16
1 14 November 2016 1 The Trailing Suction Hopper Dredger Prof. Dr. ir. C. van Rhee Sectie Offshore & Dredging Engineering 14 November 2016 2 Contents Intro Application of TSHD General lay-out Dredging Cycle Loading Draghead Hopper Sedimentation, optimal loading time sailing unloading 14 November 2016 3 TSHD Intro 14 November 2016 4 Application of TSHD Before 1980 Maintenance Dredging Deepening of harbours & entrance Channels Maintenance due to siltation Soft sediments (silt clay) Not stationary (wires anchors), so less problems with shipping

webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

1

14 November 2016

1

The Trailing Suction Hopper Dredger

Prof. Dr. ir. C. van Rhee

Sectie Offshore & Dredging Engineering

14 November 2016 2

Contents

• Intro• Application of TSHD• General lay-out• Dredging Cycle

• Loading• Draghead• Hopper Sedimentation, optimal loading time

• sailing• unloading

14 November 2016 3

TSHD Intro

14 November 2016 4

Application of TSHD

Before 1980 • Maintenance Dredging

• Deepening of harbours & entrance Channels• Maintenance due to siltation• Soft sediments (silt clay)• Not stationary (wires anchors), so less problems

with shipping

Page 2: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

2

14 November 2016 5

Application of TSHD

• Capital Dredging (new projects)• Most Reclamation works• Less suitable:

• Reclamation in combination with deepening• Short distance between dredging &

reclamation.• Dredged material suitable for fill• Sediments in dredge area difficult for TSHD

• Increase in size and number -> shorter execution time

Maasvlakte 2

2008 - 2013

14 November 2016 6

TSHD Process Discription

Suction

ExcavationVertical transport

Vacuum limit !

14 November 2016 7

TSHD Process Discription

Loading

Hopper sedimentation

Loading (overflow)

14 November 2016 8

TSHD Process Discription

Sailing loaded

Shallow water

sediment

Page 3: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

3

14 November 2016 9

TSHD Process Discription

Discharge

14 November 2016 10

TSHD Process Discription

Sailing empty

water

14 November 2016 11

start overflow

start dredging

sailing loaded unloading

hopper

sailing empty

HOPPERLOAD (m3)

TIME IN MINUTES

next trip

TSHD Load Graph

stop loading

Max. displacement

14 November 2016 12

Dredgemaster “Pijpenman”

Page 4: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

4

14 November 2016 13

Sailing

• Increase in size of TSHD’s• Increase in sailing distance• Sailing becomes a dominant phase• Sailing speed important• Special for TSHD

• Shallow water : Squat effect• Manoeuvring

14 November 2016 14

The Dredging Phase

• Draghead excavation process • Erosion by jets• Erosion due to inflowing water• Cutting with teeth

• Vertical transportation through suction pipe(s)• Vacuum limit• Pumping power

• Discharge into hopper• Sedimentation

14 November 2016 15

Process Overview

erosion cutting14 November 2016 16

Draghead components

Page 5: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

5

14 November 2016 17

Dragheads

14 November 2016 18

Different Dragheads

14 November 2016 19

Draghead visor control

• Loose visor• Fixed visor• Active control with hydraulic cylinders

14 November 2016 20

Draghead loose visorLoose visor follows seabedVariation:

excavation depthAngle of suction pipe

excavation

Page 6: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

6

14 November 2016 21

draghead

Cutting force

Fixed visor

In case cutting is needed

Overloading prevention

Active visor control

14 November 2016 22

Draghead / suction pipe Equilibrium

14 November 2016 23

Process in Draghead

Jetting cutting erosion

Flow

knife

Rock

14 November 2016 24

Limiting Factors

• Jet production• Jetpower

• Erosion• Pressure difference Draghead• Discharge

• Cutting Production• Trail force, Draghead Equilibrium

• All affected by Soil Conditions

Page 7: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

7

14 November 2016 25

Jets versus Erosion

• Jetpower• Jet pressure * Jet discharge• Unlimited (efficiency is a problem)

• Erosion power• Discharge * pressure drop Draghead• Limited by ‘Vacuum’ • Limited by trail power (ships propulsion)• Limited by draghead equilibrium

14 November 2016 26

Jetting versus cutting

• Trail power = trail force * trail speed• Relative low efficiency of ships propulsion• Draghead equilibrium

14 November 2016 27

Hopper Sedimentation

14 November 2016 28

Loading & Overflow system

water

Sand

Delivery pipelineDistribution valvesDiffusor

Page 8: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

8

14 November 2016 29

Loading & Overflow system

• Loading system• Distribution of sediment

• Influence on overflow losses• Influence on hopper load• Influence on trim of the hopper

