization Measurements

• Three reionization histories with same 0.16• Different polarization power spectra >4 in cosmic variance limit, ~3 for Planck• Can induce bias in measurement ( up to ~0.02)

Haiman & Holder (2003)

RedshiftRedshift

xxee

Page 23: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Looking for Electrons in the CMBLooking for Electrons in the CMB

• CMB anisotropies - damping of temperature anisotropy (geometrical) - boosts large-angle polarization anisotropy (geom.) - small scale SZ effect (energy) (l 3000; ≳ Oh et al. 2003) Talks by M. Santos

and M. Kamionkowsky• Distortions of mean spectrum - Compton heating: y=1/4 u/u ~ 10-5 if 10-4 of baryons in BHs, with 1% into heating - dust scattering with 0.3 M ⊙dust per SN: y ~ 10-5 - improve FIRAS/COBE limit to 10-7 …(?) (Fixsen & Mather 2002)

Page 24: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

1. LCDM cosmogony naturally accommodates reionization

2. Different populations to satisfy both SDSS QSO + WMAP

3. Either H2 formation or significant (x50) boost in efficiency

4. Future CMB observations will probe reionization history

5. Ly Emitters and 21cm will probe neutral hydrogen

6. JWST will make direct detections to z=10 and beyond

ConclusionsConclusions

- - - & - - - - - - & - - -

Page 25: WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation 22-25 March, 2003 Zoltán Haiman

Le FinLe Fin