74
EDITION 1 Wound Cores A Transformer Designers Guide

Wiltan Guide

Embed Size (px)

Citation preview

Page 1: Wiltan Guide

EDITION 1

Telmag is a brand of Wiltan

WiltanAmbassador Buildings

Pontnewynydd Industrial Estate

Pontypool Torfaen NP4 6YW

T. +44 (0)1495 750 711

F. +44 (0)1495 753 730

[email protected]

www.wiltan.co.uk

This project has been part funded by the European Regional Development Fund

Wound CoresA Transformer Designers Guide

still

sdes

ign.

com

971

6

Page 2: Wiltan Guide

1. Introduction 2

2. Wiltan Assurance of Quality 4

3. ‘C’ Cores 5 General ‘C’ Core Information 6 British Range ‘C’ Cores – Imperial Dimensions 7 British Range ‘C’ Cores – Metric Dimensions 8 Cee Clamp Cast Alloy Clamping Frames 9 ‘54’ Series Pressed Steel Clamping Frames 10 Cee Frame Pressed Steel Clamping Frames 11 Rectangular Tubes 12 Co-relation Table British ‘C’ Cores and Accessories 13 ‘C’ Cores Equivalent to Lamination Patterns 14 Continental ‘C’ cores ranges – SM, SU and SE to DIN 41309 15-17 Co-relation Table British ‘C’ Cores Continental References 18 Co-relation Table Continental ‘C’ Cores - Wiltan References 19 American Range of ‘C’ Cores 20 Standard Electrical Guarantees – ‘C’ Cores 21

4. ‘E’ Cores 23 British Range ‘E’ cores – Imperial Dimensions 24 British Range ‘E’ cores – Metric Dimensions 25 Continental ‘E’ Core Range S3U to DIN 41309 26 Co-relation Table British ‘E’ Cores – Continental References 27 Circular ‘E’ Type Cores 28 Rectangular Tubes for British Range ‘E’ Cores 29 Standard Electrical Guarantees – ‘E’ Cores 29

5. Toroidal Cores 31 General information on Strip Width, Tolerances and Finishes 32 Calculation of Core Weights and Standard sizes to DEF.5193 33 Standard Performance Guarantees 33 TS Non-Impregnated Toroidal Cores – Performance Guarantees and Mechanical Parameters 34

6. Single & Three Phase Power Distribution Cores 35 General Information 36 Standard Core Circle Diameters and Examples of Cut Single Phase Cores 37 Magnetic Characteristics & Guarantees 38

7. Engineering Section 39 Application of ‘C’ Cores in Small Power Transformers 40-43 Current Transformer Design Guide 44-45 Useful Magnetic Formulae 46

8. Performance Curves 47 Interpretation of Loss and Magnetising VA Curves 48 ‘C’ Core Curves 0.3, 0.1 and 0.05mm Material 49-57 Hanna Design Curves 58 Incremental Permeability, ‘C’ Cores 59 ‘E’ Core Curves 0.3 and 0.1mm Material 60-61 Relative Permeability 0.3mm Material for Toroidal Cores 62 Toroidal Cores 0.3mm Material 50Hz, Resolved Component Curves 63 Toroidal Cores Losses 0.3mm Material 50Hz and above 64 TS Toroidal Cores 0.3mm Material, Resolved Component Curves 65 DC Hysteresis Curves 0.3, 0.1 and 0.05mm Material 66-68 Cruciform Section Core Curves 69

1

ContentsPage

Page 3: Wiltan Guide

Wound Cores for Transformers and ChokesWiltan specialises in the manufacture of all types of wound cores in cold rolled grain oriented silicon steel to British, American and Continental specifications.Cold rolled grain oriented silicon steel (G.O.S.S.) is a 3% silicon iron, cold reduced to develop a high degree of grain orientation which gives numerous advantages when compared with laminated cores: -

1) Up to 30% more flux for the same magnetising force.2) Increased rating for a given size of transformer.3) Better regulation.4) Reduction in size and weight.5) Reduced assembly time, storage and handling costs.

Normally, Wiltan cores are produced in three material thicknesses: -0.3mm for frequencies up to 200Hz; 0.1mm for frequencies between 200Hz and 2KHz; and 0.05mm for higher frequencies and pulse applications.Processing of Wiltan cores is carefully controlled at all stages of production by the inspection organisation and cores are tested to the appropriate specification prior to despatch.

AccessoriesWiltan supplies a wide range of accessories for the British standard range of ‘C’ Cores, which include Rectangular Tubes, Clamping Frames, Banding Strip and Seals.

TechnicalCurves – The curves given in this publication are those in common use. It is clearly impracticable to attempt to produce curves for applications which are peculiar to individual users.Incremental permeability curves shown on page 59 apply with little error for 0.3mm, 0.1mm and 0.05mm cores up to 1500Hz. Cores in 0.3mm material are suitable for use in smoothing chokes at frequencies up to 1500Hz.Ratings – The core VA ratings shown are intended for guidance only when determining the size of any transformer since clearly many other factors must be considered, e.g.

a) Temperature rise.b) Voltage regulation.c) The number of separate windings.d) The voltage of the individual windings.e) The test voltage of the individual windings. f ) The frequency of the supply.g) Any special requirements, e.g. low exciting current, low electrostatic capacity or ability to operate satisfactorily at a frequency lower than the nominal frequency.

The ratings given are based on a maximum temperature rise of 60ºC and individual windings of 250 volts at 50Hz.

Preferred Strip WidthsThroughout this publication we quote, wherever possible, preferred sizes of strip width in an attempt to give reductions on delivery times. However, cores can be supplied in strip widths outside the preferred sizes but a surcharge may be made.

2

Introduction

Wound Cores

Page 4: Wiltan Guide

Design ProcedureSimplified procedures for the design of a current transformer and a small power transformer are described in the Engineering Section.

Cut Core Assembly ProcedureTo ensure the correct assembly of cut cores and to keep the magnetising current to a minimum level, we suggest that: -

1. Care be taken that the cut core faces are not damaged during handling.

2. To avoid mis-matching, use the core halves as packed and assemble with the colour coding dots on the same side of the core.

3. The cut faces may be cleaned with a suitable solvent or by gently rubbing on a clean sheet of paper.

4. Extra care should be taken when inserting the cut core halves into the winding former to prevent any foreign matter or winding former scrapings being trapped between the cut core faces.

NoTE: The Company’s policy is one of continuous development and improvement of its products and therefore the right is reserved to supply products which may differ slightly from those described and illustrated in this publication.

3

Page 5: Wiltan Guide

The assurance of quality is essential to the successful outcome of continuous component production. To this end, Wiltan gives emphasis to quality in both design and test. The Inspection system follows Ministry of Defence guidelines.Due to the complexity and variations in customers’ requirements, the inspection organisation is continually evaluated and updated to meet new situations.

The general lines upon which the inspection system is based are outlined as follows:-

1. Selection of magnetic steels by electrical and mechanical qualities to ensure suitability for the particular strip wound core to be manufactured.

2. Electrical test and a check for correct dimensions following the heat treatment cycle to ensure that the cores have been wound correctly and that the heat treatment conditions have been satisfactory.

3. It is normal practice to inspect cores on a 100% basis after final processing. This ensures that the dimensions are correct and the electrical specification limits have been adhered to.

4. The Inspection Department organisation monitors the packing methods of strip wound cores in order to ensure that the product arrives at the user in good condition.

The members of the Inspection Department are trained in such a manner as to be able to adapt to changing needs for the assurance of quality in strip wound core manufacture.

The ideal conditions are when the requirement for a strip wound core can be designed to meet some Internationally agreed specification, such as IEC, BS or DIN. However, as frequently happens, this is not always possible. Design and Inspection organisations at Wiltan are willing to give every assistance when such situations arise.

4

Wiltan assurance of quality

Wound Cores

Page 6: Wiltan Guide

5

‘C’ cores

Page 7: Wiltan Guide

Standard ‘C’ CoresTo cater for the demands of the electronic and electrical industries in the manufacture of transformers, chokes, reactors and magnetic amplifiers, Wiltan manufacture a wide range of strip wound ‘C’ Cores.Cut ‘C’ Cores are produced in three standard ranges – British, Continental and American – all of which can be supplied to various electrical specifications. The cores covered by these standard ranges can be supplied with short despatch times.

Non-Standard ‘C’ Cores‘C’ Cores can be manufactured outside the physical dimensions of the standard ranges for special applications. It is however, advantageous to utilise the standard ranges whenever practicable to obtain price and delivery advantage.

Preferred Strip WidthsThe preferred strip widths from which Wiltan produces cores are: -

METRIC mm mm mm mm mm 6.0 20.0 38.0 50.0 70.0 10.0 22.0 40.0 55.0 75.0 12.5 25.0 42.0 56.0 80.0 13.0 28.0 44.5 60.0 82.5 15.0 30.0 45.0 62.0 85.0 16.0 32.0 46.0 63.5 90.0 19.0 35.0 48.0 65.0 95.0

Above 100mm in steps of 5mm up to 200 mm.

The preferred strip widths cater for all cores in the standard ranges listed. Cores can be supplied in strip widths outside the preferred sizes but a surcharge may be made.

Electrical GuaranteesAll cores, unless otherwise stated, are individually tested to the standard guarantee specifications shown under the tables covering the standard range of cores.Special test conditions, when required, can be applied and guaranteed to suit customers’ individual requirements.

6

‘C’ cores

Wound Cores

Page 8: Wiltan Guide

CORE REF. DIMENSION IN INCHES Length Nett Cross Nominal Approx V.A. Max of Flux Section Weight Ratings for B.S. HWR Corner Path (Lm) Area cm2 Kgs 2 Loops 5347 Tol. Tol. Tol. Tol. Min. Min. Radius cms 0.3 mm 0.1mm 0.3mm 0.1mm 0.3 mm 0.1mm 50Hz 400Hz Q 1.1 3/4 3/4 11/16 1/4 1/4 1/4

9/16 6.42 - 0.372 - 0.018 - - 2.1 4/5 15/16 + 5/64 15/16 + 3/32

5/16 +1/32 5/16 + 1/32

5/16 11/16

1/32 7.87 - 0.582 - 0.035 - - 3.1 5/6 11/8 15/8

3/8 3/8

3/8 7/8 9.64 - 0.862 - 0.063 - -

4.1 7/6 13/16 17/8 3/8

3/8 7/16 11/8 11.23 0.89 0.862 0.076 0.074 - -

Q 5.1 10/8 1/2 0.96 0.93 0.093 0.090 17 85 5.2 10/12 11/8 +5/64 21/8 +3/32 3/4 +1/32

5/16 +1/32 1/2 11/2

1/16 12.82 1.44 1.40 0.140 0.136 26 130 5.3 10/16 1 1.92 1.86 0.187 0.181 32 160 5.4 10/24 11/2 2.88 2.79 0.280 0.271 40 200 Q 6.1 30/8 1/2 1.15 1.12 0.145 0.140 38 190 6.2 30/12 13/8 +5/64 23/4 +1/8 3/4 +1/32 3/8 +1/32 5/8 2 1/16 16.57 1.72 1.67 0.217 0.210 53 260 6.3 30/16 1 2.30 2.23 0.290 0.281 70 350 6.4 30/20 11/4 2.87 2.78 0.362 0.350 84 420 Q 7.1 40/12 3/4 1.72 1.67 0.239 0.231 63 315 7.2 40/16 11/2 +5/64 3 +1/8 1 +1/32 3/8 +1/32 3/4 21/4 1/8 18.20 2.30 2.23 0.318 0.300 80 400 7.3 40/20 11/4 2.87 2.78 0.398 0.385 95 475 7.4 40/24 11/2 3.45 3.35 0.477 0.462 120 600 Q 8.1 50/14 7/8 2.68 2.60 0.431 0.417 120 575 8.2 50/18 17/8 +5/64 31/2 +1/8 11/8 +1/32 1/2 +1/32 7/8 21/2 1/8 21.10 3.45 3.35 0.553 0.535 150 720 8.3 50/24 11/2 4.60 4.46 0.738 0.715 210 1000 8.4 50/32 2 6.13 5.95 0.985 0.954 270 1300 Q 9.1 70/12 3/4 2.87 2.78 0.566 0.548 210 450 9.2 70/18 23/8 +5/64 41/4 +1/8 11/8 +1/32 5/8 +1/32 11/8 3 1/8 25.90 4.54 4.40 0.850 0.893 320 1420 9.3 70/24 11/2 5.75 5.57 1.134 1.098 390 1750 9.4 70/32 2 7.66 7.42 1.511 1.463 490 2200Q 10.1 90/16 1 +1/32 4.60 4.45 1.074 1.040 420 1800 10.2 90/24 27/8 +5/64 5 +1/8 11/2 +1/32 3/4 +1/32 13/8 31/2 1/8 30.72 6.90 6.68 1.613 1.562 630 2700 10.3 90/32 2 +1/32 9.23 8.94 2.150 2.082 810 3500 10.4 90/44 23/4 +1/16 12.65 12.25 2.956 2.862 1050 4500Q 11.1 110/20 11/4 +1/32 7.68 7.44 2.324 2.250 1000 4200 11.2 110/32 33/4 +5/64 61/2 +3/16 2 +1/32 1 +1/32 13/4 41/2 1/8 39.86 12.26 11.87 3.719 3.601 1600 6700 110/64 4 +1/16 24.60 23.82 7.438 7.203 2700 10000

The ratings quoted have been determined under conditions described in the introduction

7

BRITISH RANGE 0.3, 0.1 & 0.05mm ‘C’ CoRES To DEF 5193Imperial Dimensions

WILTAN ‘C’ CoRES, BRITISH RANGENoTE: This range of cores is equivalent to the German DIN.41309 SG Series and the French UTE C93 – 325 FA Series.

