web-version.pdf

Embed Size (px)

Citation preview

  • 8/10/2019 web-version.pdf

    1/172

    Peter RadgenEdgar Blaustein

    (Eds.)

    Compressed Air Systemsin the European Union

    Energy, Emissions,

    Savings Potential and Policy Actions

  • 8/10/2019 web-version.pdf

    2/172

    ISBN

    3-932298-16-0

    Das Werk einschlielich aller seiner Teile ist urheberrechtlich geschtzt.Jede Verwertung ist ohne Zustimmung des Verlags unzulssig.

    Das gilt insbesondere fr Vervielfltigungen, bersetzungen, Mikroverfilmungenund die Einspeicherung und Verarbeitung in elektronischen Systemen.

    Copyright 2001 LOG_X Verlag GmbH, Stuttgart.

    Projektmanagement: Dr.-Ing. Peter Radgen, Fraunhofer ISIUmschlaggestaltung: Jrgen G. Rothfu, Neckarwestheim

    Druck: Rondo Druck, Ebersbach-Rowlden

    Bindung: Waidner GmbH, FellbachPrinted in Germany

  • 8/10/2019 web-version.pdf

    3/172

    Preface

    According to the Kyoto Protocol from 1997, the EU has to reduce greenhousegas emissions by 8 % below their 1990 levels until the period of 2008-2012. Toachieve these reduction targets substantial efforts will be required by all sectors.Two main strategies have been identified, which allow significant emission re-ductions without harming economic growth. The first is the wider adoption ofenergy efficient technologies. Energy efficiency has been a key element in theenergy policy of the European Union since it reduces the emissions related toenergy consumption and, at the same time, saves energy costs and contributesto extending the remaining lifetime of our natural resources.

    Among the cross cutting energy savings technologies, electric motor systems

    are by far the most important type of electric load. They are used in all sectorsin a wide range of applications, such as fans, compressors, pumps, or convey-ors. Since electricity consumption in electric motor systems account for abut 70% of all electricity use in the industry sector and since energy costs make upmore than 70 % of the life cycle costs of a motor system, even small improve-ments in the energy efficiency of motor systems will produce large energy sav-ings across the EU.

    Therefore, the EU has supported a number of studies, analysing the market forenergy efficient electric motor applications. This book summarises the findingsof the study on compressed air systems in the EU, while other studies such as a

    study on the use of pumps have recently been completed and studies on fansand on air conditioning systems are in preparation.

    As energy savings measures in compressed air systems are highly profitable,we hope that our propositions on how to stimulate further applications of energysavings techniques in compressed air systems will be adopted by the EuropeanCom-mission and the national Government of each Member State.

    Karlsruhe, February, 5th, 2001.

    Peter RadgenEdgar Blaustein

  • 8/10/2019 web-version.pdf

    4/172

    Compressed Air Systems in the European UnionEnergy,Emissions,Savings Potential and Policy Actions

    Final Report, October 2000

    The project was carried out with support from the European Commission, under theSAVEProgramme, project XVII/4.1031/Z/98-266.

    Project Officer: Paolo Bertoldi,

    Study team participants

    ADEME, Project co-ordinatorAgence de l'Environnement et de laMatrise de l'Energie27 rue Louis Vicat75015 Paris, France

    Bruno Chrtien, Edgar Blaustein, Anne Rialhe,

    Fraunhofer ISIFraunhofer InstituteSystems and Innovation ResearchBreslauer Strasse 4876139 Karlsruhe, Germany

    Peter Radgen, Christiane Schmid,

    DoEDepartment of Energetics University of L'AquilaLocalit Monteluco di Roio67040 L'Aquila, Italy

    Roberto Cipollone, Roberto Carapellucci,

    ECE

    ECE International VOFDe Spinhoek 8

    7772 PX Hardenberg, NetherlandsGerard Hurink,

    Industry representatives

    The study team would like to thank Pneurop (the European association of manufacturers anddistributors of compressed air equipment) for their participation in the study. While the manymembers of the association who participated are too numerous to list, we would like to make

    particular mention of the participation of Henri Ysewijn (President of Pneurop), Guy VanDoorslaer (SG of Pneurop), Harry Craig and Desmond Wall.

  • 8/10/2019 web-version.pdf

    5/172

    Compressed Air SystemsI in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    Table of Contents

    Executive Summary ......................................................................................... 1

    Zusammenfassung........................................................................................... 5

    Rsume ......................................................................................................... 11

    Rapporto Conclusivo ..................................................................................... 15

    Samenvatting.................................................................................................. 19

    Introduction .................................................................................................... 25

    1. Characterisation of Compressed Air Systems in the EU..................... 27

    1.1 Data Collection Methods ........................................................... 27

    1.2 Numeric Data ............................................................................ 28

    1.3 Qualitative Data on CAS Decision Processes........................... 31

    1.3.1 CAS Users ................................................................................ 32

    1.3.2 Compressed Air Service Providers ........................................... 33

    2. Model Energy Consumption and Growth............................................... 37

    2.1 Aim of Model Development ....................................................... 37

    2.2 Description of the Model............................................................ 37

    2.3 The Simplified Model, the Data Used, and the Results............. 38

    3. Technical and Economic Energy Savings Potential ............................. 43

    3.1 Improvement of Drives.............................................................. 44

    3.2 Optimal Choice of the Type of Compressor .............................. 45

    3.3 Improvement of Compressor Technology ................................. 46

    3.4 Use of Sophisticated Control Systems...................................... 46

    3.5 Recuperating Waste Heat ......................................................... 46

    3.6 Improved Air Treatment ............................................................ 47

    3.7 Overall System Design.............................................................. 47

    3.8 Optimising End Use Devices..................................................... 48

  • 8/10/2019 web-version.pdf

    6/172

    Compressed Air Systemsin the European Union II

    ADEME Fraunhofer ISI SAVE DoE ECE

    3.9 Reducing Frictional Pressure Losses in Networks.....................48

    3.10 Reducing Air Leaks ...................................................................49

    3.11 Measuring and Tracking System Performance..........................49

    3.12 Synthesis of Technical Measures..............................................50

    4. Organisational Aspects of Energy Savings ...........................................55

    4.1 Organisational Barriers to Improving CAS EnergyEfficiency ...................................................................................55

    4.2 Outsourcing of the Compressed Air Function ............................56

    4.3 Analytical Accounting Methods..................................................57

    5. Analysis of Impacts..................................................................................61

    5.1 CAS Final Users........................................................................63

    5.2 Manufacturers of Compressors and CAS Equipment................71

    5.3 Electric Utilities ..........................................................................73

    5.4 Engineering Consultants and Compressed Air Suppliers ..........76

    5.5 Environmental Impact................................................................77

    6. Actions to Promote Energy Efficient Compressed Air Systems.......... 81

    6.1 Actions.......................................................................................82

    6.1.1 Advertising Campaign................................................................82

    6.1.2 Technology Demonstration........................................................83

    6.1.3 Measuring Campaign.................................................................84

    6.1.4 Contests and Awards.................................................................84

    6.1.5 Dissemination of Information, Training, and Education .............86

    6.1.6 Life Cycle Costing......................................................................88

    6.1.7 Labelling and Certification .........................................................90

    6.1.8 Voluntary Agreements ...............................................................95

    6.1.9 Development of Guidelines for Outsourcing ..............................98

    6.1.10 Economic and Regulatory Actions.............................................99

    6.1.11 Other Possible Actions ............................................................102

    6.2 Classification of Actions and Development of aConcerted Programme ............................................................103