• Overflow system• Adjustable in height

14 November 2016 30

Overflow system

14 November 2016 31

Overflow losses

• A sediment water mixture is discharged in the hopper• Not all particles will settle. A certain fraction flows

overboard• Losses depend on (most important influences):

• Discharge Q [m3/s]• Hopper area L*B [m2]• Settling velocity of sediment

14 November 2016 32

Settling Velocity

36 s wG D g

2 2104 2w D wF D C w

wG F

0

4

3s w

w D

gDw

C

Page 9: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

9

14 November 2016 33

0

4

3s w

w D

gDw

C

0D

w DC f

Viscosity is function of temperature

Solve by iteration or use

Empirical formulae

Additional effects on settling velocity:

Concentration, PSD 14 November 2016 34

Settling velocity

14 November 2016 35

Schematic Process Overview

u

inc inQ outc outQ

c

bc 0 , , ,....sed b bv f w c u

14 November 2016 36

Flow field in hopper

Page 10: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

10

14 November 2016 37

ws

V0=Q/(B*L)

0*s s

v QH

w BLw

Ratio between vertical velocity and settling velocity:

ws is a function of the particle size distribution

14 November 2016 38

In case H*>>1

100 % overflow loss

No settling in the hopper

14 November 2016 39

0

20

40

60

80

100

0.01 0.1 1 10

Particle size [mm]

Cu

m. p

erce

nta

ge

0

20

40

60

80

100

% in

ove

rflo

w

PSD in PSD out perc. in overflow

14 November 2016 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

D [mm]

p [

-]

PSD in

PSD settled

PSD in overflow

Page 11: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

11

14 November 2016 41

Maximum Cycle production

33 /cycle

m unloadedP m s

cycle time

Hopper X

Unloaded 20000m3

Sailing Empty 300min

Loading 70minSailing Loaded 330min

Unloading 15min

Turning etc. 10min

Total cycle 725min

Cycl prod 27.6m3/min

14 November 2016 42

HOPPERLOAD (m3)

TIME IN MINUTES

sailing

unloading

sailing

Loading

Cycle time

m3 unloaded

14 November 2016 43

HOPPERLOAD (m3)

TIME IN MINUTES

3

3tan /cycle

m unloadedP m s

cycle time

Cycle time

m3 unloaded

Optim. load

14 November 2016 44

Long sailing distance

Short sailing distance

Page 12: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

12

14 November 2016 45

Hopper

Hull

Hull

Hopper

Low density soils High density soils

Restriction by volumeRestriction by weight

Carrying Capacity

14 November 2016 46

Hopper volume & loading capacity

1.3 1.85 1.9 2Loading cap max. hopper Hopper load [m3] load [m3] load [m3]max. draugth volume density[ton] [m3]

Hopper X 23200 18000 1.29 17846 12541 12211 11600Hopper Y 41000 22000 1.86 22000 22000 21579 20500

14 November 2016 47

Discharging methods

• Discharging through bottom doors• Rainbowing• Pumping Ashore

Decreasingproduction

14 November 2016 48

Page 13: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

13

14 November 2016 49 14 November 2016 50

14 November 2016 51

Pumping ashore + Rainbowing

• Hopper fluidization• With jet system• Concentration control• Minimizing rest load

14 November 2016 52

Page 14: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

14

Bow connection

14 November 2016 53

Rain bowing

14 November 2016 55

Jets

Hopper self-discharge system

Water

SandJets

Water inletDischarge

Dredge pump

Jets

14 November 2016 56

Jets

Water inletDischarge

Dredge pump

JetsJets

Hopper self-discharge system

Page 15: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

15

14 November 2016 57

Jets

Water inletDischarge

Dredge pump

Jets Jets

Hopper self-discharge system

14 November 2016 58

Jets

Water inletDischarge

Dredge pump

Jets Jets

Hopper self-discharge system

14 November 2016 59

Power systems

14 November 2016 60

Diesel electric pump

Pump in fore ship

Diesel direct pump

Pump in aft ship

Page 16: webinar 2 TSHD - Central Dredging Association...2016/09/14  · 14 November 2016 46 Hopper volume & loading capacity 1.3 1.85 1.9 2 Loading cap max. hopper Hopper load [m3] load [m3]

16

14 November 2016 61

Diesel electric with OWP

Diesel electric with OWP and Inboard pump

14 November 2016 62

Final Remarks

TSHD is the workhorse of the dredging industryThe increase in scale created new markets• Price per m3 decreased• Execution time decreased

Still a lot of development to be expectedProcess automationIncrease in production