A B D E F G

RELAXED ToLERANCES (ins) FoR CoMMERCIAL GRADE CoRES REFERRING To SPECIFICATIoNS oS-210 oNLY

CALCULATIoN oF WEIGHT oF ‘C’ CoRES

A + 3⁄32 HWR 10 to 110 RangeB + 5⁄32 HWR 10 Range + 3⁄16 HWR 30 to 90 Range + 1⁄4 HWR 110 RangeD + 1⁄32 WHEN D ≤ 2 + 1⁄16 WHEN D > 2

E + 1⁄32 HWR 10 to 50 Range - 1⁄64

+ 1⁄32 HWR 70 to 110 Range - 1⁄32

F & G MINIMUM

Weight in kilos = [ A+B+F+G – (8-2p) (R +E )] x E x D x p 2Where A,B,D,E,F & G are dimensions in inchesp = 0.125 x Stacking Factor& Stacking Factor 0.3mm Material = 0.95 0.1mm Material = 0.92 0.05mm Material = 0.88

Page 9: Wiltan Guide

Wound Cores

8

CORE REF. DIMENSION IN mm Length Nett Cross Nominal Approx V.A. of Flux Section Weight Ratings forB.S. HWR Path Area cm2 Kgs 2 Loops5347 max. max. min. max. min. max. min. min. max. (Lm) 0.3mm 0.1mm 0.3mm 0.1mm 0.3mm 0.1mm cms 50Hz 400Hz Q 1.1 3/4 21.03 29.37 6.35 7.14 6.35 7.14 6.35 14.29 6.42 - 0.372 - 0.018 - - 2.1 4/5 25.80 35.72 7.94 8.73 7.94 8.73 7.94 17.46 0.79 7.87 - 0.582 - 0.063 - - 3.1 5/6 30.56 43.66 9.52 10.32 9.52 10.32 9.52 22.22 9.64 - 0.862 - 0.063 - - 4.1 7/6 32.15 50.01 9.52 10.32 9.52 10.32 11.11 28.58 11.23 0.89 0.862 0.076 0.074 - - Q 5.1 10/8 12.70 13.49 0.96 0.93 0.093 0.090 17 85 5.2 10/12 30.56 56.36 19.05 19.84 7.94 8.73 12.70 38.10 1.59 12.82 1.44 1.40 0.140 0.136 26 130 5.3 10/16 25.40 26.19 1.92 1.86 0.187 0.181 32 160 5.4 10/24 38.10 38.89 2.88 2.79 0.280 0.271 40 200 Q 6.1 30/8 12.70 13.49 1.15 1.12 0.145 0.140 38 190 6.2 30/12 36.91 73.02 19.05 19.84 9.52 10.32 15.88 50.80 1.59 16.57 1.72 1.67 0.217 0.210 53 260 6.3 30/16 25.40 26.19 2.30 2.23 0.290 0.281 70 350 6.4 30/20 31.75 32.54 2.87 2.78 0.362 0.350 84 420 Q 7.1 40/12 19.05 19.84 1.72 1.67 0.239 0.231 63 315 7.2 40/16 40.08 79.38 25.40 26.19 9.52 10.32 19.05 57.15 3.18 18.20 2.30 2.23 0.318 0.300 80 400 7.3 40/20 31.75 32.54 2.87 2.78 0.398 0.385 95 475 7.4 40/24 38.10 38.89 3.45 3.35 0.477 0.462 120 600 Q 8.1 50/14 22.22 23.02 2.68 2.60 0.431 0.417 120 575 8.2 50/18 49.61 92.08 28.58 29.37 12.70 13.49 22.22 63.50 3.18 21.10 3.45 3.35 0.553 0.535 150 720 8.3 50/24 38.10 38.89 4.60 4.46 0.738 0.715 210 1000 8.4 50/32 50.80 51.59 6.13 5.95 0.985 0.954 270 1300 Q 9.1 70/12 19.05 19.84 2.87 2.78 0.566 0.548 210 450 9.2 70/18 62.31 111.12 28.58 29.37 15.88 16.67 28.58 76.20 3.18 25.90 4.54 4.40 0.850 0.893 320 1420 9.3 70/24 38.10 38.89 5.75 5.57 1.134 1.098 390 1750 9.4 70/32 50.80 51.59 7.66 7.42 1.511 1.463 490 2200Q 10.1 90/16 25.40 26.19 4.60 4.45 1.074 1.040 420 1800 10.2 90/24 75.01 130.18 38.10 38.89 19.05 19.84 34.92 88.90 3.18 30.72 6.90 6.68 1.613 1.562 630 2700 10.3 90/32 50.80 51.59 9.23 8.94 2.150 2.082 810 3500 10.4 90/44 69.85 71.44 12.65 12.25 2.956 2.862 1050 4500 Q11.1 110/20 31.75 32.54 7.68 7.44 2.324 2.250 1000 4200 11.2 110/32 97.23 169.86 50.80 51.59 25.40 26.19 44.45 114.30 3.18 39.86 12.26 11.87 3.719 3.601 1600 6700 110/64 101.60 103.18 24.60 23.82 7.438 7.203 2700 10000

The ratings quoted have been determined under conditions described in the introduction

RELAXED ToLERANCES (ins) FoR CoMMERCIAL GRADE CALCULATIoN oF WEIGHT oF ‘C’ CoRESCoRES REFERRING To SPECIFICATIoNS oS-210 oNLY

BRITISH RANGE 0.3, 0.1 & 0.05mm ‘C’ CoRES To DEF 5193Metric Dimensions

WILTAN ‘C’ CoRES, BRITISH RANGE

NoTE: This range of cores is equivalent to the German DIN.41309 SG Series and the French UTE C93 – 325 FA Series.

A B D E F G R

A + 2.4 HWR 10 to 110 RangeB + 4.0 HWR 10 Range + 4.8 HWR 30 to 90 Range + 6.4 HWR 110 RangeD + 0.8 WHEN D ≤ 50.8 + 1.6 WHEN D > 50.8

E + 0.8 HWR 10 to 50 Range - 0.4 + 0.8 HWR 70 to 110 Range - 0.8F & G MINIMUM

Weight in kilos = [A+B+F+G –(8-2p) (R +E )] x E x D x p 2

Where A,B,D,E,F & G are dimensions in mmp = 7.65 x 10-6 Stacking FactorStacking Factor 0.3mm Material = 0.95 0.1mm Material = 0.92 0.05mm Material = 0.88

Page 10: Wiltan Guide

9

CEE CLAMP – CAST ALLoY oPEN TYPE ASSEMBLY To SUIT BRITISH RANGE oF ‘C’ CoRES

PATTERN H PATTERN J MAX. PLAN FIXING FIXING SCREW CENTRES SIZE Height Height DIMENSIONS Clamp Max. Clamp Max. (mm) (mm) Metric Ref. C Ref. C (mm) (mm) A B D E TDH 1008 66.5 TDJ 1008 53.8 1012 72.9 1012 60.2 71.5 66.7 49.2 46.0 M4 1016 79.2 1016 66.5 1024 91.9 1024 79.2 TDH 3008 73.2 TDJ 3008 60.45 3012 79.5 3012 66.8 84.2 81.8 61.9 58.7 M4 3016 85.9 3016 73.1 3020 92.2 3020 79.5 TDH 4012 87.9 TDJ 4012 75.2 4016 94.2 4016 81.5 90.5 88.9 66.7 65.1 M5 4020 100.5 4020 87.9 4024 106.9 4024 94.2 TDH 5014 97.2 TDJ 5014 84.6 5018 103.6 5018 90.9 109.6 101.6 80.9 73.0 M5 5024 113.0 5024 100.3 5032 125.7 5032 113.0 TDH 7012 107.4 7012 94.7 7018 117.1 7018 104.4 138.1 122.3 101.6 87.3 M6 7024 126.5 7024 113.8 7032 139.2 7032 126.5 TDH 9016* 126.7 9016 114.0 9024* 139.4 9024 126.7 161.9 139.7 123.8 103.2 5/16" BSF 9032* 152.1 9032 139.4 9044* 172.7 9044 160.0 TDH 11020* 158.7 TDJ 11020 146.0 1032* 177.8 11032 165.1 212.7 185.8 165.1 133.4 5/16" BSF 11064* 229.1 11064 216.4

* TDH AND TDJ PATTERN RANGES 90 AND 110 ARE THREE FRAME ASSEMBLIES

NOTE: Height and Plan dimensions as quoted in A.S.R.E Specification 12429R

A

C(MAX)

(MAX)A

D

B(MAX)

E

Page 11: Wiltan Guide

A B C ‘C’ Core Clamping Height Max. Width Fixing Clamping Range Frame Type Dimensions Centre Screw Reference ins ins ins Size

54/2751 Shrouded 2 9/16 2 11/16 2 5/8 4 BA

10 Range 54/2701 Open Short 2 9/16 2 3/16 2 5/8 4 BA

54/2731 Open Tall 3 1/32 2 3/16 2 5/8 4 BA

54/2755 Shrouded 3 1/16 3 5/16 2 3/4 4 BA

30 Range 54/2705 Open Short 3 1/8 3 5/16 2 3/4 4 BA

54/2735 Open Tall 3 9/16 3 5/16 2 3/4 4 BA

54/2759 Shrouded 3 5/16 3 9/16 2 7/8 2 BA

40 Range 54/2709 Open Short 3 3/8 3 9/16 2 7/8 2 BA

54/2739 Open Tall 3 13/16 3 9/16 2 7/8 2 BA

54/2763 Shrouded 4 1/8 4 1/16 3 3/8 2 BA

50 Range 54/2713 Open Short 4 1/4 4 1/16 3 3/8 2 BA

54/2743 Open Tall 4 5/8 4 1/16 3 3/8 2 BA

54/2767 Shrouded 5 1/8 4 13/16 3 5/8 1/4 BSF

70 Range 54/2717 Open Short 5 1/4 4 13/16 3 5/8 1/4 BSF

54/2747 Open Tall 5 5/8 4 13/16 3 5/8 1/4 BSF

Wound Cores

10

‘54’ SERIES PRESSED STEEL CLAMPING FRAME ASSEMBLY To SUIT BRITISH RANGE ‘C’ CoRES

C

B

A

Page 12: Wiltan Guide

11

CEE FRAME – PRESSED STEEL oPEN TYPE ASSEMBLY To SUIT BRITISH RANGE ‘C’ CoRES

Core Frame DIMENSIONS IN INCHES Ref. Ref. A B C D E F G H I JHWR 10/8 1 1⁄16 2 5⁄8 2 9⁄16 1 1⁄2 2 2 2 9⁄64 1⁄2 5⁄32 1⁄4 10/12 1 5⁄16 2 5⁄8 2 9⁄16 1 3⁄4 2 2 2 9⁄64 1⁄2 5⁄32 1⁄4 10/16 CF 10 1 9⁄16 2 5⁄8 2 9⁄16 2 2 2 2 9⁄64 1⁄2 5⁄32 1⁄4 10/24 2 1⁄16 2 5⁄8 2 9⁄16 2 1⁄2 2 2 2 9⁄64 1⁄2 5⁄32 1⁄4HWR 30/8 1 1⁄16 3 5⁄16 3 1⁄8 1 1⁄2 2 5⁄8 2 1⁄2 2 3⁄4 1⁄2 5⁄32 1⁄4 30/12

CF 30 1 5⁄16 3 5⁄16 3 1⁄8 1 3⁄4 2 5⁄8 2 1⁄2 2 3⁄4 1⁄2 5⁄32 1⁄4

30/16 1 9⁄16 3 5⁄16 3 1⁄8 2 2 5⁄8 2 1⁄2 2 3⁄4 1⁄2 5⁄32 1⁄4 30/20 111⁄16 315⁄16 3 1⁄8 2 1⁄4 2 5⁄8 2 1⁄2 2 3⁄4 1⁄2 5⁄32 1⁄4HWR 40/12 1 3⁄8 3 1⁄2 3 3⁄8 2 2 3⁄4 2 3⁄4 2 15⁄16 5⁄8 7⁄32

3⁄8 40/16

CF 40 1 5⁄8 3 1⁄2 3 3⁄8 2 1⁄4 2 3⁄4 2 3⁄4 2 15⁄16

5⁄8 7⁄32

3⁄8 40/20 1 7⁄8 3 1⁄2 3 3⁄8 2 1⁄2 2 3⁄4 2 3⁄4 2 15⁄16

5⁄8 7⁄32

3⁄8 40/24 2 1⁄8 3 1⁄2 3 3⁄8 2 3⁄4 2 3⁄4 2 3⁄4 2 15⁄16

5⁄8 7⁄32

3⁄8HWR 50/14 1 1⁄2 4 4 1⁄4 2 1⁄8 3 1⁄8 3 1⁄2 3 5⁄16 5⁄8 7⁄32

3⁄8 50/18

CF 50 1 3⁄4 4 4 1⁄4 2 3⁄8 3 1⁄8 3 1⁄2 3 5⁄16 5⁄8 7⁄32 3⁄8

50/24 2 1⁄8 4 4 1⁄4 2 3⁄4 3 1⁄8 3 1⁄2 3 5⁄16 5⁄8

7⁄32 3⁄8

50/32 2 5⁄8 4 4 1⁄4 3 1⁄4 3 1⁄8 3 1⁄2 3 5⁄16 5⁄8

7⁄32 3⁄8

HWR 70/12 1 9⁄16 413⁄16 5 1⁄4 2 1⁄4 3 3⁄4 4 3⁄8 315⁄16 3⁄4 9⁄32

7⁄16

70/18 CF 70

115⁄16 413⁄16 5 1⁄4 2 5⁄8 3 3⁄4 4 3⁄8 315⁄16 3⁄4

9⁄32 7⁄16

70/24 215⁄16 413⁄16 5 1⁄4 3 3 3⁄4 4 3⁄8 315⁄16 3⁄4 9⁄32 7⁄16

70/32 213⁄16 413⁄16 5 1⁄4 3 1⁄2 3 3⁄4 4 3⁄8 315⁄16 3⁄4

9⁄32 7⁄16

HWR 90/16 2 517⁄32 6 1⁄4 3 1⁄8 4 1⁄2 5 1⁄4 4 9⁄16 1 1⁄16 3⁄8

5⁄8 90/24

CF 90 2 517⁄32 6 1⁄4 3 5⁄8 4 1⁄2 5 1⁄4 4 9⁄16 1 1⁄16

3⁄8 5⁄8

90/32 3 517⁄32 6 1⁄4 4 1⁄8 4 1⁄2 5 1⁄4 4 9⁄16 1 1⁄16 3⁄8

5⁄8 90/44 3 517⁄32 6 1⁄4 4 1⁄8 4 1⁄2 5 1⁄4 4 9⁄16 1 1⁄16

3⁄8 5⁄8

A

F

E

DH B

G

C

J

I

Page 13: Wiltan Guide

Wound Cores

12

RECTANGULAR TUBES To SUIT BRITISH RANGE ‘C’ CoRES

CORE REF. SPEC. CORE REF. TUBE REF. DIMENSIONS IN INCHES BS. 5347 DEF. 5193 IEC.329 A B C D Q. 1.1 HWR 3/4 * 50/8888 5⁄16 5⁄16 1⁄32 1⁄2 2.1 4/6 * 50/8889 3⁄8 3⁄8 1⁄32 5⁄8 3.1 5/6 * 50/8890 7⁄16 7⁄16 1⁄32 13⁄16

4.1 7/6 * 50/8891 7⁄16 7⁄16 1⁄32 1 1⁄16

5.3 10/16 * 50/8892 1 1⁄16 3⁄8 1⁄16 1 7⁄16

Q. 5.1 HWR 10/8 50/8975 9⁄16 3⁄4 1⁄16 1 7⁄16

5.2 10/12 50/8976 13⁄16 3⁄4 1⁄16 1 7⁄16

5.3 10/16 50/8977 1 1⁄16 3⁄4 1⁄16 1 7⁄16

5.4 10/24 50/8978 1 9⁄16 3⁄4 1⁄16 1 7⁄16

Q. 6.1 HWR 30/8 50/8979 9⁄16 7⁄8 1⁄16 1 15⁄16

6.2 30/12 50/8980 13⁄16 7⁄8 1⁄16 1 15⁄16

6.3 30/16 50/8981 1 1⁄16 7⁄8 1⁄16 1 15⁄16

6.4 30/20 50/8982 1 5⁄16 7⁄8 1⁄16 1 15⁄16

Q. 7.1 HWR 40/12 50/8983 13⁄16 7⁄8 1⁄16 2 1⁄8 7.2 40/16 50/8984 1⁄16 7⁄8 1⁄16 2 1⁄8 7.3 40/20 50/8985 1 5⁄16 7⁄8 1⁄16 2 1⁄8 7.4 40/24 50/8986 1 9⁄16 7⁄8 1⁄16 2 1⁄8 Q. 8.1 HWR 50/14 50/8987 15⁄16 1 1⁄8 1⁄16 2 3⁄8 8.2 50/18 50/8988 1 3⁄16 1 1⁄8 1⁄16 2 3⁄8 8.3 50/24 50/8989 1 9⁄16 1 1⁄8 1⁄16 2 3⁄8 8.4 50/32 50/8990 2 1⁄16 1 1⁄8 1⁄16 2 3⁄8 Q. 9.1 HWR 70/14 50/8991 13⁄16 1 3⁄8 1⁄16 2 7⁄8 9.2 70/18 50/8992 1 3⁄16 1 3⁄8 1⁄16 2 7⁄8 9.3 70/24 50/8993 1 9⁄16 1 3⁄8 1⁄16 2 7⁄8 9.4 70/32 50/8994 2 1⁄16 1 3⁄8 1⁄16 2 7⁄8 Q. 10.1 HWR 90/16 50/8995 1 1⁄16 1 5⁄8 3⁄32 3 3⁄8 10.2 90/24 50/8996 1 9⁄16 1 5⁄8 3⁄32 3 3⁄8 10.3 90/32 50/8997 2 1⁄8 1 5⁄8 3⁄32 3 3⁄8 10.4 90/44 50/8998 2 7⁄8 1 5⁄8 3⁄32 3 3⁄8 Q. 10.1 HWR 110/20 50/8999 1 5⁄16 2 1⁄8 1⁄8 4 3⁄8 11.2 110/32 50/8848 2 1⁄8 2 1⁄8 1⁄8 4 3⁄8 110/64 50/8851 4 1⁄8 2 1⁄8 1⁄8 4 3⁄8

NOTE:* Single Loop only. All other sizes, Double Loop.