    6.3 Proposition to the Commission on How to Act.........................108

  • 8/10/2019 web-version.pdf

    7/172

    Compressed Air SystemsIII in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    7. Evaluation of the Impact of Measures.................................................. 113

    7.1 The Energy Scenarios............................................................. 113

    7.2 Future Energy Consumption of CAS ....................................... 114

    Bibliography ................................................................................................. 119

    APPENDIX 1: Market Characterisation: Qualitative Data .......................... 121

    APPENDIX 2: Market Characterisation: Numeric Data .............................. 127

    APPENDIX 3: ADEME Data Collection Guide for Compressed Air

    Outsourcing........................................................................... 131

    APPENDIX 4: Data Collection Guide for Compressed Air Users.............. 145

    APPENDIX 5: Qualitative Data Collection Guide for Equipment

    Manufacturers ....................................................................... 157

  • 8/10/2019 web-version.pdf

    8/172

    Compressed Air Systemsin the European Union IV

    ADEME Fraunhofer ISI SAVE DoE ECE

    List of Figures

    Figure 1: CAS electricity consumption ..........................................................29

    Figure 2: Number of air compressors by power range..................................30Figure 3: Number of new and upgraded CAS until 2015...............................41

    Figure 4: Process chain for CAS...................................................................43

    Figure 5: Major families of compressors .......................................................45

    Figure 6: An example of a CA network .........................................................49

    Figure 7: Major energy savings measures....................................................53

    Figure 8: Industry Electricity Factor for EU countries, US and Japan

    in 1996...........................................................................................65

    Figure 9: Electricity Consumption for EU countries in 1996..........................66

    Figure 10: LCC for two different sizes of compressors, indicating thesignificance of energy consumption...............................................89

    Figure 11: LCC of a compressor with variation of electricity prices.................90

    Figure 12: Evaluation matrix for proposed actions (covered potentialand implementation time).............................................................107

    Figure 13: Evaluation matrix for proposed actions (costs and coveredpotential) ......................................................................................108

    Figure 14: Evaluation matrix for proposed actions (Implementationtime and costs) ............................................................................109

    Figure 15: Construction of the Awareness Raising Programme (ARP).........110

    Figure 16: CAS electricity consumption according to scenario .....................115

    Figure 17: CAS electricity consumption by country, BAU scenario...............116

    Figure 18: CAS electricity consumption by country, ARP scenario...............116Figure 19: CAS electricity consumption by country, ERP scenario...............117

  • 8/10/2019 web-version.pdf

    9/172

    Compressed Air SystemsV in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    List of Tables

    Table 1: Electricity consumption in compressed air systems ...................... 29

    Table 2: Number of air compressors installed ............................................. 30Table 3: Number of air compressors installed in 1999 ................................ 39

    Table 4: Electricity consumption for CAS in 1999........................................ 39

    Table 5: Growth rates for CAS in the EU..................................................... 40

    Table 6: Compressed air system life cycle .................................................. 51

    Table 7: Energy savings measures ............................................................. 52

    Table 8: Types of measuring systems......................................................... 58

    Table 9: Energy savings measures ............................................................. 61

    Table 10: Some acronyms for energetic and economic parameters ............. 63

    Table 11: Market Penetration Factor and Efficiency Gain Factor .................. 64

    Table 12: Energy Savings and CAS Energy Savings Ratio for eachproposed measure ........................................................................ 67

    Table 13: Energy Savings and CAS Energy Savings Ratio for theactions globally considered ........................................................... 68

    Table 14: Reduction of energy costs for the actions globallyconsidered..................................................................................... 68

    Table 15: Reduction of operating costs for each proposed measure ............ 70

    Table 16: Increment of Investment costs for each proposed measure.......... 70

    Table 17: Payback Time, full realisation of techno-economic potential ......... 71

    Table 18: Payback Time, moderate ARP scenario........................................ 71

    Table 19: Number of company-level measures for each proposed

    energy savings measure ............................................................... 72

    Table 20: Estimated annual sales of new / upgraded components ............... 73

    Table 21: Reduction of energy sales for electric utilities due to each ofthe proposed actions (medium price scenario).............................. 74

    Table 22: Reduction of energy sales for electric utilities due to theactions globally considered (medium price scenario) .................... 74

    Table 23: Fuel savings .................................................................................. 74

    Table 24: Global Energy Savings Ratio for each proposed measure............ 75

  • 8/10/2019 web-version.pdf

    10/172

    Compressed Air Systemsin the European Union VI

    ADEME Fraunhofer ISI SAVE DoE ECE

    Table 25: Global Energy Savings Ratio for the action globallyconsidered .....................................................................................75

    Table 26: Energy and Fuel Savings for the moderate scenario .....................76

    Table 27: Electricity production in 1997 for various countries........................78

    Table 28: Specific CO2 emissions..................................................................79

    Table 29: Energy savings and CO2emission reduction for each of theproposed actions ...........................................................................80

    Table 30: Energy savings and CO2emission reduction in themoderate scenario .........................................................................80

    Table 31: Target groups of proposed actions ..............................................104

    Table 32: Affected components of proposed actions...................................104

    Table 33: Estimate of gained energy savings by the two programmes........106

    Table 34: Actions and action levels .............................................................111

    Table 35: Total CAS electricity consumption in TWh, per country ...............114

  • 8/10/2019 web-version.pdf

    11/172

    Compressed Air Systemsin the European Union 1 Executive Summary

    ADEME Fraunhofer ISI SAVE DoE ECE

    Executive Summary

    Introduction

    Using compressed air in the industrial and service sectors is a common prac-tice, since production, handling and use are safe and easy. Compressed airaccounts for as much as 10 % of industrial consumption of electricity, or over 80TWh per year in the European Union.

    Nonetheless, the energy efficiency of many compressed air systems is low:case studies show that savings in the range from 5 to 50 % are possible. Alarge technical and economic potential for energy savings is not being realisedunder current market and decision mechanisms. The study "Compressed AirSystems in the European Union" has developed recommendations for actionsthat could bring about market transformation, in order to realise this potential forenergy and cost savings.

    Market characterisation,technical energy savings measures

    Compressors are relatively long lived capital goods, with an average lifetime of13 years for compressors between 10 and 90 kW, and 16 years between 90and 300 kW. They operate on the average 3500 hours per year. The currentstock of compressors is as follows.