TUBES ARE MANUFACTURED IN SPBP TO BS.6128 (RATED 120° OPERATING).

D +0 -0.031"

A +0.010" -0

B +0.010" -0

C 0.010"+-

Page 14: Wiltan Guide

13

CoRRELATIoN oF BRITISH RANGE ‘C’ CoRES AND ACCESSoRIES

BS Spec. 5347 UK UK ‘54’ Series Pressed Steel Clamp Frames Rectangular & Spec. Inter-Services Ceeclamps Ceeframes Tubes IEC Spec. 329 Def. Core Ref. Pattern Reference Shrouded Open Short Open Tall Reference 5193 0.3mm 0.1mm Strip Strip Q. 1.1 HWR 3/4 Z371030 *50/8888 2.1 4/5 Z371031 *50/8889 3.1 5/6 Z371032 *50/8890 4.1 7/6 Z371033 *50/8891 5.3 10/16 Z371001 Z371020 *50/8892 Q. 5.1 HWR 10/8 Z371038 Z371018 TDH 1008 CF 10 54/2751 54/2701 54/2731 50/8975 5.2 10/12 Z371000 Z371019 TDH 1012 CF 10 54/2751 54/2701 54/2731 50/8976 5.3 10/16 Z371001 Z371020 TDH 1016 CF 10 54/2751 54/2701 54/2731 50/8977 5.4 10/24 Z371002 Z371034 TDH 1024 CF 10 54/2751 54/2701 54/2731 50/8978 Q. 6.1 HWR 30/8 Z371039 Z371021 TDH 3008 CF 30 54/2755 54/2705 54/2735 50/8979 6.2 30/12 Z371003 Z371022 TDH 3012 CF 30 54/2755 54/2705 54/2735 50/8980 6.3 30/16 Z371004 Z371023 TDH 3016 CF 30 54/2755 54/2705 54/2735 50/8981 6.4 30/20 Z371005 Z371035 TDH 3020 CF 30 54/2755 54/2705 54/2735 50/8982 Q. 7.1 HWR 40/12 Z371040 Z371024 TDH 4012 CF 40 54/2759 54/2709 54/2739 50/8983 7.2 40/16 Z371006 Z371025 TDH 4016 CF 40 54/2759 54/2709 54/2739 50/8984 7.3 40/20 Z371007 Z371026 TDH 4020 CF 40 54/2759 54/2709 54/2739 50/8985 7.4 40/24 Z371008 Z371036 TDH 4024 CF 40 54/2759 54/2709 54/2739 50/8986 Q. 8.1 HWR 50/14 Z371041 Z371027 TDH 5014 CF 50 54/2763 54/2713 54/2743 50/8987 8.2 50/18 Z371009 Z371028 TDH 5018 CF 50 54/2763 54/2713 54/2743 50/8988 8.3 50/24 Z371010 Z371029 TDH 5024 CF 50 54/2763 54/2713 54/2743 50/8989 8.4 50/32 Z371011 Z371037 TDH 5032 CF 50 54/2763 54/2713 54/2743 50/8990 Q. 9.1 HWR 70/12 Z371042 TDH 7012 CF 70 54/2767 54/2717 54/2747 50/8991 9.2 70/18 Z371012 TDH 7018 CF 70 54/2767 54/2717 54/2747 50/8992 9.3 70/24 Z371013 TDH 7024 CF 70 54/2767 54/2717 54/2747 50/8993 9.4 70/32 Z371014 TDH 7032 CF 70 54/2767 54/2717 54/2747 50/8994 Q. 10.1 HWR 90/16 Z371043 TDH 9016 CF 90 50/8995 10.2 90/24 Z371015 TDH 9024 CF 90 50/8996 10.3 90/32 Z371016 TDH 9032 CF 90 50/8997 10.4 90/44 Z371017 TDH 9044 CF 90 50/8998 Q. 11.1 HWR 110/20 Z371044 TDH 11020 50/8999 11.2 HWR 110/32 Z371045 TDH 11032 50/8848 HWR 110/64 TDH 11064 50/8851

NOTE: * Single Loop only. All other sizes, Double Loop.

Page 15: Wiltan Guide

2 ‘C’ Cores are required per laminated stack.

These ‘C’ Cores have been designed to suit Bobbins common to Laminations and they offer savings in handling and assembly time, improved electrical performance, and a greater rating for a given size of transformer.

Increments in the ‘C’ Core strip or ribbon width of 1/8" up to 2", and 1/4" from 2" to 4 1/2", allow for a wide variationin the preferred core stack heights.

Many of the cores listed are available from stock, or on short delivery.

NOTE: Clamping Frames are not always interchangeable when using ‘C’ Cores in place of Laminations.

14

PATTERNS – 0.3 mm MATERIAL

WILTAN ‘C’ CoRES EQUIVALENT To LAMINATIoN PATTERNS

Wound Cores

Lamination ‘C’ Core ‘C’ Core Build Overall Pattern Equivalent Window Up ‘C’ Core Strip Number Number Dimensions + 0 Dimensions Width Minimum - 1/32 Maximum Inches Inches Inches Inches 22 or 202 LC. 2 5 1⁄4 x 1 1⁄16 3⁄4 6 15⁄16 x 2 5⁄8 Up to 4 28 or 628 LC. 19 3 1⁄8 x 1 17⁄64 5⁄8 4 7⁄16 x 2 17⁄32 Up to 3 29 LC. 3 1 5⁄8 x 1 1⁄2 1⁄2 2 23⁄32 x 1 17⁄32 Up to 1 1⁄2 41 or 641 LC. 24 4 7⁄8 x 1 3⁄4 1 1⁄4 7 9⁄16 x 2 5⁄16 Up to 4 60 or 660 LC. 25 2 7⁄8 x 1 5⁄8 4 3⁄16 x 2 5⁄16 Up to 2 1⁄2

78 LC. 5 2 x 5⁄8 5⁄8 3 3⁄8 x 1 29⁄32 Up to 2

87 LC. 6 4 5⁄8 x 1 1⁄2 1 6 7⁄8 x 3 19⁄32 Up to 3 1⁄2 117 LC. 8 5 5⁄8 x 1 1⁄2 1 1⁄4 8 5⁄16 x 4 1⁄16 Up to 4 122 LC. 10 8 1⁄8 x 3⁄4 1 1⁄2 11 3⁄8 x 4 27⁄32 Up to 3 1⁄2 136 or 636 LC. 21 2 7⁄8 x 1 3⁄4 4 1⁄2 x 2 17⁄32 Up to 2 1⁄2 137 or 637 LC. 22 5 1⁄8 x 1 5⁄8 7⁄8 7 7⁄16 x 3 7⁄16 Up to 4 217 LC. 16 5 3⁄8 x 1 3⁄4 1 3⁄4 9 1⁄16 x 5 5⁄16 Up to 4 220 or 248 LC. 17 2 3⁄4 x 7⁄8 7⁄8 4 5⁄8 x 2 11⁄16 Up to 3 235 or 635 LC. 20 3 7⁄8 x 1 5⁄8 3⁄4 5 1⁄2 x 3 5⁄32 Up to 2 1⁄2 E 9 LC. 1 4 5⁄8 x 1 1⁄2 1 1⁄2 7 13⁄16 x 4 17⁄32 Up to 3 1⁄2 E135 LC. 12 6 7⁄8 x 2 1⁄4 2 1⁄4 11 9⁄16 x 6 25⁄32 Up to 6 E638 LC. 23 3 5⁄16 x 1 1⁄16 1 1⁄16 5 9⁄16 x 3 13⁄64 Up to 4 1⁄2 E825 LC. 26 4 1⁄4 x 1 3⁄8 1 3⁄8 7 3⁄16 x 4 5⁄32 Up to 4

Page 16: Wiltan Guide

SM DIMENSIONS IN mm Length of Nett Cross Nominal Approx V.A. Core A B C E F G R Flux Path Section Weight Ratings for Ref Max. Max. Tol. Min. Tol. Min. Max. (Lm) cms. Area cm 2 Kgs 2 Loops 50 Hz.

0.3mm 0.3mm 0.3mm 30a 7.0 0.18 0,009 1.0 28.6 14.3 3.5 - 0.5 21.0 - 0.5 7.0 1.0 6.6 30b 11.0 0.29 0.015 2.0

42 43.6 21.8 6.0 - 0.8 31.0 15.2 - 0.7 9.5 1.5 9.8 0.72 0.054 5.0

55 56.3 28.4 8.5 - 0.8 38.5 20.8 - 0.8 11.0 1.5 12.4 1.46 0.138 21.0

65 65.6 33.2 9.9 - 0.9 45.0 27.0 - 0.8 13.0 1.5 14.6 2.24 0.250 45.0

74 74.6 37.7 11.4 - 0.9 51.0 32.5 - 1.0 14.5 1.5 16.5 3.14 0.396 84.0 85a 32.5 4.01 0.561 115.0 85.6 43.2 14.4 - 1.0 56.0 - 1.0 14.0 2.0 18.3 85b 45.5 5.66 0.792 159.0 102a 35.5 5.21 0.885 200.0 103.0 51.9 16.9 - 1.0 68.0 - 1.0 17.5 2.0 22.2 102b 52.2 7.78 1.321 300.0

CALCULATIoN oF WEIGHT oF ‘C’ CoRES CALCULATIoN oF NETT CRoSS SECTIoN AREA & WEIGHT

FoR 0.1mm & 0.05mm ‘C’ CoRES

15

WILTAN ‘C’ CoRES TYPE SM

SM RANGE 0.3, 0.1 & 0.05mm ‘C’ CoRES To DIN 41309

Weight in Kilos = [A+B+E+G - (8-2p) (R + C)] x C x F x p 2

Where A,B,C,E,F,G & R are dimensions in mm. p = 7.65 x 10 -6 x Stacking Factor STACKING FACTOR 0.3mm Material = 0.95 0.1mm Material = 0.92 0.05mm Material = 0.88

To Calculate Nett Cross Section & Weight for 0.1mmMultiply 0.3mm figures by 0.968

To Calculate Nett Cross Section & Weight for 0.05mmMultiply 0.3mm figures by 0.926

NOTE: The Ratings quoted relate to conditions specified in DIN. 41300.

Page 17: Wiltan Guide

Su DIMENSIONS IN mm Length of Nett Cross Nominal Approx. V.A Core A B C E F G R Flux Path Section Weight Ratings for Ref. Max. Max. Tol. Min. Tol. Min. Max. (Lm) cms. Area cm2 Kgs. 2 loops, 50Hz. 0.3mm 0.3mm 0.3mm

a 5.4 0.22 0.010 - 15 28.7 15.0 4.9 - 0.5 18.5 -0.4 5 1.5 6.1 b 8.4 0.35 0.015 - a 8.5 0.58 0.042 - 24 42.7 24.0 7.9 - 0.6 26.5 -0.5 8 1.5 9.2 b 13.5 0.95 0.066 - a 10.1 0.82 0.072 3 30 52.7 30.0 9.9 -0.8 32.5 -0.6 10 1.5 11.4 b 16.1 1.34 0.117 6 a 13.4 1.44 0.163 12 39 67.9 39.1 12.9 -0.8 41.5 -0.9 13 1.5 14.8 b 20.4 2.24 0.254 20 a 16.5 2.19 0.303 30 48 82.9 48.0 15.8 -0.9 50.5 -1.0 16 1.5 18.1 b 25.5 3.47 0.480 48 a 20.6 3.50 0.605 82 60 103.6 60.1 19.8 -0.9 63.0 -1.1 20 2.0 22.6 b 30.6 5.30 0.916 122 a 26.1 5.63 1.22 200 75 128.6 75.0 24.7 -1.0 78.0 -1.1 25 2.0 28.2 b 41.1 9.01 1.95 306 a 30.9 8.0 2.08 387 90 155.8 90.0 29.6 -1.1 95.0 -1.4 30 3.0 34.0 b 50.9 13.4 3.49 630 a 35.4 10.3 3.09 620 102 175.4 102.4 33.7 -1.2 106.0 -1.4 34 3.0 38.4 b 56.4 17.0 5.00 960 a 39.2 12.9 4.23 920 114 195.6 114.4 37.6 -1.3 118.0 -1.7 38 3.0 42.8 b 63.2 21.2 6.96 1440 a 45.2 17.4 6.58 1580 132 225.4 132.1 43.4 -1.4 136.0 -1.7 44 3.0 49.5 b 71.2 27.1 10.50 2370 a 51.2 22.5 9.70 2370 150 255.6 150.2 49.4 -1.5 154.0 -1.7 50 3.0 56.2 b 76.2 33.9 14.58 3380 a 57.0 28.1 13.53 3620 168 286.0 168.3 55.3 -1.6 172.0 -2.0 56 3.0 63.0 b 91.0 45.5 21.88 5400 a 62.0 33.0 17.07 4560 180 b 307.2 181.3 59.7 -1.8 184.0 77.0 -2.0 60 3.0 67.6 41.3 21.35 6500 c 92.0 49.5 25.60 6400 a 71.7 44.6 26.90 7800 210 b 357.2 211.2 69.9 -2.0 214.0 101.7 -2.2 70 3.0 78.7 63.9 38.50 10500 c 131.7 83.2 50.10 12900