    Country Total 10-110 kW 110-300 kW

    France 43 765 28 885 14 880

    Germany 62 000 43 400 18 600

    Greece + Spain + Portugal 35 660 25 685 9 976

    Italy 43 800 30 660 13 140

    United Kingdom 55 000 46 750 8 250

    Rest of the EU 81 040 56 015 25 024

    Total 321 265 231 395 89 870

    The market for compressed air systems (CAS) is stable in Europe, with 1 % to2 % growth in Italy, Greece and Spain, and 0 % growth in the other Europeancountries.

    Performance of CAS depends on the performance of each element, but evenmore on overall system design and operation. The economically and technicallyfeasible energy savings amount to 32.9 %, achievable over a 15 year pe-riod. All the technical measures examined are cost effective (payback time ofless than 36 months) in some applications. The most important energy savingsmeasures are:

    reducing air leaks better system design

  • 8/10/2019 web-version.pdf

    12/172

    Compressed Air SystemsExecutive Summary 2 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    use of adjustable speed drives (ASD) recovery of waste heat.

    The following table resumes the potential contribution to energy savings of the

    technical measures examined.

    Energy savings measure % applicability (1) % gains (2)potential

    contribution (3)

    System installation or renewal

    Improvement of drives (high efficiencymotors, HEM)

    25 % 2 % 0.5 %

    Improvement of drives: (Adjustable speeddrives, ASD)

    25 % 15 % 3.8 %

    Upgrading of compressor 30 % 7 % 2.1 %

    Use of sophisticated control systems 20 % 12 % 2.4 %Recovering waste heat for use in otherfunctions

    20 % 20 % 4.0 %

    Improved cooling, drying and filtering 10 % 5 % 0.5 %

    Overall system design, including multi-pressure systems

    50 % 9 % 4.5 %

    Reducing frictional pressure losses 50 % 3 % 1.5 %

    Optimising certain end use devices 5 % 40 % 2.0 %

    System operation and maintenance

    Reducing air leaks 80 % 20 % 16.0 %

    More frequent filter replacement 40 % 2 % 0.8 %TOTAL 32.9 %

    Table legend: (1) % of CAS where this measure is applicable and cost effective(2) % reduction in annual energy consumption(3) Potential contribution = Applicability * Reduction

    Energy savings can best be achieved at the time when a new system is builtfrom scratch. Nevertheless, much can be done at the time of replacement ofmajor components of an existing system. Furthermore, actions which are re-lated to maintenance and operations, in particular regular filter maintenance andair leak detection, can be introduced at any moment in the life cycle of a CAS.

    Market transformation for greater energy efficiency would impact different ac-tors:

    usersof CAS would have to increase capital investments and maintenancecosts, in order to benefit from reduced energy costs;

    manufacturersof CAS equipment could benefit from expansion of the mar-ket for higher quality, better performing equipment, and would have to adjusttheir product line accordingly;

    electric utilitieswould have slightly decreased sales;

    engineering consultants and compressed air supplierscould benefit fromexpanded opportunities to counsel users on energy efficiency.

  • 8/10/2019 web-version.pdf

    13/172

    Compressed Air Systemsin the European Union 3 Executive Summary

    ADEME Fraunhofer ISI SAVE DoE ECE

    While the technical measures needed for increased energy efficiency are con-sidered to be more profitable than many other industrial investments, thesemeasures are not carried out by private enterprises, for reasons which are es-sentially organisational:

    No compressed air cost accounting. CAS electricity consumption is "in-visible" to top management, since it is most often a relatively small cost itemfor any company. Electricity consumption in general is usually treated as ageneral overhead item in company analytical accounting schemes: reducingthis cost item is often not the responsibility of any particular manager.

    Lack of awareness of possible savings. Top management, responsible forpurchasing policy and investment decisions, is not aware of possible energysavings. Measures to optimise the cost of equipment purchases, such ascompetitive bidding procedures, rarely take into account electricity consump-tion.

    Complex management structure. Responsibility for potential optimisationmeasures is largely diffused among several management functions: Produc-tion, Maintenance, Purchasing, Finance. It is difficult to get high level man-agement agreement, cutting across departmental responsibilities, on a lowpriority item such as electricity consumption.

    Actions to promote energy efficient compressed air systems

    Since the barriers to the implementation of energy efficiency measures stemessentially from organisational factors in CAS user companies, the solutions

    must be user oriented, and aimed at organisational change. The objective mustbe to convince high level management to make the decisions necessary tocarry out energy efficiency programmes. The study evaluates the following ac-tions.

    Advertising campaign, to raise awareness of CAS energy consumption;

    Technology Demonstration, for innovative concepts such as gas turbinedriven compressors, new tube connections for reducing losses, new con-cepts for air drying, gas expansion driven compressors, or automatic leakdetection systems;

    Measuring campaignto give CAS users an idea of their savings potential;

    Contests and awardsfor superior system design;

    Dissemination of information, training and education on CAS energy sav-ings

    Life Cycle Costing, which can demonstrate that environmentally optimaldecisions are also economically optimal;

    Labelling and Certificationof both system components and entire systems;

    Voluntary Agreementswith manufacturers and with users;

    Development of guidelines to improve contracts for outsourcing CAS

    services;

  • 8/10/2019 web-version.pdf

    14/172

    Compressed Air SystemsExecutive Summary 4 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    Taxeson energy or on carbon emissions;

    Subsidies, particularly for upstream aid in decision making and for audits;

    Regulationsto impose standards for system design and operation.

    Recommended actions have been grouped into 2 programmes.

    The Awareness Raising Programme (ARP), (similar to the existing EUGreenLights programme) includes the information and decision aid meas-ures, and could stimulate the saving of 16.5 %of current CAS electricity con-sumption.

    The Economic and Regulatory Programme (ERP) (including subsidies,taxes, and regulatory measures), could, in combination with the ARP, stimu-late savings of 24.7 %. (Note that the study team believes that the ERPwould be ineffective without the ARP.)

    In the view of the study team, these levels of savings constitute very ambitioustargets, which nevertheless could be achieved over a 15 year period. To besuccessful, the programmes would have to meet the following conditions:

    optimal co-ordination between EU and member state action;

    sufficient financial resources;

    sufficient human resources;

    high level political support, in order to favour participation of the privatesector;

    strong commitment from business leaders and organisations.

    Proposition to the Commission on how to act

    The study proposes that the Commission implement all or part of the "Aware-ness Raising Programme", including in particular the three key actions: adver-tising campaign;information and training;measuring campaign. It is esti-mated that such a programme could incite the saving of 11 TWh/year by 2015,equivalent to over 5 million tons of CO2.

    This programme would work best in the context of co-ordinated efforts betweennational and European actions, integrated into a "Motor Driven Systems Chal-lenge" programme.

  • 8/10/2019 web-version.pdf

    15/172

    Compressed Air Systemsin the European Union 5 Zusammenfassung

    ADEME Fraunhofer ISI SAVE DoE ECE

    Zusammenfassung

    Einleitung

    Der Einsatz von Druckluft in den Industrie- und Dienstleistungsbranchen ist ver-breitet, da Erzeugung, Umgang und Nutzung sicher und einfach sind. Auf dieDrucklufterzeugung entfallen in der Europischen Union ca. 10 % des indus-triellen Stromverbrauchs oder ber 80 TWh pro Jahr.

    Trotz dieses hohen Energieverbrauchs ist die Energieeffizienz vieler Druckluft-anlagen (DLA) niedrig: Fallstudien zeigen, dass Einsparungen im Bereich zwi-schen 5 und 50 % mglich sind. Ein groes technisches und wirtschaftlichesEnergieeinsparpotenzial wird unter aktuellen Markt- und Entscheidungsmecha-nismen nicht realisiert. Im Rahmen der vorgelegten Studie wurden Handlungs-empfehlungen erarbeitet, bei deren Umsetzung die bestehenden Hemmnisseabgebaut und berwunden werden knnen, damit dieses Potenzial fr Energie-und Kosteneinsparungen in Druckluftanlagen realisiert werden kann.

    Marktanalyse und technische Energieeinsparmanahmen

    Kompressoren sind relativ langlebige Investitionsgter mit einer durchschnittli-chen Lebensdauer von ca. 13 Jahren fr Kompressoren zwischen 10 und90 kW bzw. 16 Jahren fr Kompressoren zwischen 90 und 300 kW. Sie sind imDurchschnitt 3 500 Stunden pro Jahrin Betrieb. Nach den Auswertungen der

    Arbeitsgruppe sind derzeit in der Europischen Union ca. 321 265 Kompresso-ren im Einsatz. In der folgenden Tabelle ist die Gesamtzahl der Kompressorennach Lndern und Grenklassen zusammengefasst:

    Land Summe 10-110 kW 110-300 kW

    Frankreich 43 765 28 885 14 880

    Deutschland 62 000 43 400 18 600

    Griechenland + Spanien + Portugal 35 660 25 685 9 976

    Italien 43 800 30 660 13 140

    Grobritannien 55 000 46 750 8 250

    brige Lnder der EU 81 040 56 015 25 024

    Summe 321 265 231 395 89 870

    Der Markt fr Druckluftanlagen ist europaweit stabil, mit 1 bis 2 % Wachstum inItalien, Griechenland und Spanien und einer Stagnation der Bestandszahlen(0 % Wachstum) in den brigen EU-Lndern.

    Die Gesamteffizienz einer Druckluftanlage hngt sowohl von der Effizienz dereinzelnen Komponenten der Anlage aber auch von der Auslegung des Ge-

    samtanlage und dessen Betrieb ab. Die wirtschaftlich und technisch umsetzba-ren Energieeinsparungen belaufen sich auf mehr als 30 %, die im Laufe ei-

  • 8/10/2019 web-version.pdf

    16/172

    Compressed Air SystemsZusammenfassung 6 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    ner Zeitspanne von 15 Jahrenerzielbarsind. Alle untersuchten technischenManahmen sind in vielen Anwendungsfllen rentabel (Amortisationszeit vonunter 3 Jahren). Die wichtigsten Energieeinsparmanahmen sind:

    Verminderung von Leckageverlusten verbesserte Anlagenauslegung Einsatz von drehzahlvariablen Antrieben Wrmerckgewinnung.

    Die nachfolgende Tabelle fasst das Energieeinsparpotenzial der untersuchtentechnischen Manahmen zusammen.

    Energieeinsparmanahme%

    Anwendbarkeit(1)

    %Effizienz-

    gewinn (2)

    Gesamt-potenzial (3)

    Neuanlagen oder Ersatzinvestitionen

    Verbesserte Antriebe (hocheffiziente Moto-ren, HEM)

    25 % 2 % 0,5 %

    Verbesserte Antriebe (drehzahlvariableAntriebe, ASD)

    25 % 15 % 3,8 %

    Technische Optimierung des Kompressors 30 % 7 % 2,1 %

    Einsatz effizienter und bergeordneterSteuerungen

    20 % 12 % 2,4 %

    Wrmerckgewinnung fr Nutzung in an-deren Anwendungen

    20 % 20 % 4,0 %

    Verbesserte Druckluftaufbereitung (Kh-

    lung, Trocknung und Filterung)10 % 5 % 0,5 %

    Gesamtanlagenauslegung inkl. Mehr-druckanlagen

    50 % 9 % 4,5 %

    Verminderung der Druckverluste im Ver-teilsystem

    50 % 3 % 1,5 %

    Optimierung von Druckluftgerten 5 % 40 % 2,0 %

    Anlagenbetrieb und Instandhaltung

    Verminderung der Leckageverluste 80 % 20 % 16,0 %

    Hufigerer Filterwechsel 40 % 2 % 0,8 %

    SUMME 32,9 %

    Legende: (1) % DLA, in denen diese Manahme anwendbar und rentabel ist(2) % Energieeinsparung des jhrlichen Energieverbrauchs(3) Einsparpotenzial = Anwendbarkeit * Effizienzgewinn

    Energieeinsparungen lassen sich am effizientesten und kostengnstigsten beider Installation einer neuen Druckluftanlage realisieren. Groe Energieeinspa-rungen lassen sich jedoch auch realisieren, wenn Hauptkomponenten einer be-stehenden Anlage ersetzt werden. Darber hinaus knnen Manahmen, die mitder Instandhaltung und dem Betrieb der Druckluftanlage in Verbindung stehen,insbesondere die regelmige Filterwartung und das Aufspren und Beseitigenvon Leckageverlusten, zu jedem Zeitpunkt whrend der Lebensdauer einerDruckluftanlage durchgefhrt werden.

  • 8/10/2019 web-version.pdf

    17/172

    Compressed Air Systemsin the European Union 7 Zusammenfassung

    ADEME Fraunhofer ISI SAVE DoE ECE

    Eine verstrkte Umsetzung von Manahmen zur Steigerung der Energieeffi-zienz auf Grund der Marktbeeinflussung durch politische Manahmen htteAuswirkungen auf verschiedene Akteure:

    Druckluftanwender mssten gestiegene Kapitalinvestitionen und Wartungs-kosten in Kauf nehmen, um von reduzierten Energiekosten zu profitieren;

    Hersteller von Druckluftanlagen knnten aus einer Ausweitung des Marktsfr hochwertige, leistungsfhige Gerte Nutzen ziehen und mssten ihr Pro-duktangebot entsprechend modifizieren und optimieren;

    der Stromabsatz der Energieversorgerwrde leicht sinken;

    Ingenieurbros, Berater und Contractoren im Bereich Druckluftknntenvon den erweiterten Mglichkeiten profitieren, Anwender ber Energieeffi-zienzaspekte zu beraten.

    Obwohl die zur Steigerung der Energieeffizienz in Druckluftanlagen notwendi-gen technischen Manahmen profitabler als viele andere Investitionen in derIndustrie sind, werden diese aus organisatorischen Grnden hufig nicht vonUnternehmen umgesetzt. Diese lassen sich im Wesentlichen in drei Problem-gruppen zusammenfassen:

    Es gibt keine Kostenstelle fr die Drucklufterzeugung und -nutzung.DerStromverbrauch zur Drucklufterzeugung bleibt der Geschftsfhrung "un-sichtbar", da es sich in vielen Fllen um relativ kleine Betrge handelt. DerStromverbrauch zur Drucklufterzeugung wird in der Regel als Bestandteil derGemeinkosten verbucht. Die Verantwortung fr die Senkung dieser Kosten

    gehrt meistens nicht zu dem Verantwortungsbereich eines einzelnen Mana-gers.