16

WILTAN ‘C’ CoRES TYPE SUSU RANGE 0.3, 0.1 & 0.05mm ‘C’ CoRES To DIN 41309

Wound Cores

NOTE: The ratings quoted relate to conditions specified in DIN. 41300

CALCULATIoN oF WEIGHT oF ‘C’ CoRES CALCULATIoN oF NETT CRoSS SECTIoN AREA & WEIGHT

FoR 0.1mm & 0.05mm ‘C’ CoRES

Weight in Kilos = [A+B+E+G - (8-2p) (R + C)] x C x F x p 2

Where A,B,C,E,F,G & R are dimensions in mm. p = 7.65 x 10 -6 x Stacking Factor STACKING FACTOR 0.3mm Material = 0.95 0.1mm Material = 0.92 0.05mm Material = 0.88

To Calculate Nett Cross Section & Weight for 0.1mmMultiply 0.3mm figures by 0.968

To Calculate Nett Cross Section & Weight for 0.05mmMultiply 0.3mm figures by 0.926

Page 18: Wiltan Guide

17

WILTAN ‘C’ CoRES TYPE SESE RANGE 0.3, 0.1 & 0.05mm ‘C’ CoRES To DIN 41309

NOTE: The ratings quoted relate to conditions specified in DIN. 41300

R

SE DIMENSIONS IN mm Length of Nett Cross Nominal Approx. VA Core Flux Path Section Weight Ratings for Ref. A B C E F G R (Lm) cms. Area cm2 Kgs 2 Loops, 50Hz Max. Max. Tol. Min. Tol. Min. Max. 0.3mm 0.3mm 0.3mm

60 52.2 30.0 9.9 -0.8 32.0 20.5 -0.8 10.5 1.5 11.4 1.8 0.15 – 66 57.2 33.5 10.9 -0.8 35.0 22.5 -0.8 11.5 1.5 12.5 2.19 0.20 – 78 68.2 39.5 12.9 -0.8 42.0 27.0 -0.9 13.5 2.0 14.9 3.16 0.343 – a 29.0 3.66 0.428 84 73.4 42.6 13.9 -0.8 45.0 -1.0 14.5 2.0 16.0 – b 43.0 5.51 0.641 a 24.0 2.44 0.333 92 77.6 46.2 11.4 -0.8 54.0 -1.0 23.0 2.0 18.7 – b 33.0 3.39 0.461 a 33.0 4.35 0.662 106 88.6 53.2 14.4 -0.8 59.0 -1.0 24.0 2.0 20.9 – b 46.0 6.12 0.930 a 37.2 5.64 1.12 387 130 108.8 65.3 17.4 -0.9 73.0 -1.2 30.0 2.0 25.9 b 47.2 7.21 1.43 484 a 41.2 7.18 1.63 590 150 b 123.8 75.2 19.8 -0.9 83.0 51.2 -1.2 35.0 2.0 29.7 8.98 2.04 720 c 61.2 10.80 2.45 860 a 56.0 11.0 2.92 1130 170 b 145.8 85.0 22.1 -1.0 100.0 66.0 -1.5 40.0 3.0 34.7 12.9 3.42 1308 c 76.0 14.9 3.96 1490 a 57.0 13.8 4.58 1890 195 b 186.8 98.2 27.3 -1.1 130.0 70.0 -1.5 42.5 3.0 42.9 17.0 5.58 2250 c 85.0 20.8 6.83 2390 a 63.0 18.0 6.87 3000 231 b 216.0 116.1 32.1 -1.3 149.0 79.0 -1.5 50.5 3.0 49.9 22.7 8.67 3710 c 98.0 28.2 10.77 4400

CALCULATIoN oF WEIGHT oF ‘C’ CoRES CALCULATIoN oF NETT CRoSS SECTIoN AREA & WEIGHT

FoR 0.1mm & 0.05mm ‘C’ CoRES

Weight in Kilos = [A+B+E+G - (8-2p) (R + C)] x C x F x p 2

Where A,B,C,E,F,G & R are dimensions in mm. p = 7.65 x 10 -6 x Stacking Factor STACKING FACTOR 0.3mm Material = 0.95 0.1mm Material = 0.92 0.05mm Material = 0.88

To Calculate Nett Cross Section & Weight for 0.1mmMultiply 0.3mm figures by 0.968

To Calculate Nett Cross Section & Weight for 0.05mmMultiply 0.3mm figures by 0.926

Page 19: Wiltan Guide

18

Wound Cores

BS Spec. 5347 UK Spec. DEF 5193 German Spec. French Spec. & & DIN. 41309 UTE IEC Spec. 329 Wiltan Ref. C93 –325 FA10/30 FL10/30

Q1.1* HWR 3/4* SG 27/6* D 06* 2.1* 4/5* 33/7* F 08* 3.1* 5/6* 41/9* H 10* 4.1 7/6 48/19 J 10 5.1 10/8 54/13 Q 13 5.2 10/12 54/19 Q 19 5.3 10/16 54/25 Q 25 5.4 10/24 54/38 Q 38 6.1 30/8 70/13 T 13 6.2 30/12 70/19 T 19 6.3 30/16 70/25 T 25 6.4 30/20 70/32 T 32 7.1 40/12 76/19 U 19 7.2 40/16 76/25 U 25 7.3 40/20 76/32 U 32 7.4 40/24 76/38 U 38 8.1 50/14 89/22 V 22 8.2 50/18 89/29 V 29 8.3 50/24 89/38 V 38 8.4 50/32 89/51 V 51 9.1 70/12 108/19 X 19 9.2 70/18 108/29 X 29 9.3 70/24 108/38 X 38 9.4 70/32 108/51 X 51 10.1 90/16 127/25 Z 25 10.2 90/24 127/38 Z 38 10.3 90/32 127/51 Z 51 10.4 90/44 127/70 Z 70 11.1 110/20 165/32 AD 32 11.2 110/32 165/51 AD 51 – 110/64 – –

CoRRELATIoN REFERENCE NoS.BRITISH RANGE oF ‘C’ CoRES - CoNTINENTAL REFERENCES

Page 20: Wiltan Guide

19

French Spec. IEC Spec.329 German Spec. UTE C93 –325 Wiltan DIN.41309 FA10/30 Ref. FL10/30 R 1.1 SE 130A RA 36 SE 130A R 1.2 SE 130B RA 46 SE 130B R 2.1 SE 150A RB 40 SE 150A R 2.2 SE 150B RB 50 SE 150B R 2.3 SE 150C RB 60 SE 150C R 3.1 SE 170A RC 55 SE 170A R 3.2 SE 170B RC 65 SE 170B R 3.3 SE 170C RC 75 SE 170C R 4.1 SE 195A RD 56 SE 195A R 4.2 SE 195B RD 69 SE 195B R 4.3 SE 195C RD 84 SE 195C R 5.1 SE 231A RE 62 SE 231A R 5.2 SE 231B RE 78 SE 231B R 5.3 SE 231C RE 97 SE 231C P 1.1 – BA 3 P 1.1 P 2.1 – BB 3 P 2.1 P 3.1 – BB 6 P 3.1 P 4.1 – BD 3 P 4.1 P 4.2 – BD 6 P 4.2 P 5.1 – BH 6 P 5.1

French Ref. Wiltan Ref.

AJ. 32 C 3272 AJ. 51 C 3168 AP. 32 C 3430 AP. 51 C 3431 AS. 51 C 3432 AS. 70 C 3433 AS. 100 C 3434 HB. 32 C 3435 HB. 51 C 3436 HF. 38 C 3437 HG. 38 C 3438 HJ. 51 C 3439 HK. 51 C 3440

CoRRELATIoN REFERENCE NoS.BRITISH RANGE oF ‘C’ CoRES - CoNTINENTAL REFERENCES

Page 21: Wiltan Guide

Due to the large number of cores in this range, it is not practicable to publish dimensions in the normal manner.

To assist the Designer in selection, we list below preferred window dimensions along with maximum strip width appropriate to a given window. More detailed information will be given on application.

20

AMERICAN RANGE ‘C’ CoRES

Wound Cores

DIMENSIONS DIMENSIONS Window Dimensions (Ins) Strip Width Window Dimension (Ins) Strip Width Tolerance – 1⁄64" Maximum Tolerance – 1⁄64" Maximum Ins. Ins. 1⁄2 x 1⁄4 1 x 1⁄2 5⁄8 x 1⁄4 1⁄2 1 1⁄8 x 1⁄2 7⁄8 x 1⁄4 1 5⁄16 x 1⁄2 1 3⁄8 x 1⁄2 11⁄2 13⁄16 x 5⁄16 1 1⁄2 x 1⁄2 7⁄8 x 5⁄16 1 9⁄16 x 1⁄2 1 x 5⁄16 3⁄4 1 11⁄16 x 1⁄2 1 1⁄16 x 5⁄16 2 1⁄4 x 5⁄16 1 1⁄4 x 5⁄8 1 5⁄16 x 5⁄8 1 x 3⁄8 1 1⁄2 x 5⁄8 1 1⁄8 x 3⁄8 1 9⁄16 x 5⁄8 1 3⁄16 x 3⁄8 1 1 11⁄16 x 5⁄8 1 1⁄4 x 3⁄8 1 3⁄4 x 5⁄8 2 1 7⁄16 x 3⁄8 1 15⁄16 x 5⁄8 1 3⁄4 x 5⁄8 1 3⁄16 x 7⁄16 1 15⁄16 x 5⁄8 1 3⁄8 x 7⁄16 2 7⁄16 x 5⁄8 1 9⁄16 x 7⁄16 1 1⁄4 2 1⁄2 x 5⁄8 111⁄16 x 7⁄16

Page 22: Wiltan Guide

‘C’ CoRES IN 0.05mm MATERIAL:SPECIFICATIoN oS – 112

To give customers a guidance as to the performance levels of cores manufactured to this specification, we detail below test conditions for this particular range of cores.

All cores tested at a Bmax of 0.5 Tesla and a frequency of 2000Hz.

For cores with a magnetic path length equal to or greater than 10cms: -Total iron losses not greater than 19.8 Watts/Kg.Total R.M.S. magnetising VA/Kg. = √ (28.6 + 89.5)2 + 19.82

Lm

For cores with a magnetic path length less than 10cms: -Total iron losses not greater than 24.8 Watts/Kg.Total R.M.S. magnetising VA/Kg. = √ (28.6 + 89.5)2 + 24.82

Lm

NOTE: In all the above formulae, Lm is the mean length of magnetic path of core in cms.

21

STANDARD ELECTRICAL GUARANTEES 0.3, 0.1mm ‘C’ CoRES

Wiltan Spec. Material Guarantee Total Iron Loss Total R.M.S. BS Spec No. Thickness Frequency Induction Not Greater Than Mag. VA/Kg Remarks 5347 mm Hz. Tesla Watts/Kg Not Greater Than

135 T OS 210 0.3 50 1.7 2.2 13.5 + Supplied to commercial tolerances

Lm and only when available

84 Y OS-110 0.3 50 1.7 2.0 9.9 +

Lm

42 R OS-111 0.3 50 1.7 1.8 5.95 +

Lm

1019 - OS-15 0.1 400 1.5 22.0 (28.6 + --------- ) 2 + 222

Lm

89.5 - OS-10 0.1 400 1.0 9.9 for Lm (13.2 + -------- ) 2 + 8.82

less than 10 cms Lm

8.8 for LM equal or more than 10 cms.

Page 23: Wiltan Guide

22

NoTES

Wound Cores

Page 24: Wiltan Guide

23

‘E’ cores

Page 25: Wiltan Guide

24

BRITISH RANGE 0.3 & 0.1MM ‘E’ CoRES

IMPERIAL DIMENSIoNS

Wiltan ‘E’ Type Cores

Wound Cores

AE

F

GB

D

R

CORE REF. DIMENSIONS IN INCHES Nominal Nett Nominal Max. Cross Section Weight Approx.V.A.IEC HWE A B D E F G Corner Area cm2 Kgs. Rating329 Tol Tol Tol Tol Min Min Radius 50Hz 400Hz 0.3mm 0.1mm 0.3mm 0.1mm 0.3mm 0.1mm

– 13 2 1⁄4 + 1⁄8 1 7⁄8 + 1⁄8 1⁄2 + 1⁄32 3⁄8 –.010 9⁄16 1 1⁄8 1⁄32 1.15 1.11 0.17 0.16 8 40 +.020 – 14 2 3⁄4 '' 2 1⁄4 '' 3⁄4 '' 1⁄2 5⁄8 1 1⁄4 1⁄32 2.29 2.22 0.39 0.37 16 80

3Q1 1 3 '' 2 1⁄2 '' 1 '' 1⁄2 '' 3⁄4 1 1⁄2 1⁄16 3.06 2.97 0.60 0.58 30 150 3Q2 2 3 1⁄2 '' 3 '' 1 '' 5⁄8 '' 13⁄16 1 3⁄4 1⁄16 3.77 3.66 0.85 0.82 45 250

3Q3 3 3 5⁄8 '' 3 1⁄4 '' 1 1⁄8 '' 5⁄8 '' 7⁄8 2 1⁄16 4.24 4.11 1.04 1.01 60 350

3Q4 4 4 1⁄4 '' 3 3⁄4 '' 1 1⁄4 '' 3⁄4 '' 1 2 1⁄4 1⁄8 5.67 5.50 1.59 1.54 100 600 3Q5 5 4 7⁄8 '' 4 1⁄4 '' 1 1⁄4 '' 7⁄8 '' 1 1⁄8 2 1⁄2 1⁄8 6.65 6.45 2.10 2.04 150 800

3Q6 6 5 3⁄4 '' 5 '' 1 1⁄4 '' 1 '' 1 3⁄8 3 1⁄8 7.60 7.37 2.86 2.77 250 1350

3Q7 7 6 3⁄4 '' 6 '' 1 1⁄4 '' 1 1⁄4 '' 1 1⁄2 3 1⁄2 1⁄8 9.50 9.22 4.17 4.04 400 2000 3Q8 8 8 '' 6 3⁄4 + 5⁄32 1 1⁄2 '' 1 1⁄2 '' 1 3⁄4 3 3⁄4 1⁄8 13.70 13.29 6.80 6.60 700 3500

3Q9 9 8 5⁄8 '' 7 1⁄2 '' 1 5⁄8 '' 1 5⁄8 '' 1 7⁄8 4 1⁄4 1⁄8 16.10 15.62 8.81 8.55 1000 5000

3Q10 10 9 7⁄8 '' 8 1⁄2 '' 1 7⁄8 '' 1 7⁄8 '' 2 1⁄8 4 3⁄4 1⁄8 21.40 20.76 13.30 12.90 1700 8500

3Q11 11 11 1⁄8 '' 9 1⁄4 '' 2 1⁄8 +1⁄16 2 1⁄8 '' 2 3⁄8 5 1⁄8 27.60 26.77 18.80 18.24 2500 12500

3Q12 12 12 5⁄8 '' 10 1⁄4 '' 2 3⁄8 '' 2 3⁄8 '' 2 3⁄4 5 1⁄2 1⁄8 34.40 33.37 26.40 25.61 4000 20000

The ratings quoted have been determined under conditions described in the introduction