    Mangelndes Bewusstsein mglicher Einsparungen. Der obersten Ge-schftsleitung, die fr die Beschaffungspolitik und Investitionsentscheidungenverantwortlich ist, fehlt das Bewusstsein fr mgliche Energieeinsparungen.Manahmen, mit denen die Kosten von Gertebeschaffungen optimiert wer-den sollen, z. B. Ausschreibungen, bercksichtigen den Stromverbrauch nurselten.

    Komplexe Managementstruktur. Die Verantwortlichkeit fr mgliche Opti-mierungsmanahmen ist meistens auf mehrere Managementfunktionen ver-

    teilt: Herstellung, Wartung, Beschaffung, Finanzierung. Es ist schwierig, aufdieser Managementebene ber Posten mit niedriger Prioritt wie den Strom-verbrauch einen Konsens zu erreichen, der quer ber Abteilungskompeten-zen reicht.

    Manahmen zur Frderung energieeffizienter Druckluftanlagen

    Da die Hemmnisse zur Umsetzung energieeffizienter Manahmen im Grundeauf organisatorische Faktoren bei den Druckluftanwendern zurckgehen, ms-sen sich die mglichen Manahmen an Anwendern orientieren und auf Organi-sationsvernderungen abzielen. Das Ziel ist es, das Management (Geschftfh-

    rer, Technische Leiter) zu berzeugen, die notwendigen Entscheidungen fr dieDurchfhrung von Energieeffizienzprogrammen zu treffen. Im Rahmen der vor-

  • 8/10/2019 web-version.pdf

    18/172

    Compressed Air SystemsZusammenfassung 8 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    liegenden Studie wurden die folgenden mglichen Manahmenvorschlge er-arbeitet und bewertet.

    Werbekampagne zur Steigerung des Bewusstseins fr den Stromverbrauchin Druckluftanlagen;

    Demonstrations- und Pilotvorhaben mit innovativen Konzepten, wie z. B.durch Gasturbinen angetriebene Kompressoren, neue Rohrverbindungstech-niken, um Leckageverluste zu reduzieren, neue Konzepte der Druckluftauf-bereitung, durch Erdgasexpansionsanlagen angetriebene Kompressorenoder eine automatisierte Leckageerkennung;

    Messkampagne,um Nutzern von Druckluftanlagen ein besseres Verstnd-nis des qualitativen und quantitativen Einsparpotenzials ihrer Druckluftanla-gen zu vermitteln;

    Wettbewerbe und Preise; Motivation zu einer optimierten Anlagenausle-

    gung; Informationskampagnen,Aus-, Fort- und Weiterbildung im Hinblick auf

    Energieeinsparungen bei Druckluftanlagen;

    Lebenszykluskosten, die aufzeigen, dass optimierte umweltgerechte Ent-scheidungen auch wirtschaftlich optimal sind;

    Kennzeichnung und Zertifizierung sowohl von Anlagenkomponenten alsauch von Gesamtanlagen;

    freiwillige Selbstverpflichtungen zwischen Herstellern und Anwendern;

    Erstellung von Leitfden, um Outsourcingvertrge fr Druckluftdienstleis-tungen zu verbessern;

    Steuern auf Energie oder CO2;

    Subventionen,besonders zur Untersttzung bei der Auswahl und Konzepti-on von Anlagen und fr Audits;

    Vorschriften und Normung fr Systemauslegung und -betrieb.

    Die einzelnen Manahmen wurden als Handlungsempfehlung in zwei sich er-gnzende Programme zusammengefasst.

    Das "Awareness Raising Programme (ARP)" (Aufmerksamkeits-Pro-

    gramm; in Anlehnung an das bestehenden EU-GreenLights-Programm) um-fasst die Manahmen im Bereich Information und Entscheidungsunterstt-zung und knnte Einsparungen bis zu 16,5 % des derzeitigen Stromver-brauchs in Druckluftanlagen aktivieren.

    Das "Economic and Regulatory Programme (ERP)" (Manahmen-Pro-gramm fr Wirtschaftlichkeit, Vorschriften, Subventionen und Steuern) knntezusammen mit dem ARP Einsparungen bis zu 24,7 % initiieren. (Dabei ist zubeachten, dass das Projektteam das ERP ohne die gleichzeitige Umsetzungdes ARP fr unwirksam hlt.)

    Nach Auffassung der Projektbearbeiter, stellt die Umsetzung dieser Einsparpo-tenziale ein sehr ehrgeiziges Ziel dar, das jedoch ohne weiteres ber einen

  • 8/10/2019 web-version.pdf

    19/172

    Compressed Air Systemsin the European Union 9 Zusammenfassung

    ADEME Fraunhofer ISI SAVE DoE ECE

    Zeitraum von 15 Jahren erreicht werden kann. Fr einen Erfolg der zu ergrei-fenden Manahmen ist dabei sicherzustellen, das die Programme den folgen-den Rahmenbedingungen gerecht werden:

    optimale Abstimmung zwischen der EU und den Manahmen einzelner Mit-gliedsstaaten;

    ausreichende und langfristige Finanzierung;

    ausreichendes Personal;

    hochrangige politische Untersttzung und Frderung, um eine breite Akzep-tanz in der ffentlichkeit zu erzielen;

    groes Engagement von Wirtschaftsunternehmen und Fachorganisationen.

    Handlungsvorschlag fr die Europische Kommission

    Die Studie schlgt vor, dass die Kommission das vollstndige "Awareness Rai-sing Programme" oder Teile davon durchfhrt. Dabei sollten mindestens diedrei Hauptaktionen Werbekampagne, Information und Ausbildung sowie dieMesskampagne umgesetzt werden. Eine berschlgige Ermittlung ergab, dassein solches Programm Einsparungen von 11 TWh/Jahr (oder mehr als 5 Millio-nen Tonnen CO2) bis 2015 initiieren knnte.

    Dieses Programm wrde am sinnvollsten im Zusammenspiel von aufeinanderabgestimmten Manahmen auf nationaler und europischer Ebene funktionie-ren, z. B. integriert in ein Programm zur Verbesserung der Energieeffizienz bei

    Einsatz und Anwendung von Elektromotoren (Motor Challenge Programme).

  • 8/10/2019 web-version.pdf

    20/172

  • 8/10/2019 web-version.pdf

    21/172

    Compressed Air Systemsin the European Union 11 Rsume

    ADEME Fraunhofer ISI SAVE DoE ECE

    Rsume

    Introduction

    Lutilisation de lair comprim dans lindustrie et le tertiaire est courant, sa pro-duction et son usage tant faciles et sans danger. Lair comprim reprsente10 % de la consommation dlectricit de lindustrie, soit plus de 80 TWh pourlUnion Europenne.

    Mais le rendement nergtique de nombreux systmes air comprim est fai-ble : les tudes de cas mettent en vidence des conomies dnergie possiblesde 5 50 %. Les conditions actuelles du march et des mcanismes de dci-sion ne permettent pas la mise en uvre de cet important potentieldconomies dnergie. Ltude "Transformation du march des systmes aircomprim" propose des actions pour transformer le march et raliser le poten-tiel dconomies dnergie (et de dpenses) identifi.

    Caractrisation du march,mesures techniques dconomie dnergie

    Les compresseurs ont des dures de vie relativement longues, en moyenne 13ans pour les compresseurs de puissance comprise entre 10 et 90 kW, 16 anspour les compresseurs de puissance de 90 300 kW. Ils sont utiliss enmoyenne 3500 heures par an. Le parc install par pays est indiqu ci-dessous.

    Pays Total 10-110 kW 110-300 kW

    France 43 765 28 885 14 880

    Allemagne 62 000 43 400 18 600

    Grce + Espagne + Portugal 35 660 25 685 9 976

    Italie 43 800 30 660 13 140

    Grande-Bretagne 55 000 46 750 8 250

    Autres pays de lUnion europenne 81 040 56 015 25 024

    Total 321 265 231 395 89 870

    Le march pour les systmes air comprim (SAC) est stable en Europe, avecune croissance de 1 2 % en Italie, Grce et Espagne, une croissance nulledans les autres pays europens.

    La performance dun systme dpend de chaque lment, mais plus particuli-rement de sa conception gnrale et de son mode dexploitation. Le potentieldconomies dnergie, conomiquement et techniquement intressant, estestim 32.9 %, ralisable en 15 ans. Toutes les mesures techniques exami-nes sont rentables conomiquement (temps de retour de moins de 36 mois),au moins pour certaines applications. Les mesures les plus importantes sont :

    La rduction des fuites Une meilleure conception du systme

  • 8/10/2019 web-version.pdf

    22/172

    Compressed Air SystemsRsume 12 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    Lutilisation de moteurs vitesse adaptable La rcupration de chaleur.

    Le tableau suivant rsume la contribution potentielle aux conomies dnergie

    des mesures techniques analyses.

    Mesures dconomie dnergie % application (1) % gains (2)contribution

    potentielle (3)

    Installation ou remise neuf du systme

    Amlioration des moteurs (moteurs hautrendement)

    25 % 2 % 0.5 %

    Amlioration des moteurs (moteurs vi-tesse variable)

    25 % 15 % 3.8 %

    Amlioration du compresseur 30 % 7 % 2.1 %

    Utilisation de systmes de contrle prcis 20 % 12 % 2.4 %Rcupration de la chaleur pour dautresusages

    20 % 20 % 4.0 %

    Amlioration du systme de refroidisse-ment, schage et filtrage

    10 % 5 % 0.5 %

    Conception gnrale, systmes multi-pression

    50 % 9 % 4.5 %

    Rduction des pertes de pression par fric-tion

    50 % 3 % 1.5 %

    Optimisation des appareils consommantl'air comprim

    5 % 40 % 2.0 %

    Exploitation et maintenance

    Rduction des fuites dair 80 % 20 % 16.0 %

    Remplacement plus frquent des filtres 40 % 2 % 0.8 %

    TOTAL 32.9 %

    Lgende: (1) % des systmes o la mesure est applicable et rentable(2) % rduction de la consommation dnergie annuelle(3) Contribution potentielle = Application * Rduction

    Les conomies dnergie sont mises en uvre plus aisment lors delinstallation du systme, mais aussi lors du remplacement des principaux com-

    posants dun systme existant. De plus, les mesures relatives la maintenanceet lutilisation, en particulier la maintenance rgulire des filtres et la dtectiondes fuites, peuvent tre introduites nimporte quand dans la vie du systme aircomprim.

    Les mcanismes de transformation du march pour une meilleure efficacitnergtique ncessitent limplication de diffrents acteurs :

    Les utilisateurs des systmes air comprim devront augmenter leur in-vestissement (capital et maintenance), pour limiter les dpenses dues lnergie;

    Les constructeurs pourront bnficier dune ouverture du march pour desquipements plus performants, de meilleure qualit, ils devront ajuster leurligne de production selon la demande;

  • 8/10/2019 web-version.pdf

    23/172

    Compressed Air Systemsin the European Union 13 Rsume

    ADEME Fraunhofer ISI SAVE DoE ECE

    Les compagnies lectriques auront une lgre baisse des ventes;

    Les bureaux dingnierie et les fournisseurs dair comprim pourrontbnficier dopportunit pour conseiller les utilisateurs sur lefficacit nerg-tique.

    Bien que les mesures techniques pour amliorer lefficacit nergtique soientplus rentables que beaucoup dautres investissements industriels, ces mesuresne sont pas mises en uvre par les entreprises prives, pour des questionsessentiellement dorganisation :

    Labsence de comptage du cot de lair comprim. La consommationdlectricit des compresseurs est "invisible" pour la direction, son cot tantle plus souvent relativement bas. La consommation dlectricit est le plussouvent incluse dans les frais gnraux : rduire ce cot nest du ressortprcis daucun responsable.

    Le manque dinformation sur les conomies possibles. La direction, res-ponsable des politiques dachat et des dcisions dinvestissement, nest pasau courant des possibilits dconomie dnergie. Les mesures pour optimi-ser le cot des achats dquipements prennent rarement en compte laconsommation lectrique.

    La complexit des structures de gestion. La responsabilit des prises dedcision est rpartie entre plusieurs gestionnaires : production, maintenance,achat, comptabilit. Il est difficile dobtenir laccord de la direction, transver-sale sur plusieurs services, pour une question aussi peu prioritaire que laconsommation lectrique.

    Actions pour diffuser des systmes air comprim performants

    Les obstacles la mise en uvre de mesures dconomie dnergie tant es-sentiellement dus des facteurs organisationnels, lintrieur des entreprisesutilisatrices dair comprim, les solutions doivent toucher ces entreprises et lesamener modifier leur organisation. Lobjectif est de convaincre la direction demettre en uvre les programmes ncessaires pour conomiser lnergie. Notretude a valu les actions suivantes.

    Campagnes dinformation, pour sensibiliser aux consommations dnergiede lair comprim;

    Dmonstration technologique, pour des concepts innovants tels que denouvelles connections des tubes pour rduire les pertes, pour le schage delair ou la dtection automatique des pertes;

    Compagnes de mesurespour que les utilisateurs dair comprim aient uneide de leurs potentiels dconomie;

    Concours et primes pour la conception des systmes;

    Diffusion de linformation, formation, sur les conomies possibles dessystmes air comprim;

    Analyse en cot global, qui peut montrer lintrt conomique dune solu-tion intressante environnementalement;

    Etiquetage et certification la fois des composants et du systme lui-mme;

  • 8/10/2019 web-version.pdf

    24/172

    Compressed Air SystemsRsume 14 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    Accords volontaires entre les constructeurs et les utilisateurs;

    Dveloppement de contracts-types pour lexternalisation de la fournituredair comprim;

    Taxessur lnergie consomme ou les missions de carbone;

    Subventions, particulirement pour les prises de dcisions amont et les au-dits;

    Rglementations pour la conception et lutilisation des systmes.