Page 26: Wiltan Guide

BRITISH RANGE 0.3 & 0.1MM ‘E’ CoRES

METRIC DIMENSIoNS

Wiltan ‘E’ Type Cores

25

CORE REF. DIMENSIONS IN mm Nominal Nett Nominal Approx. V.A. Cross Section Weight Ratings Area cm2 Kgs A B D E F G R IEC 329 HWE max max min max min max min min max 0.3mm 0.1mm 0.3mm 0.1mm 0.3mm 0.1mm

- 13 60.40 50.80 12.70 13.50 9.30 10.00 14.30 28.60 0.80 1.15 1.11 0.17 0.16 8 40

- 14 73.00 60.30 19.00 19.80 12.50 13.20 15.90 31.70 0.80 2.22 2.29 0.37 0.39 16 80

3Q1 1 79.50 67.50 25.40 26.20 12.70 13.50 19.00 38.10 1.60 3.06 2.97 0.60 0.58 30 150

3Q2 2 92.00 79.60 25.40 26.20 15.60 16.60 20.60 44.40 1.60 3.77 3.66 0.85 0.82 45 250

3Q3 3 95.20 86.20 28.60 29.40 15.60 16.60 22.20 50.80 1.60 4.24 4.11 1.04 1.01 60 350

3Q4 4 111.10 99.00 31.70 32.50 18.80 19.60 25.40 57.20 3.20 5.67 5.50 1.59 1.54 100 600

3Q5 5 127.00 111.80 31.70 32.50 22.00 23.00 28.60 63.50 3.20 6.65 6.45 2.10 2.04 150 800

3Q6 6 148.40 130.80 31.70 32.50 25.10 26.10 34.90 76.20 3.20 7.60 7.37 2.86 2.77 250 1350

3Q7 7 174.20 156.60 31.70 32.50 31.50 32.50 38.10 88.90 3.20 9.50 9.22 4.17 4.04 400 2000

3Q8 8 206.00 175.90 38.10 38.90 37.80 39.00 44.40 95.30 3.20 13.70 13.29 6.80 6.60 700 3500

3Q9 9 222.20 195.30 41.30 42.10 41.00 42.20 47.60 108.00 3.20 16.10 15.62 8.81 8.55 1000 5000

3Q10 10 254.70 221.50 47.60 48.40 47.40 48.90 54.00 120.70 3.20 21.40 20.76 13.30 12.90 1700 8500

3Q11 11 286.80 241.30 54.00 55.60 53.70 55.20 60.30 127.00 3.20 27.60 26.77 18.80 18.24 2500 12500

3Q12 12 326.10 268.20 60.30 61.90 60.10 61.80 69.90 140.00 3.20 34.40 33.37 26.40 25.61 4000 20000

AE

F

GB

D

R

The ratings quoted have been determined under conditions described in the introduction

Page 27: Wiltan Guide

26

S3U RANGE 0.3MM ‘E’ CoRES To DIN 41309

Wiltan ‘E’ Cores Type S3U

Wound Cores

a 10.1 0.86 0.115 7 30 53.7 50.9 9.9 -0.8 32.5 -0.6 10 1.5 b 16.1 1.41 0.189 15

a 13.4 1.51 0.262 20 39 70.9 66.0 12.9 -0.8 41.5 -0.9 13 1.5 b 20.4 2.36 0.409 25

a 16.6 2.32 0.492 30 48 83.9 80.8 15.8 -0.9 50.5 -1.0 16 1.5 b 25.6 3.67 0.779 40

a 20.6 3.69 0.959 60 60 104.6 100.9 19.8 -0.9 63.0 -1.1 20 2.0 b 30.6 5.58 1.470 100

a 26.1 5.93 1.82 140 75 129.7 125.7 24.7 -1.0 78.0 -1.1 25 2.0 b 41.1 9.48 2.93 180

a 30.9 8.41 3.33 270 90 156.8 150.6 29.6 -1.1 95.0 -1.4 30 3.0 b 50.9 14.11 5.59 450

a 35.4 11.05 4.94 450102 176.4 171.1 33.7 -1.2 106.0 -1.4 34 3.0 b 56.4 17.88 8.00 700

a 39.2 13.54 6.78 650114 196.2 191.0 37.6 -1.3 118.0 -1.7 38 3.0 b 63.2 22.20 11.10 1000

a 45.2 18.27 10.50 1000132 226.4 220.5 43.4 -1.4 136.0 -1.7 44 3.0 b 71.2 29.19 16.80 1800

a 51.2 23.71 15.50 2000150 255.6 249.6 49.4 -1.5 154.0 -1.7 50 3.0 b 76.2 35.69 23.40 3000

a 57.0 29.54 21.70 3000168 286.0 279.6 55.3 -1.6 172.0 -2.0 56 3.0 b 91.0 47.79 35.10 4000

a 62.0 34.74 27.40 3500180b 307.2 301.0 59.7 -1.8 184.0 77.0 -2.0 60 3.0 43.43 34.20 4500 c 92.0 52.11 41.10 5000

a 71.7 46.98 43.10 6000210b 357.2 350.8 69.6 -2.0 214.0 101.7 -2.2 70 3.0 67.26 61.70 8000 c 131.7 87.54 80.40 10000

S3U DIMENSIONS IN mm Nett Nominal Approx. V.A. CORE Cross Weight Ratings 50Hz Ref. A B C E F G R Sectional Max Max Tol Min Tol Min Max Area cm2 Kgs

CB

A

E

F

G

The ratings quoted have been determined under conditions described in the introduction

The above can also be supplied in 0.1mm material.

Page 28: Wiltan Guide

27

Correlation Reference Nos.British Range of ‘E’ Cores - Continental References

BS Spec. 5347 German French Telmag & IEC Spec. 329 Specification Specification Reference Din. 41309 UTE C93-325 FA 10/30 FA 10/30

3R 1.1 S3U 150A S3U 150A 3R 1.2 S3U 150B S3U 150B 3R 2.1 S3U 168A S3U 168A 3R 2.2 S3U 168B S3U 168B 3R 3.1 S3U 180A S3U 180A 3R 3.2 S3U 180B S3U 180B 3R 3.3 S3U 180C S3U 180C 3R 4.1 S3U 210A S3U 210A 3R 4.2 S3U 210B S3U 210B 3R 4.3 S3U 210C S3U 210C 3P 1.1 EA 8 E 175 3P 1.2 EA 13 E 176 3P 1.3 EA 16 E 177 3P 2.1 EB 10 E 178 3P 2.2 EB 13 E 163 3P 2.3 EB 16 E 164 3P 2.4 EB 19 E 179 3P 2.5 EB 22 E 180 3P 3.1 EC 13 E 181 3P 3.2 EC 16 E 182 3P 3.3 EC 19 E 183 3Q 1 EC 25 E 1 3Q 2 ED 25 E 2 3Q 3 EF 29 E 3 3Q 4 EH 32 E 4 3Q 5 EK 32 E 5 3Q 6 EM 32 E 6 3Q 7 EP 32 E 7 3Q 8 ER 38 E 8 3Q 9 ET 41 E 9 3Q 10 EV 48 E 10 3Q 11 EX 54 E 11 3Q 12 EZ 60 E 12 3Q 00 - E 13 3Q 0 - E 14

Page 29: Wiltan Guide

28

WILTAN CIRCULAR ‘E’ TYPE CoRE

Standard Range of Sizes

Wound Cores

Wiltan USA Dimensions in Inches Complete Nett Cross Effective Window Area Part Part Weight Kg. Section No. No. Area cm2 A B D E 2E 0.3 0.1 0.3 0.1 F G K M N In2

CE 500 5192 17⁄8 1 1⁄2 3⁄8 3⁄16 3⁄8 .082 .020 1⁄8 17⁄32 1⁄4 1⁄8 1⁄8 .097CE 501 5283 3 2 1⁄2 1⁄2 1⁄4 1⁄2 .249 .036 1⁄2 1 1⁄2 7⁄32 9⁄32 .38CE 502 5091 3 2 1⁄2 3⁄4 1⁄4 1⁄2 .372 .054 1⁄2 1 1⁄2 7⁄32 9⁄32 .38CE 503 5188 3 2 1⁄2 1 1⁄4 1⁄2 .499 .071 1⁄2 1 1⁄2 7⁄32 9⁄32 .38CE 504 5213 3 5⁄8 3 1⁄16 9⁄16 9⁄32 9⁄16 .381 .045 5⁄8 11⁄4 5⁄8 1⁄4 3⁄8 .59CE 505 5284 3 5⁄8 3 1⁄16 3⁄4 9⁄32 9⁄16 .503 .059 5⁄8 11⁄4 5⁄8 1⁄4 3⁄8 .59CE 506 5145 3 5⁄8 3 1⁄16 7⁄8 9⁄32 9⁄16 .594 .070 5⁄8 11⁄4 5⁄8 1⁄4 3⁄8 .59CE 507 5198 4 3 3⁄8 3⁄4 5⁄16 5⁄8 .631 .612 .070 .067 11⁄16 13⁄8 11⁄16 5⁄16 3⁄8 .71 CE 508 5282 4 3 3⁄8 7⁄8 5⁄16 5⁄8 .726 .703 .081 .079 11⁄16 13⁄8 11⁄16 5⁄16 3⁄8 .71 CE 509 5137 4 3 1⁄2 7⁄8 1⁄4 1⁄2 .594 .576 .065 .062 11⁄16 13⁄8 11⁄16 5⁄16 3⁄8 .71CE 510 5285 4 1⁄2 3 3⁄4 3⁄4 3⁄8 3⁄4 .739 .717 .082 .081 3⁄4 19⁄16 3⁄4 3⁄8 7⁄16 .87CE 511 5090 4 1⁄2 3 3⁄4 7⁄8 3⁄8 3⁄4 .898 .871 .096 .093 3⁄4 19⁄16 3⁄4 3⁄8 7⁄16 .87CE 512 5236 4 1⁄2 3 3⁄4 19⁄32 3⁄8 3⁄4 1.306 1.270 .141 .136 3⁄4 19⁄16 3⁄4 3⁄8 7⁄16 .87 CE 513 5286 4 1⁄2 3 3⁄4 1 3⁄8 3⁄4 1.025 .993 .110 .107 3⁄4 19⁄16 3⁄4 3⁄8 7⁄16 .87 CE 514 5101 4 1⁄2 3 3⁄4 11⁄8 3⁄8 3⁄4 1.152 1.116 .124 .119 3⁄4 19⁄16 3⁄4 3⁄8 7⁄16 .87CE 515 5125 4 1⁄2 3 3⁄4 11⁄4 3⁄8 3⁄4 1.284 1.243 .138 .133 3⁄4 19⁄16 3⁄4 3⁄4 7⁄16 .87 CE 516 5142 5 1⁄4 4 3⁄8 1 7⁄16 7⁄8 1.488 1.442 .129 .126 7⁄8 13⁄4 15⁄16 5⁄16 1⁄2 1.18 CE 517 5156 5 1⁄4 4 3⁄8 11⁄2 7⁄16 7⁄8 2.232 2.164 .194 .188 7⁄8 13⁄4 15⁄16 5⁄16 1⁄2 1.18 CE 518 5157 5 1⁄4 4 3⁄8 15⁄8 7⁄16 7⁄8 2.413 2.341 .209 .203 7⁄8 13⁄4 15⁄16 5⁄16 1⁄2 1.18 CE 519 5287 5 1⁄2 4 5⁄8 7⁄8 7⁄16 7⁄8 1.374 1.334 .112 .109 15⁄16 17⁄8 15⁄16 7⁄16 1⁄2 1.32 CE 520 5288 5 1⁄2 4 5⁄8 1 7⁄16 7⁄8 1.569 1.524 .129 .126 15⁄16 17⁄8 15⁄16 7⁄16 1⁄2 1.32CE 521 5289 5 1⁄2 4 5⁄8 11⁄8 7⁄16 7⁄8 1.769 1.715 .144 .140 15⁄16 17⁄8 15⁄16 7⁄16 1⁄2 1.32CE 522 5290 5 1⁄2 4 5⁄8 11⁄4 7⁄16 7⁄8 1.964 1.905 .160 .155 15⁄16 17⁄8 15⁄16 7⁄16 1⁄2 1.32 CE 523 5154 7 5 3⁄4 11⁄2 5⁄8 1 1⁄4 4.087 3.960 .276 .267 11⁄16 21⁄8 1 1⁄16 1⁄2 9⁄16 1.70CE 524 5291 7 5 3⁄4 11⁄4 5⁄8 1 1⁄4 3.402 3.298 .229 .222 11⁄16 21⁄8 1 1⁄16 1⁄2 9⁄16 1.70

D +.031" - 0

G

K N

F

WINDING AREAM

60º

1/8 " R

1/8 " R

120º

E NOM

B MIN

A +.093" - 0

2E + .020" - .010"

Wiltan Circular ‘E’ Type Cores are now produced in the range of sizes shown in the table below. The Wiltan Technical Advisory Service is available to design engineers regarding the application of Circular ‘E’ Type Cores to particular requirements which they have in view.

Page 30: Wiltan Guide

29

RECTANGULAR TUBES To SUIT BRITISH RANGE ‘E’ CoRES

STANDARD ELECTRICAL GUARANTEES 0.03MM & 0.1MM ‘E’ CoRES

D +0 -0.031"

A +0.010" -0

B +0.010" -0

C 0.010"+-

Core Ref.Spec. HWE DIMENSIONS IN INCHES BS 5347 Core IEC. 329 Ref. A B C D 3Q00 13 7⁄16 9⁄16 1⁄32 1 1⁄16

3Q0 14 9⁄16 13⁄16 1⁄32 1 3⁄16

3Q1 1 9⁄16 1 1⁄16 1⁄16 1 7⁄16 3Q2 2 11⁄16 1 1⁄16 1⁄16 1 11⁄16

3Q3 3 11⁄16 1 3⁄16 1⁄16 1 15⁄16

3Q4 4 13⁄16 1 5⁄16 1⁄16 2 1⁄8 3Q5 5 15⁄16 1 5⁄16 1⁄16 2 3⁄8 3Q6 6 1 1⁄16 1 5⁄16 1⁄16 2 7⁄8 3Q7 7 1 5⁄16 1 5⁄16 1⁄16 3 3⁄8 3Q8 8 1 9⁄16 1 9⁄16 1⁄16 3 5⁄8 3Q9 9 1 11⁄16 1 11⁄16 3⁄32 4 1⁄8 3Q10 10 1 15⁄16 1 15⁄16 3⁄32 4 5⁄8

3Q11 11 2 1⁄4 2 1⁄4 1⁄8 4 7⁄8 3Q12 12 2 1⁄2 2 1⁄2 1⁄8 5 3⁄8

Telmag Spec Material Frequency Guarantee Total Iron Loss Total R.M.S. No. mm Hz Induction Tesla Not Greater Than magnetising VA/Kg Watts/kg Not Greater Than OS-17 0.3 50 1.7 2.7 (9.7 + 2.63 x A)2 + 2.72 W

OS-12 0.1 400 1.2 17.6 (17.6 + 8.2 x A)2 + 17.62

W

Where A is nett cross section per limb (cm2) W is nett weight of core (kilograms).