    Les actions recommandes sont regroupes dans deux programmes.

    Un programme dinformation (Awareness Raising Programme (ARP)),(similaire au programme europen GreenLights) qui comprend les mesuresdinformation et daides la dcision, et peut permettre une conomie de16.5 %de la consommation actuelle dlectricit des systmes air compri-m.

    Un programme conomique et rglementaire(Economic and RegulatoryProgramme (ERP))(incluant subventions, taxes et mesures rglementaires),qui en combinaison avec le programme dinformation permettrait 24.7 %dconomie. (Il faut noter que les ralisateurs du projet ne croit pas lefficacit du deuxime programme mis en uvre sans le premier.)

    Selon le point de vue de lquipe ayant ralis le projet, ces niveauxdconomie dnergie constituent des objectifs trs ambitieux, mais qui peuventtre atteints sur une priode de 15 ans. Pour ce faire, les conditions suivantesdevraient tre respectes :

    coordination des actions entre lUnion europenne et les tats membres; allocation de ressources financires suffisantes;

    allocation de ressources humaines suffisantes;

    support politique appuy, pour favoriser la participation du secteur priv;

    engagement financier rel des chefs dentreprises et des organisations pro-fessionnelles.

    Proposition pour la Commission

    Ltude propose que la Commission mette en uvre tout ou partie du pro-

    gramme dinformation, avec en particulier trois actions cls : la campagnedinformation, la formation, les campagnes de mesures. Les conomiessuscites par un tel programme sont estimes 11 TWh/an en 2015, quiva-lentes plus de 5 millions de tonnes de CO2.

    Ce programme se dvelopperait plus favorablement dans le cadre dune coor-dination des efforts entre les actions nationales et europennes, intgres ausein dun programme plus gnral (le "Motor Driven Systems Challenge" pro-gramme).

  • 8/10/2019 web-version.pdf

    25/172

    Compressed Air Systemsin the European Union 15 Rapporto Conclusivo

    ADEME Fraunhofer ISI SAVE DoE ECE

    Rapporto Conclusivo

    Introduzione

    Luso dellaria compressa nel settore industriale e dei servizi pratica comune,data la semplicit e la sicurezza della sua produzione, gestione ed utilizzo.Laria compressa costituisce sino al 10 % del consumo industriale di elettricit,pari a oltre 80 TWh annui nella Unione Europea.

    Ciononostante, lefficienza energetica della maggior parte degli impianti di ariacompressa piuttosto bassa: lanalisi di casi reali mostra che sono possibilirisparmi di entit che pu variare fra il 5 e il 50 %. Esiste un significativopotenziale tecnico ed economico di risparmio energetico che normalmentesfugge alla percezione nellambito dei correnti processi decisionali e di mercato.Lo "Studio sulla trasformazione del mercato dei Sistemi di Aria Compressa"sviluppa alcune raccomandazioni su possibili interventi che potrebbero darluogo a reali modificazioni del mercato, cos da concretizzare il suddettopotenziale di risparmio energetico ed economico.

    Caratterizzazione del Mercato e interventi tecnici di risparmio energetico

    I compressori daria sono beni dinvestimento con durate relativamente lunghe,in media 13 anni per compressori fra 10 e 90 kW, e 16 anni fra 90 e 300 kW. Uncompressore opera in media 3500 ore annue. Lattuale parco dei compressori

    ripartito come segue.

    Paese Totale 10-110 kW 110-300 kW

    Francia 43 765 28 885 14 880

    Germania 62 000 43 400 18 600

    Grecia + Spagna + Portogallo 35 660 25 685 9 976

    Italia 43 800 30 660 13 140

    Regno Unito 55 000 46 750 8 250

    Resto dellUE 81 040 56 015 25 024

    Totale 321 265 231 395 89 870

    Il mercato degli impianti di aria compressa (CAS) stabile in Europa, concrescite dall1 al 2 % in Italia, Grecia e Spagna, e crescite nulle negli altri paesi.

    Le prestazioni di un impianto di aria compressa dipendono da quelle dei suoisingoli elementi, ma ancor pi dipendono dal progetto e dalleserciziodellimpianto nel suo complesso. Gli interventi di risparmio energetico ritenutifattibili dal punto di vista tecnico ed economico ammontano al 32.9 %,ottenibilesu uno scenario temporale di 15 anni. Tutti i provvedimenti tecnici esaminatisono economicamente convenienti (tempi di ritorno inferiori a 36 mesi) in

  • 8/10/2019 web-version.pdf

    26/172

    Compressed Air SystemsRapporto Conclusivo 16 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    misura maggiore o minore a seconda delle applicazioni. Gli interventi piimportanti sono:

    riduzione delle perdite di aria compressa miglioramento del progetto dellimpianto uso di azionamenti a velocit variabile (ASD) recupero del calore di scarto.

    La tabella seguente riassume il contributo potenziale di ciascun provvedimentoal risparmio energetico globale. I risparmi energetici possono essere ottenuti almeglio in sede di nuova costruzione dellimpianto. Nondimeno, molto ancora sipu fare in sede di rinnovo dei componenti pi importanti su impianti esistenti.Inoltre, interventi relativi alla manutenzione e alla gestione (in particolare lamanutenzione sistematica dei filtri e la verifica delle perdite di aria) possonoessere introdotti in qualsiasi momento della vita utile di un impianto di aria

    compressa.

    Intervento di risparmio energetico% di

    applicabilit (1)

    % dirisparmio

    (2)

    contributopotenziale (3)

    Istallazione o rinnovo dellimpianto

    Miglioramento dei motori (motori a altaefficienza, HEM)

    25 % 2 % 0.5 %

    Miglioramento degli azionamenti:(variaz. di velocit, ASD)

    25 % 15 % 3.8 %

    Aggiornamento dei compressori 30 % 7 % 2.1 %

    Uso di sistemi di controllo sofisticati 20 % 12 % 2.4 %Recupero del calore di scarto per altri scopi 20 % 20 % 4.0 %

    Miglioramento del raffreddamento,essiccazione e filtraggio

    10 % 5 % 0.5 %

    Progetto complessivo dellimpianto (multilivello di pressione)

    50 % 9 % 4.5 %

    Riduzione perdite per attrito 50 % 3 % 1.5 %

    Ottimizzazione di alcune utenze 5 % 40 % 2.0 %

    Gestione e manutenzione dellimpianto

    Riduzione delle perdite di aria 80 % 20 % 16.0 %

    Sostituzione pi frequente dei filtri 40 % 2 % 0.8 %

    TOTALE 32.9 %

    Legenda: (1) % di impianti ove il provvedimento fattibile e conveniente(2) % di risparmio energetico(3) Contributo potenziale = Applicabilit * Risparmio

    La trasformazione di mercato volta al risparmio energetico avrebbe ricadute suvari soggetti del panorama economico:

    Gli utenti degli impianti di aria compressa vedrebbero incrementati i costi di

    investimento e di manutenzione in vista di una riduzione della spesa ener-getica;

  • 8/10/2019 web-version.pdf

    27/172

    Compressed Air Systemsin the European Union 17 Rapporto Conclusivo

    ADEME Fraunhofer ISI SAVE DoE ECE

    I produttori di impianti e componenti pneumatici potrebbero beneficiare diuna espansione del mercato dei componenti di alta qualit e di elevateprestazioni e dovrebbero rivedere di conseguenza le loro linee di prodotti;

    Le aziende elettriche avrebbero limitate riduzioni delle vendite;

    I progettisti e gli istallatori di impianti di aria compressa potrebberobeneficiare di nuove opportunit di prestazioni finalizzate al risparmio ener-getico.