Page 31: Wiltan Guide

30

NoTES

Wound Cores

Page 32: Wiltan Guide

31

Toroidal cores

Page 33: Wiltan Guide

WILTAN Toroidal Cores are supplied in numerous sizes and grades of material.

Cores can be manufactured in material thicknesses 0.3mm, 0.1mm and 0.05mm. The various forms of toroids are as follows: -

a) Uncut, not impregnated b) Uncut, treated for added rigidity c) Cut and impregnated

Range of Diameters Imperial Metric Smallest Inside 1⁄2" 12.5mm Largest Outside 54" 1372mm

Preferred Strip WidthsRefer to preferred strip width quoted on Page 6.

Limits of Tolerance

d + 1⁄32" up to 6" d+ 0.8mm up to 152mm

Over 9" by agreement

D +1⁄32" up to 9" D+ 0.8mm up to 240mm

Over 6" by agreement

T - 0 for cores less

T - 0 for cores less

+ 1⁄32" than 9" O/D + 0.8mm than 240mm O/D

T - 0 for cores over T - 0 for cores over

+ 1⁄16" 9" O/D + 1.59mm 240mm O/D

The various forms of finishes are as follows: -

a) Uncut, non-impregnated.b) Uncut, lightly impregnated with varnish.c) Uncut, fully impregnated with resin.d) Cut and fully impregnated with resin.e) Multi cut fully impregnated with resin.f) Supplied with plastic end cheeks, polypropylene (Max Temp 90ºC), Crastine (Max Temp 130ºC).g) Insulated vacuum wrapped with polypropylene (Max Temp 90ºC).h) Epoxy resin coated (Max Temp 170ºC).

NOTEIt should be noted that with an epoxy coated Toroidal Core, the coating thickness is normally:

0.025" + 0.005 (0.64mm + 0.12mm)

32

Toroidal cores

Wound Cores

D d

T

Page 34: Wiltan Guide

Calculation of Core Weights

Nominal Finished Weight per Core = KT (D + d) (D – d) Kilos

Where D = Outside diameter d = Inside diameter T = Stripwidth

Where Dimensions are in inches K = p/4 x 126 x SF

Where Dimensions are in millimetres K = p/4 x 7.65 x SF x 10-6

SF for 0.3mm material is 0.95 0.1mm material is 0.92 0.05mm material is 0.88

As already stated, Toroidal Cores may be manufactured in a great variety of sizes. As an indication of the smaller dimensional cores that are available on request, we detail below the cores as listed in Defence Specification 5193.

Toroidal Cores

Performance Guarantees:-Non-impregnated Toroidal Cores are normally offered with the followingstandard guarantees

Magnetic degradation occurs when Toroidal Cores are impregnated with varnish or epoxy coated and, as a guide, the increased losses expected are as shown below:-

Lightly impregnated in varnish + 15% Fully impregnated in epoxy resin + 20% Epoxy coated + 40%

33

Material Test Flux Frequency Density Limit:

0.3mm GRADE M4 50 Hz 1.0 Tesla 19.0 A/M 0.3mm GRADE M5 50 Hz 1.0 Tesla 20.0 A/M 0.1m 400 Hz 1.5 Tesla 26.5 VA/Kg 17.5 Watts/Kg 0.05mm 400 Hz 1.2 Tesla 17.5 VA/Kg 12.5 Watts/Kg

Style Dimensions in Inches Mean Perimeter Gross Cross H.W.T. d D T Cms Section cms 4/4 1⁄2 13⁄16 1⁄4 5.25 .252 4/8 1⁄2 1 1⁄2 6.00 .807 6/3 3⁄4 1 1⁄8 3⁄16 7.50 .227 6/5 3⁄4 1 1⁄8 5⁄16 7.50 .348 7/3 7⁄8 1 5⁄16 3⁄16 8.75 .264 7/5 7⁄8 1 5⁄16

5⁄16 8.75 .440 7/7 7⁄8 1 5⁄16

7⁄16 8.75 .616 8/4 1 1 1⁄2 1⁄4 10.00 .403 8/6 1 1 1⁄2

3⁄8 10.00 .605 8/8 1 1 1⁄2

1⁄2 10.00 .807 10/4 1 1⁄4 1

7⁄8 1⁄4 12.50 .504

10/6 1 1⁄4 1 7⁄8

3⁄8 12.50 .756 10/8 1 1⁄4 1

7⁄8 1⁄2 12.50 1.010

12/4 1 1⁄2 2 1⁄4

1⁄4 15.00 .605 12/6 1 1⁄2 2

1⁄4 3⁄8 15.00 .907

12/8 1 1⁄2 2 1⁄4

1⁄2 15.00 1.210 14/5 1 3⁄4 2

5⁄8 5⁄16 17.43 .882

14/7 1 3⁄4 2 5⁄8

7⁄16 17.43 1.230 14/9 1 3⁄4 2

5⁄8 9⁄16 17.43 1.580

16/5 2 3 5⁄16 20.00 1.010 16/7 2 3 7⁄16 20.00 1.410 16/9 2 3 9⁄16 20.00 1.810 18/5 2 1⁄4 3 3⁄8

5⁄16 22.42 1.130 18/7 2 1⁄4 3 3⁄8

7⁄16 22.42 1.590 18/9 2 1⁄4 3 3⁄8

9⁄16 22.42 2.040

Page 35: Wiltan Guide

Wiltan’s ‘TS’ non-impregnated Toroidal cores are made from Hib0.3mm grain oriented silicon steel and demonstrate extremely goodmagnetic properties at low and high flux densities.

The cores are particularly suited to current and voltage transformer applications requiring high accuracy and can sometimes replace cores made from more costly materials. In such cases, an immediate saving is apparent.

Performance GuaranteesCurves showing the power, quadrature and total magnetising components of ‘TS’ Cores are shown in the Engineering Section of this publication and, for comparison, similar curves for cores made from the best normally available grain oriented silicon steel.

‘TS’ Cores are normally tested and guaranteed at 2 points on the magnetisation curve: -

1. 0.3 Tesla – 6.5 A/M2. 1.0 Tesla – 16.0 A/M

Other points of guarantee can be agreed to customers’ preferred test conditions.

Mechanical ParametersTo achieve the guarantee performance figures shown above, ‘TS’ cores must comply with the following dimensional parameters.

a) Inside diameter must be greater than 30mm

b) The ratio of Inside Diameter must be greater than 1. Strip Width

‘TS’ Cores which are required outside these mechanical parameters should be referred to Wiltan for evaluation.

34

WILTAN ‘TS’ NoN-IMPREGNATED ToRoIDAL CoRES

Wound Cores

D d

T

Page 36: Wiltan Guide

35

Single & three-phase power distribution cores

Page 37: Wiltan Guide

Wiltan single and three-phase strip wound distribution transformer cores are operating in many thousands of transformers in the UK and overseas.

AdvantagesThe cores are strip wound in grain oriented silicon iron and offer the following advantages when compared with stack laminated cores: -

1. Reduction in iron losses – lower stand-by losses.

2. Reduced assembly time

3. Ease of storage and handling.

RangeNo standard range of design exists owing to the diversity of design requirements but we detail in this Section a range of standard core limb sections suitable for use with Bobbins ranging from 2.5/8" to 7.1/8" inside diameter. These sections can be produced with any desired window so that great flexibility in design is possible and advantage should be taken of these standard sections whenever practicable because tooling already exists and shorter delivery times can therefore be offered.

Cores of this type can be produced in the cut or uncut form, single or three-phase, up to one tonne.

Cross SectionDistribution transformer cores can be supplied with the following cross sections:

a) Cruciform Section: - This gives a simulated circle to accommodate ease of winding with heavy strip copper. (Figs 1&1a)

b) Half Cruciform Section: - In shell type construction, a full cruciform section is obtained on the centre limb when 2 loops are used. (Fig 2)

c) Rectangular Section: - (Fig 3)

36

Single & three-phase power distribution cores

Wound Cores

Fig. 1

Fig. 1a

Page 38: Wiltan Guide

37

Core Nominal Core Nett Cross % of Section Circle Diam. No. of Section of Iron Core Ref (ins.) Steps (cm2) Circle Area

2 1⁄2 SD 2 1⁄2 3 25.55 85 2 3⁄4 SD 2 3⁄4 3 30.97 85

3 SD 3 4 38.39 88 3 1⁄4 SD 3 1⁄4 4 44.90 88 3 1⁄2 SD 3 1⁄2 4 51.75 87

3 3⁄4 SD 3 3⁄4 5 61.10 90 4 SD 4 5 69.68 90 4 1⁄4 SD 4 1⁄4 5 78.71 90 4 1⁄2 SD 4 1⁄2 5 88.39 90 4 3⁄4 SD 4 3⁄4 5 97.43 89 5 SD 5 5 108.97 90

5 1⁄4 SD 5 1⁄4 7 123.36 93 5 1⁄2 SD 5 1⁄2 7 135.43 93 5 3⁄4 SD 5 3⁄4 7 148.33 93 6 SD 6 7 160.27 93 6 1⁄4 SD 6 1⁄4 7 174.85 93 6 1⁄2 SD 6 1⁄2 7 189.00 93 6 3⁄4 SD 6 3⁄4 7 203.17 93 7 SD 7 7 219.00 93

Fig. 2 Fig. 3

EXAMPLES oF CUT SINGLE PHASE CRUCIFoRM CoRES

Core Reference D 5000 D 15000 D 25000

Approx. k Va Rating 5 15 25 Window Size 7 3⁄4" x 3 3⁄4" 11" x 4 3⁄8" 115⁄8" x 4 3⁄8" Overall Size 12 21⁄32" x 8 21⁄32" 17" x 10 3⁄8" 1811⁄16" x 117⁄16" Mean Length of Flux Path 77.47 cms 101.16 cms 108.9 cms Core Section Reference 2 3⁄4 SD 3 1⁄4 SD 3 3⁄4 SD Minimum Inside Dimensions of Bobbin 2 7⁄8" 3 3⁄8" 3 7⁄8" Nett Cross Section of Iron 30.97 cms. 44.91 cms. 61.1 cms. Estimated Finished Weight (Min.) 18.371 kgs. 34.70 kgs. 50.576 kgs

Maximum Total Loss, At guarantee level of 1.5 Tesla, 50 Hz. 25.9 watts 48.9 watts 71.3 watts

STANDARD CoRE CIRCLE DIAMETERS FoR SINGLE & THREE-PHASE PoWER DISTRIBUTIoN CoRES

Page 39: Wiltan Guide

Magnetic Characteristics and Guarantees

All cores are individually inspected for physical and electrical characteristics and conform to the following guarantees: -

SINGLE PHASE

Uncut CoresTest Level 1.5 Tesla, 50 Hz.Total Iron Loss not greater than 1.41 Watts/kg.Total R.M.S. Magnetising VA not greater than 3.1 VA/Kg.

Cut CoresTest Level 1.5 Tesla, 50 Hz.Total Iron Loss not greater than 1.41 Watts/Kg.Total R.M.S. Magnetising VA not greater than 3.1 + 179 VA/kg.

Lm

THREE PHASE

Uncut CoresTest Level 1.5 Tesla, 50 Hz.Total Iron Loss not greater than 1.6 Watts/Kg.Total R.M.S. Magnetising VA not greater than 3.9 VA/Kg.

Cut CoresTest Level 1.5 Tesla, 50 Hz.Total Iron Loss not greater than 1.6 Watts/Kg.Total R.M.S. Magnetising VA not greater than 3.9 + 2.05 x AREA Va/kg.

Weight

Where AREA is the nett cross sectional area in cms2 and WEIGHT is in kilos.

Information RequiredWhen enquiring or ordering power distribution transformer cores, the following information is required: -

Window DimensionsStrip Width or core section reference Build UpElectrical Specification, if differing from standard guarantees

38

Wound Cores

Page 40: Wiltan Guide

39

Engineering section

Page 41: Wiltan Guide

To assist the Designer in the selection of core pattern, the following table gives a list of Transformers, each utilising two ‘C’ Core loops in shell configuration. The working peak flux density is taken at 1.7 Tesla throughout, and the current density chosen to produce a temperature rise of 60ºc above an ambient of 35ºc, with non-impregnated windings. The winding space is adequate for two 240V interleaved windings of round wire insulated to withstand 2,000V test.

At the smaller end of the range, Transformer design is usually limited by consideration of the voltage drop on load (regulation), and so the output values shown may not be attained. These figures may also be reduced by requirements of lower temperature rise, more insulation, or lower flux density to accommodate frequency and voltage fluctuations, etc. On the other hand, the output may be increased by a choice of higher flux density, better cooling due to winding impregnation, or better class of insulation.

An outline procedure is therefore given, showing how these designs may be modified.

The following symbols are used: -

Vp - Primary voltage (volts) Ip - Primary current (amps) Vs - Secondary voltage (volts) Is - Secondary current (amps) Rp - Primary winding resistance (ohms) Rs - Secondary winding resistance (ohms) N - No. of turns Pcu - Power losses in copper (watts) Pfe - Power losses in core (watts) ∆ - Current density (amps per mm2) Bm - Peak flux density (Tesla) E - Regulation (percent) - Efficiency (percent) Afe - Nett cross sectional area of core (cm2) p - Specific resistivity (ohms – mm2/mm)

Procedurea) Select design which shows power capacity more than sufficient for required

Transformer. (See Table on page 43)

b) Consider the working flux density. If there is an overvoltage requirement or limitation on idling current, reduce the flux density (Bm) to a suitable value (refer to characteristic curves) and correct the power capacity figure prorata. Otherwise, for intermittent operation, or less demanding applications, consider raising Bm to 1.8 Tesla or higher.

c) If 60° temperature rise is too high, current density must be reduced. A reduction of 20% will keep the temperature rise to below 40 °C, and in most cases allow the use of Class A insulating materials. Correct the rated power, also the regulation and copper losses, for the new current density.

d) If extra insulation or higher voltage is needed, or if multiple tappings are specified, the rated power figure must be reduced to allow space for this.

e) Check that the voltage regulation is acceptable. If necessary, reduce the rated output in the proportion required to bring the regulation to the required value.

40

Engineering section

Wound Cores

APPLICATIoN oF ‘C’ CoRES IN SMALL PoWER TRANSFoRMERS

Page 42: Wiltan Guide

f) Read estimated efficiency and calculate the primary current:

Ip = VA (output) x 100 Vp

where Ip = primary current Vp = primary voltage

Select primary wire size, using Ip and value of current density given in table (corrected if necessary).

Acu = Ip ∆

g) Read volts per turn Vt from table, correcting for new flux density if necessary:

Vt (corrected) = Vt x Bm 1.7 Determine the number of primary turns:

Np = Vp Vt

h) From wire tables, the required primary winding space can be found and the primary resistance calculated.

i) Similar calculations for the secondary are made, making approximate corrections for the voltage drop, thus: -

No. of secondary turns Ns = Vs x 100 Vt 100 - E

Where E = Regulation % Vs = Secondary voltage on load

j) Having selected wire size appropriate to secondary current at density D, the resistance of the secondary winding can be estimated with the help of wire tables, or calculated by the formula: -

R = p x L ohms S

Where L = total length of winding wire in metres.

p = Specific resistivity of copper (0.0175 ohms – mm2/mm at 20°C or 0.021 ohms-mm2/mm at 50 °C) S = Cross sectional area of wire in mm2

k) Knowing primary and secondary resistances, the copper losses and regulation can be verified.

This procedure assumes a resistive load but can be used for transformers supplying reactive loads, providing consideration is given to leakage reactance. This can be minimized by the careful disposition of the windings together with a choice of lower operating flux density.

Reducing the flux density to 1.6 or 1.5 Tesla will also ease problems with inrush currents, stray magnetic fields and acoustic noise.

41

Page 43: Wiltan Guide

Example Required 60VA Transformer 240V input, 50Hz. 48V output, 1.25A resistive load % Regulation 10% max. Efficiency 85% min.

a) Try pair of HWR 30/16 coresb) Assume Bm = 1.7 Teslac) Class E insulation, therefore, 60ºc rise is permissible.d) For 10% regulation, output of 70VA at 18% regulation

Suggested in table on page 43 must be reduced to 70 x 10 = 38.9VA 8

As this is now insufficient.

a) Try pair of HWR 30/20 cores Output will be 85 x 10 = 57VA 15

Current density will reduce to 3.5 x 57 = 2.35 85

b) By raising Bmax to 1.8 Tesla output may be increased to 57 x 1.8 = 60VA 1.7

c) Iron losses will rise to 2.5 Watts/Kg. As seen from characteristic curves giving total iron loss of 1.83 Watts. Copper losses, how–ever will fall to 57 x 10.3 = 6.9 watts, so temperature rise will be less than 60o C.

85 d) No extra insulation is needed, so winding space is adequate.

e) Regulation is now estimated 10%.

f) Efficiency will now be 60 = 87% 60 + 1.83 + 6.9

Therefore, Primary VA = 60 x 100 = 69VA 87

p = 69 = 0.29 Amps 240 at ∆ = 2.35 amps/mm2, wire area will be 0.123 mm2, say, 0.4mm dia.

g) Volts per turn at 1.8 Tesla are .216 x 1.8 = 0.229 volts 1.7

Therefore, No. of turns Np = 240 = 1,048 turns. 0.229

Mean length of turn = 12.3 + 21 = 16.65 cms. 2

Total length of wire -= 1,048 x 16.65 x 10-2 = 175 metres. From wire tables, resistance Rp = 24 Ohms.

h) No. of turns on Secondary Ns = 48 x 100 = 233 turns 0.229 90

i) Secondary wire size will be 1.25 = 0.532 mm2, say 0.8mm dia. 2.35 Length of wire = 16.65 x 233 = 38.5 Metres. From wire tables, Resistance Rs = 1.32 Ohms.

j) Total copper losses = p2 Rp + s2 Rs = 2.01 + 2.06 = 4.07 watts Iron loss = 1.83 watts

Therefore, efficiency 60 x 100 = 91%. 60 + 1.83 + 4.07

42

Wound Cores

Page 44: Wiltan Guide

43

TRANSFoRMER DESIGN DATA HWR RANGE ‘C’ CoRES @ 17,000 GAUSS, 50Hz

Core Output Current Iron Copper Volts % & Mean length Ref. Rating Density Mag. Loss Loss Per Regulation Efficiency of Turn (cm) HWR VA A/mm2 VA Watts Watts Turn E n ∆ Pfe Pcu Vt Inner Outer

10/8 17 5.0 3.0 0.4 7.2 0.072 38 69 7.9 14.5 10/12 26 4.8 4.5 0.6 7.5 0.11 27 76 9.1 15.8 10/16 32 4.4 6.0 0.8 7.1 0.145 24 80 10.4 17.1 10/24 40 4.0 9.0 1.2 7.16 0.218 20 82 13.0 19.7

30/8 38 4.4 4.2 0.6 9.2 0.088 26 79 8.6 17.1 30/12 53 4.0 6.4 0.9 11.4 0.13 20 81 9.8 18.4 30/16 70 3.8 8.5 1.25 11.3 0.174 18 83 11.0 19.7 30/20 85 3.5 10.6 1.55 10.3 0.216 15 86 12.3 21.0

40/12 63 3.6 7.0 1.08 13.0 0.13 18 82 9.8 20.4 40/16 80 3.4 9.0 1.35 13.2 0,175 14 84 11.0 21.7 40/20 95 3.0 11.5 1.7 12.0 0.216 12 87 12.3 23.0 40/24 120 2.9 13.5 2.05 11.5 0.26 11 89 13.6 24.3

50/14 120 3.1 11.5 1.85 18.0 0.202 12 86 11.7 24.3 50/18 150 3.0 15.5 2.4 17.0 0.26 11 88 13.0 25.6 50/24 210 2.8 20 3.2 15.0 0.348 10 91 14.9 27.5 50/32 270 2.6 27 4.2 16.0 0.464 9 93 17.4 30.0

70/12 210 2.8 15 2.45 26.0 0.216 9 88 12.3 29.0 70/18 320 2.5 22 3.65 24.5 0.326 7 92 14.2 30.9 70/24 390 2.3 29 4.9 22.0 0.382 6 94 16.1 32.8 70/32 490 2.2 39 6.5 22.0 0.58 5 94 18.7 35.3

90/16 420 2.6 27 4.65 40.0 0.346 6 91 15.4 35.8 90/24 630 2.4 40 7.0 39.4 0.52 5 93 18.0 38.2 90/32 810 2.2 54 9.4 36.4 0.695 4 94 20.9 41.1 90/44 1050 2.0 74 12.7 34..0 0.955 4 95 24.7 44.9

110/20 1000 2.0 55 10.1 50.8 0.58 4 94 19.9 45.6 110/32 1600 1.8 88 16.2 48.0 0.93 3 93 24.1 49.7 110/64 2700 1.5 176 22.2 44.0 1.28 3 95 34.5 60.0

Page 45: Wiltan Guide

CURRENT TRANSFoRMER DESIGN GUIDEAn effective design of a Ring Type C.T. may be produced first time, using the following procedure, without any previous experience.

PrinciplesIn operation, the C.T. will induce current in its secondary winding and burden which serves to completely oppose the magnetising effect of the primary current, except for that small proportion required to magnetise the core. This core magnetising component will then be the only source of error if the secondary current is to be used as a measure of the primary current.

Making two assumptions, ie, that the C.T. has no leakings reactance and that its burden is purely resistive, the vector diagram for a one-to-one ratio CT will look like this.

Where N2 = No of secondary Turns V2 = Secondary Voltage Rb = Burden Resistance I = Primary Current 2 = Secondary Current m = Excitation Current r = Reactive component of m w = Watt loss of component m

e = Ratio Error

From this diagram the primary current 1 differs from the secondary 2 in magnitude and phase angle. The angle error is Sin –1 r/ 1 and the magnitude of 1 = [ (2 N2 + w)2 + r 2]1⁄2

In practice, the angle is so small as to allow the approximations 1 = 2N2 +w and = r/1 radians, i.e. the current error is due to the watt loss component of the excitation current and the phase error is proportional to the reactive component r. The ratio error can be corrected by an amendment to the turns ratio, the secondary winding being reduced by several turns or fractions of a turn. Because of the non-linearity in the excitation characteristics, such corrections do not maintain accuracy as the current changes, and a choice must be made which gives good balance over the whole range of current. Cores can be supplied with drilled holes, enabling fractions of a turn to be wound.

The phase angle error, on the other hand, cannot be corrected, being a function of the reactive component of the excitation characteristics which vary widely over the current range and must take priority in the design of the transformer and choice of core.

The procedure is best described by considering an example, as follows: -

1. Transformer Specification Ratio 150/1 50Hz. Burden 2.5 Va at Power Factor = 1.0 Accuracy BS.3938, Class 0.5 Insulation level – 11 Kv.

Maximum Permissible Error From 10% to Ratio error 1% 20% of rated current Phase displacement 60 minutes From 20% to Ratio error 0.75% 100% of rated current Phase displacement 45 minutes

From 100% to Ratio error 0.5% 120% of rated current Phase displacement 30 minutes

2. Internal Diameter The I.D. of the core is fixed by physical consideration of the primary

conductor and insulation, plus allowance for the secondary winding and core insulation. The main insulation is invariably placed on the primary conductor

44

Wound Cores

ø

r Bm

w 2 2

m

V = R2 2 2

1

Page 46: Wiltan Guide

so that a 20mm dia.conductor insulated for 11Kv will have an overall diameter of about 40mm. The secondary winding and core insulation for a nominal 660 volts lead to the choice of core I.D. of 60mm. Assuming a maximum O.D. of 110mm, the mean path length will then be

p (60 + 110) = 267mm. 2 3. Flux Density The requirements of phase displacement and angle error limit the working flux

density of the core. An estimate of the flux density can be made by considering one working condition, preferably one likely to be most stringent. So considering the phase displacement at the 20% full load condition:-

1 = 30 amps = 45’

From phase diagram, Sin = r

1 . . . r = 1 Sin = 30 x .013 = 0.4A

Hr = r = .4 Lm .267

= 1.5 A/M

By inspection of resolved component curves for TS grade core material on page 65 – Hr = 1.5 when Bm = 60mT.

If the flux density at 20% F. L condition is chosen at 60mT, it will rise to 300mT at full load, and other points pro-rata which can now be checked for error. If for any condition the phase displacement is excessive, a lower flux density must be chosen.

4. CompensationAssuming the phase angle displacements are within allowable limits, the ratio error is calculated for each condition as shown above, and a turns ratio correction is chosen which will make them acceptable. In this case, 1 turn correction is made by reducing the secondary winding to 149 turns.

5. Cross Sectional AreaHaving chosen the working flux density at full load, the required cross sectional area is calculated thus: -

Voltage across Burden at full load = 2.5 volts Allowing secondary winding resistance 0.1 ohms then additional voltage for internal burden = 0.1 Volts Total secondary E.M.F. = 2.6 volts For 149 turn secondary Volts/Turns = 2.6 = 0.0175 Volts 149 At rated condition Bm = 0.3 Tesla By transformer equation V = 0.222 x Bm x Afe T . . . Nett C.S.A. Afe = .0175 = 2.63 cm2 .0222 x 0.3 Allowing 0.95 space factor, Gross C.S.A. = 2.77 cm2

6. Final DimensionsBefore fixing the final dimensions, take account of possible core degradation during winding. If protected by a case, this will be small, but it is prudent to allow 20% extra area for a core taped, wound and impregnated.

In this example, a strip width of 20mm with a build up of 17mm gives a final core dimension of I/D - 60mm

O/D - 94mm Length - 20mm

45

Condition (% Full Load) 120% 100% 20% 10% Primary Current 1 (amps) 180 150 30 15 Bmax (mT) 360 300 60 30 HR (from curves) A/m 4.5 4.0 1.5 0.95 R (HR x 0.267) 1.2 1.068 0.4 0.307 (Sin –1 r/1) 2.3' 2.4' 45' 58.5' Hw (from curves) A/m 5.2 4.5 1.05 0.6 Iw (Hw x 0.267) 1.39 1.20 0.28 0.16 E (Iw/1 x 100) % 0.77 0.80 0.94 1.07 1 Turn Compensation % - 0.67 - 0.67 - 0.67 - 0.67 Compensated Error e1 % 0.1 0.13 0.27 0.4

Page 47: Wiltan Guide

USEFUL MAGNETIC FoRMULAEArea of Cores with Rectangular Cross Section Afe

Afe = Emin x Dmin x K

Mean Magnetic Path Length (Lm) for ‘C’ Cores Lm = Amax + Bmax + Fmin + Gmin -1.72 (R + E max) 2

Core Weight (Mfe) Mfe = Afe x Lm x 7.65 x 10-6

Where Afe = Cross Sectional Area (mm2) Lm = Mean Magnetic Path Length (mm) Mfe = Core Weight (Kg) A = Overall Core Width (mm) B = Overall Core Length (mm) D = Strip Width (mm) E = Build Up (mm) F = Core Window Width (mm) G = Core Window Length (mm) R = Inner Radius (mm) K = Stacking Factor = 0.95 for 0.3mm strip = 0.92 for 0.1mm strip = 0.88 for 0.05mm strip

Permeability µ = B ..................................(1) H H = I x N ................................(2) Lm µ = µo µr .................................(3) Where B = Induction in Tesla (Webers per sq. metre) H = Magnetising force in Amps/Metre µ = Permeability µo = Permeability of Free Space (4p x 10 – 7) µr = Relative Permeability = Current in Amps N = Number of turns Lm = Magnetic Path Lengths in Metres

Modules of Complex Permeability

µ = B max = B max for sinusoidal waveform

Hpeak Hrms x√2

Effective Permeability p p = Bmax Hrms

Transformer Equation V = 4 x F x Bm x N x Afe x f Where V = Rms Voltage F = Form Factor for Voltage Wave Bm = Maximum Induction in Tesla N = Number of Turns Afe = Cross-section of Iron in Metres2 f = Frequency in Hertz

For 50hz sine wave, this reduces to V = 222 x Bm x Afe x N

Inductance

Inductance in Henries = 4p x N2 x Afe x µr 107 x Lm

Where N = Number of turns Afe = Cross-sectional Area of Iron M2

µr = Relative Permeability Lm = Magnetic Path Length in Metres

46

Wound Cores

Page 48: Wiltan Guide

47

Performance curves

Page 49: Wiltan Guide

Interpretation of Loss and Magnetising VA Curves

The magnetising VA of a core is the product of the applied voltage and the total magnetising current and may be shown as a vector in phase with the current and lagging relative to the voltage. This lagging VA may be resolved into two components, the watts (in phase with the volts) and reactive VA (in quadrature). The reactive VA for the gap is the product of the voltage and the current required to produce the necessary ampere-turns to magnetise the gap and may also be shown by a vector in quadrature to the voltage. To calculate the total magnetising VA it is necessary to add arithmetically the reactive VA for the core and for the gap and add this sum vectorially to the watts.

This is true at any frequency, but at 50Hz., the magnetising VA is so nearly in quadrature that the reactive VA for the gap may be added arithmetically with negligible error. At frequencies of 400Hz. or higher this is not so and for this reason reactive and total VA curves are included in this handbook.

48

Performance curves

Wound Cores

REACTIVE VA(CORE)

WATTS(CORE)

VOLTS

REACTIVE VA(GAP)

VA (GAP)AND GAP)

VA (CORE)

Page 50: Wiltan Guide

1.0

0.1

0.1

1.0

2.0

10

49

Gap

Allo

wan

ce (V

A/k

g) f

or

core

s o

f 1

met

re p

ath

leng

th

Bmax (Tesla)

OS

110

OS

111

Tota

l V.A

./co

re

= ( M

ater

ial V

A/k

g +

Gap

Allo

wan

ce V

A/k

g ) x

Co

re W

t.

F

lux

Pat

h Le

ngth

m

VA/k

g

Mag

netis

ing

VA

/kg

fo

r co

re m

ater

ial

MAGNETISING CHARACTERISTICS FoR ‘C’ CoRES IN 0.3mm G.o.S.S. TESTED AT 50 Hz.

Page 51: Wiltan Guide

Wound Cores

0.01

0.1

1.0

10

2.0

1.5

1.0

0.1

50

No

te :

Ad

d a

llow

ance

fo

r g

ap.

0.58

x

B2

x ƒ

VA

per

Kg

L m

Whe

re B

= F

lux

den

sity

in T

esla

ƒ

= F

req

uenc

y in

Her

tz

Lm

= M

ean

mag

netic

pat

h in

cm

s

Peak Flux Density (Tesla)0.

3mm

C C

ore

sM

agne

tisin

g C

hara

cter

istic

s

at V

ario

us F

req

uenc

ies

10

2030

5060

120

300

400

Hz

Mag

netis

ing

VA

/kg

0.3mm ‘C’ CoRES - MAGNETISING CHARACTERISTICS AT VARIoUS FREQUENCIES

Page 52: Wiltan Guide

0.01

0.1

1.0

10

2.0

1.5

1.0

0.1

51

Peak Flux Density Bm (Tesla)

10

2030

5060

120

300

400

Hz

Iro

n Lo

sses

W

atts

/Kg

0.3mm ‘C’ CoRES - LoSSES AT VARIoUS FREQUENCIES

Page 53: Wiltan Guide

Wound Cores

0.1

1.0

10.0

100

2.0

1.5

1.0

0.10 0.01

52

‘C’ C

ore

s in

0.1

mm

G.O

.S.S

Wat

t Lo

sses

at

va

rio

us f

req

uenc

ies

200

Hz

400

Hz

1 K

Hz

2 K

Hz

5 K

Hz

10 K

Hz

Peak Flux Density Bm (Tesla)

Co

re L

oss

(Wat

ts p

er K

g)

‘C’ CoRES IN 0.1mm G.o.S.S. WATT LoSSES AT VARIoUS FREQUENCIES

Page 54: Wiltan Guide

0.01

1.0

10.0

100

2.0

1.5

1.0

0.1

0.01

53

200

Hz

400

Hz

1 K

Hz

2 K

Hz

5 K

Hz

10 K

Hz

Peak Flux Density Bm (Tesla)

Mag

netis

ing

VA

/kg

‘C’ C

ore

s in

0.1

mm

G.O

.S.S

Mag

netis

ing

VA

(rea

ctiv

e) p

er k

ilog

ram

at

vari

ous

fre

que

ncie

s. N

ote

: A

dd

allo

wan

ce f

or

gap

OS

.15

-

1.

12 x

B2

x f

Lm

O

S.1

0

-

0.23

x B

2 x

f

L

m

Whe

re B

= F

lux

den

sity

in T

esla

f

= F

req

uenc

y in

Her

tz

Lm

= M

ean

mag

netic

pat

h in

cm

s

MAGNETISING VA/KG AT VARIoUS FREQUENCIES FoR ‘C’ CoRES IN 0.1mm G.o.S.S.

Page 55: Wiltan Guide

Wound Cores

0.01

0.00

10.

11.

010

.010

0.0

1.0

1.5

10.0

0

0.1

0.01

54

60 H

z

180

Hz

400

Hz

1 K

Hz

2

10 K

Hz

20 K

Hz

40 K

Hz

50 K

Hz

3 K

Hz

5 K

Hz

Flux Density in Tesla

Wat

tloss

/kg

fo

r 0.

05m

m (0

.002

") S

trip

Co

res

ToTAL IRoN LoSS CHARACTERISTICS FoR CUT ‘C’ CoRES IN 0.05mm (0.002") MATERIAL

Page 56: Wiltan Guide

0.01

0.00

10.

11.

010

.010

0.0

1.0

1.5

2.0

10.0

0.1

55

60 H

z

18 H

z

40 H

z

2 KH

z1 K

Hz

10 K

Hz 20

KH

z 40 K

Hz 50

KH

z

3 KH

z

5 KH

z

B Max Tesla

Max

Vo

lt am

p (r

eact

ive)

per

kg

fo

r 0.

05m

m (0

.002

) str

ip c

ore

s

No

te :

Ad

d a

llow

ance

fo

r g

ap

1.04

x

B2

x ƒ

VA

per

Kg

L m

Whe

re B

= F

lux

den

sity

in T

esla

ƒ

= F

req

uenc

y in

Her

tz

Lm

= M

ean

mag

netic

pat

h in

cm

s

ToTAL REACTIVE MAGNETISING CHARACTERISTICS FoR CUT ‘C’ CoRES IN 0.05mm (0.002") MATERIAL

Page 57: Wiltan Guide

Wound Cores

0.5

0.1

12

510

20

1.0

1.5

2.0

56

Pulse Flux Density (Tesla)

‘C’ C

ore

s in

0.0

5 m

m G

.O.S

.S

Pul

se M

agne

tisat

ion

Cur

ves

at

diff

eren

t p

ulse

wid

ths

No

te:

a)

The

se c

urve

s in

clud

e th

e re

luct

ance

of

core

gap

s.

b)

Flu

x d

ensi

ty is

tha

t at

tain

ed a

t th

e

in

stan

t o

f M

ax.H

.

th

us

B

HP

ulse

Wid

th

2 M

icro

secs

.

1 M

icro

sec.

0.5

Mic

rose

cs.

0.25

Mic

rose

cs.

Pea

k P

ulse

Mag

netis

atio

n F

orc

e -

A/c

m

‘C’ CoRES IN 0.05mm G.o.S.S. PULSE MAGNETISATIoN CURVES AT DIFFERENT PULSE WIDTHS

Page 58: Wiltan Guide

0.5

0.1

0.2

0.00

10.

002

0.00

50.

010.

020.

05

1.0

1.5

2.0

57

Pulse Flux Density (Tesla)

‘C’ C

ores

in 0

.05

mm

G.O

.S.S

Co

re lo

sses

und

er

Pul

se C

ond

itio

ns

Pul

se W

idth

2 M

icro

secs

.

1 M

icro

sec.

0.5

Mic

rose

cs.

0.25

Mic

rose

cs.

Loss

es -

Jo

ules

per

Kg

. per

cyc

le

‘C’ CoRES IN 0.05mm G.o.S.S. LoSSES UNDER PULSE CoNDITIoNS

Page 59: Wiltan Guide

Wound Cores

0

.0005

.0010

.0015

.0020

5 10 15

58

B∆ = Incremental Induction in TeslaI = D.C. Current in AmpsL = A.C. Inductance in HenriesV = Core Volume in Cm3

a = Total Air Gap Length in CmLm = Iron Path Length in CmN = Number of Turns

a Lm

Apply to Regions between Dotted Curves

values

Calculated from DC Magnetisation and Incremental Permeability Frequency = 50 Hz

NI Amp turns per cm.Lm At/Cm

L 2

V

Amp2

Cm3

Henry

0.0002

0.0004

0.0006

0.0008

0.0010

a = 0.0012Lm

B∆ = 250 mTB∆ = 500 mT

B∆ = 100 mTB∆ = 10 mT

0.0014

0.0016

HANNA DESIGN CURVES - MATERIAL 30M5 (M097-30N)

Page 60: Wiltan Guide

1.0

1010

0

5,00

0

1,00

0

100

59

1 2 3

4 5 6

87 9

10 11 12

13 14 15

16 17 18

Tota

l DC

Mag

netis

ing

Fo

rce

(A/c

m)

‘C’ C

ore

s

Incr

emen

tal P

erm

eab

ility

val

id f

or

core

s in

0.3

, 0.1

and

0.0

5mm

mat

eria

l at

fre

que

ncie

s up

to

150

0 H

z.

Key

1

G =

0

B =

200

2

B =

20

3

B =

2

4

G =

.000

5 B

= 2

00

5

“ B

= 2

0

6

“ B

= 2

7

G =

.001

B

= 2

00

8

B =

20

9

B =

2

10

G

= .0

02

B =

200

11

“ B

= 2

0

12

B =

2

13

G

= .0

03

B =

200

14

“ B

= 2

0

15

B =

2

16

G

= .0

05

B =

200

17

B =

20

18

B =

2

G

=

E

ffec

tive

Tota

l Gap

Co

re F

lux

Pat

h Le

ngth

B

=

A

.C. F

lux

Den

sity

in m

T

Total Permeability of Core & Gap

INCREMENTAL PERMEABILITY FoR G.o.S.S. ‘C’ CoRES

Page 61: Wiltan Guide

Wound Cores

0.1

110

2.0

1.0

0.5

0.2

60

VA/K

g

Wat

ts/k

g

Bmax (Tesla)

Co

re L

oss

(Wat

ts &

VA

per

kg

)

0.3m

m ‘E

’-co

res

-

Lo

sses

at

50 H

z. 3

pha

se

No

te:

VA c

urve

neg

lect

s g

ap. A

dd

allo

wan

ce

G

ap V

A/k

g

0.91

5 B

2 x

A

W

W

here

B

=

Flu

x D

ensi

ty (T

esla

)

A

=

C

ross

Sec

tiona

l Are

a(C

m2 )

W

=

Co

re W

eig

ht (k

g)

0.3mm G.o.S.S. ‘E’ - CoRES - LoSSES AT 50 Hz., 3

Page 62: Wiltan Guide

0.1

0.2

0.5

12

510

2050

0.1

0.2

1.0

2.0

61

VA/K

g

Wat

ts/k

g

Bmax (Tesla)

Co

re L

oss

(Wat

ts &

VA

per

kg

)

0.1m

m ‘E

’ - c

ore

s

-

L

oss

es a

t 40

0 H

z. 3

pha

se

No

te:

VA c

urve

neg

lect

s g

ap. A

dd

allo

wan

ces

G

ap V

A/k

g

5.73

3 B

2 x

A

W

W

here

B

=

Flu

x D

ensi

ty (T

esla

)

A

=

C

ross

sec

tiona

l Are

a (C

m2 )

W

=

Co

re W

eig

ht (k

g)

0.1mm G.o.S.S. ‘E’ - CoRES - LoSSES AT 400 Hz., 3

Page 63: Wiltan Guide

Wound Cores

0.5

0104

104

2 x

104

3 x

104

1.0

1.5

2.0

62

Relative Permeability

27M

4

30M

5

35M

6

Toro

idal

Co

res

in

0.3

G.O

.S.S

.

Rel

ativ

e P

erm

eab

ility

50

Hz M

od

ulus

of

Co

mp

lex

Per

mea

bili

ty

µ

=

B

10

7

H

4p

whe

re

B

=

Pea

k flu

x d

ensi

ty in

Tes

la

H

=

Pea

k M

agne

tisat

ion

F

orc

e in

Am

ps/

Met

re

x

B T

esla

ToRoIDAL CoRES IN 0.3mm G.o.S.S. RELATIVE PERMEABILITY @ 50 Hz

Page 64: Wiltan Guide

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

125102050100

63

RMS Magnetising Force H. eff (A/M)

Res

olv

ed C

om

po

nent

Mag

netis

ing

Cur

ves

No

te:

Te

sted

with

sin

uso

idal

mag

netis

ing

cur

rent

at

50

Hz.

Flu

x m

easu

red

with

inte

gra

ting

ty

pe

fluxm

eter

.

Tota

l Mag

netis

ing

Fo

rce

Ho

Rea

ctiv

e C

om

po

nent

Hr

Wat

t Lo

ss C

om

po

nent

Hw

B M

ax

(Tes

la)

ToRoIDAL CoRES IN 27M4 (Mo89 - 27N) MATERIAL

Page 65: Wiltan Guide

Wound Cores

0.1

0.01

1.0

1010

0

1.0

1.5

2.0

0.1

0.01

64

Bmax Tesla

50 H

z10

0 H

z20

0 H

z 40

0 H

z

1000

Hz

2000

Hz

5000

Hz

10,0

00 H

z

Iro

n Lo

sses

Wat

ts/K

ilog

ram

ToRoIDAL CoRE LoSSES FoR 27M4 ( M089-27N)- MATERIAL AT VARIoUS FREQUENCIES

Page 66: Wiltan Guide

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

125102050100

65

Magnetising Force H eff (A/M)

Tota

l Mag

netis

ing

Fo

rce

Ho

Rea

ctiv

e C

om

po

nent

Hr

Wat

t Lo

ss C

om

po

nent

Hw

B M

ax (T

esla

)

Res

olv

ed C

om

po

nent

Mag

netis

ing

Cur

ves

No

te:

Test

ed w

ith s

inus

oid

al m

agne

tisin

g

cu

rren

t at

50

Hz.

Flu

x m

easu

red

with

inte

gra

ting

typ

e flu

xmet

er.

ToRoIDAL CoRES IN 30 MIH (MIII -30P)

Page 67: Wiltan Guide

Wound Cores

00.

20.

40.

60.

81.

0-0

.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Not

e ch

ange

of s

cale

66

Flux Density (Tesla)

Mag

netis

ing

Fo

rce

H(A

T/C

m)

Hys

tere

sis

Cur

ves

Unc

ut r

ing

co

res

in 2

7M4

Mat

eria

l tes

ted

at

50 H

z

12

34

DC HYSTERESIS CURVES

Page 68: Wiltan Guide

00.

20.

40.

60.

81.

0-0

.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Not

e ch

ange

of s

cale

67

Flux Density (Tesla)

Mag

netis

ing

Fo

rce

H(A

T/C

m)

12

34

5

DC

Hys

tere

sis

Cur

ves

Unc

ut R

ing

Co

res

in

0.1

mm

mat

eria

l

DC HYSTERESIS CURVES

Page 69: Wiltan Guide

Wound Cores

00.

20.

40.

60.

81.

0

0.2 0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Not

e ch

ange

of s

cale

68

Flux Density (Tesla)

Mag

netis

ing

Fo

rce

H(A

T/C

m)

Unc

ut R

ing

Co

res

in 0

.05m

m m

ater

ial

1.0

2.0

3.0

4.0

DC HYSTERESIS CURVES

Page 70: Wiltan Guide

69

0.1

1

0.1

1.0

2.0

10

Flux Density (Tesla)

VA o

r W

atts

per

Kg

Wat

ts/K

g

VA/K

g

27M

4

30M

5

Cru

cifo

rm C

ore

s 27

M4

& 3

0 M

5 m

ater

ial

Wat

t lo

sses

and

Mag

netis

ing

VA

at

50 H

ertz

No

te:

A

dd

gap

allo

wan

ce

56

x B

2 V

A/K

g

Lm

Whe

re

B

=

Flu

x d

ensi

ty in

Tes

la

Lm

=

Mea

n M

agne

tic p

ath

in c

ms

CRUCIFoRM CoRES IN 27M4 (M089-27N) AND 30M5 (M097-30N)

Page 71: Wiltan Guide

70

Wound Cores

NoTES

Page 72: Wiltan Guide

71

NoTES

Page 73: Wiltan Guide

72

Wound Cores

NoTES

Page 74: Wiltan Guide

EDITION 1

Telmag is a brand of Wiltan

WiltanAmbassador Buildings

Pontnewynydd Industrial Estate

Pontypool Torfaen NP4 6YW

T. +44 (0)1495 750 711

F. +44 (0)1495 753 730

[email protected]

www.wiltan.co.uk

This project has been part funded by the European Regional Development Fund

Wound CoresA Transformer Designers Guide

still

sdes

ign.

com

971

6