    Anche se gli interventi di risparmio energetico sono considerati pi redditizirispetto a molti altri investimenti industriali, essi non sono realizzati in praticadalle imprese private per motivi essenzialmente organizzativi:

    Mancanza di una voce di spesa specifica per laria compressa. Il con-sumo di energia elettrica "invisibile" per il top management, essendo dinorma una voce di costo relativamente piccola. Il consumo elettrico gene-

    ralmente contabilizzato globalmente nel bilancio analitico di unazienza:ridurre tale costo non rientra solitamente nelle responsabilit di uno specificomanager.

    Scarsa consapevolezza dei risparmi ottenibili. Il top management,responsabile per la politica degli acquisti e degli investimenti, non consa-pevole dei possibili risparmi energetici. Le procedure per il controllo dei costidi attrezzamento, quali ad esempio gare di appalto, raramente fanno riferi-mento al consumo elettrico.

    Complessit della struttura decisionale. La responsabilit di possibiliprovvedimenti di ottimizzazione diffusa fra varie funzioni decisionali:

    Produzione, Manutenzione, Acquisti, Amministrazione. E difficile raggiun-gere un accordo ad alto livello, trasversale rispetto alle responsabilit dei varisettori, su un argomento a basso livello di priorit come il consumo di elettri-cit.

    Promozione degli impianti di aria compressa a basso consumo energetico

    Le soluzioni devono essere orientate allutente e volte a conseguire mutamentiin fattori organizzativi, che spesso costituiscono i maggiori impedimenti allado-zione di provvedimenti di risparmio energetico. Lobiettivo devessere quello diconvincere il management di alto livello a compiere le decisioni necessarie allo

    sviluppo di programmi di risparmio energetico. Il presente studio ha valutato leseguenti misure.

    Campagne informative, per aumentare la consapevolezza riguardo al con-sumo energetico legato allutilizzo di aria compressa;

    Dimostrazioni di nuove tecnologie, per concetti innovatici quali com-pressori mossi da turbine a gas, nuovi tipi di connettori per ridurre le perdite,nuovi sistemi di essiccazione, compressori mossi da espansori di gas osistemi automatici per il rilevamento di perdite;

    Campagne di misuraper dare agli utenti una percezione diretta dei possibilirisparmi;

    Competizioni e premi per progetti impiantistici di alto livello;

  • 8/10/2019 web-version.pdf

    28/172

    Compressed Air SystemsRapporto Conclusivo 18 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    Disseminazione delle informazioni, istruzione e sensibilizzazione sul ris-parmio energetico;

    Valutazione del Life Cycle Cost, che pu mostrare come le decisioni ottimedal punto di vista ambientale sono tali anche dal punto di vista economico;

    Etichettatura e certificazione dei componenti e degli impianti;

    Accordi su base volontaria con i produttori e gli utenti;

    Sviluppo di linee guida per la stesura dei contratti per la subfornitura delservizio di aria compresa;

    Tassazione sullenergia consumata o sulle emissioni di CO2;

    Sussidi, in particolare per i costi relativi al supporto decisionale e agli audits;

    Normative che regolino gli standard di progetto e di gestione degli impianti.

    Le azioni raccomandate sono state raggruppate in due programmi.

    Il programma di sensibilizzazione (ARP), (simile allattuale programma EUGreenLights) contiene i provvedimenti di informazione e supporto decisio-nale, e potrebbe stimolare risparmi sino al 16.5 %dellattuale consumo ener-getico per laria compressa.

    Il programma economico e normativo(ERP)(che include sussidi, tasse, emisure normative), potrebbe, congiuntamente allARP, portare a risparmi del24.7 %. (Si noti che il Gruppo di Studio convinto che lERP sarebbe ineffi-cace in assenza dellARP.)

    Secondo la visione del Gruppo di Studio, questi livelli di risparmio costituiscono

    obiettivi molto ambiziosi, che tuttavia potrebbero essere verosimilmente raggi-unti su un periodo di 15 anni. Per avere successo, i programmi dovranno ris-pettare le seguenti condizioni:

    coordinamento ottimale dellazione fra lUE e gli Stati membri;

    risorse finanziarie sufficienti;

    risorse umane sufficienti;

    supporto politico di alto livello, per favorire la partecipazione del settore priva-to;

    forte coinvolgimento delle industrie leader e delle organizzazioni di settore.

    Proposta operativa per la Commissione

    Il presente studio propone alla Commissione limplementazione, anche parziale,del "Programma di sensibilizzazione", comprendente in particolare le tre misurechiave: campagna di sensibilizzazione, informazione e addestramento,campagna di misura. Si pu stimare che tale programma potrebbe portare adun risparmio di 11 TWh/anno entro il 2015, equivalenti a oltre 5 milioni ditonellate di CO2.

    Il suddetto programma sortirebbe maggiori effetti ove fosse inserito in un

    contesto di sforzi coordinati a livello Europeo e dei singoli paesi, integrato inprogramma "Motor Driven Systems Challenge".

  • 8/10/2019 web-version.pdf

    29/172

    Compressed Air Systemsin the European Union 19 Samenvatting

    ADEME Fraunhofer ISI SAVE DoE ECE

    Samenvatting

    Inleiding

    De toepassing van perslucht in de industrie- en toeleveringsbranche is alombekend. De productie, het omgaan en het gebruik van perslucht isongecompliceerd. In de Europese Unie wordt circa 10 % van het industrileelektriciteitsverbruik ingezet voor productie van perslucht ofwel ruim 80 TWhper jaar.

    Ondanks dit hoge energieverbruik is de efficiency van veel persluchtinstallaties(DLA) laag: praktijkstudies tonen aan, dat besparingen mogelijk zijn tussen 5 50 %. Een hoog technisch en economische besparingspotentieel wordt in deactuele markt- en beslissingsmechanismen niet bereikt. In het kader van dezestudie worden aanbevelingen uitgewerkt, waarmee bestaande drempelsoverwonnen kunnen worden, zodat energie- en kostenbesparingen inpersluchtinstallaties gerealiseerd kunnen worden.

    Marktanalyse en technische energiebesparingsmaatregelen

    Compressoren zijn relatief duurzame investeringsgoederen met eengemiddelde levensduur van circa 13 jaar voor compressoren tussen 10 en 90kW, resp. 16 jaar voor compressoren tussen 90 en 300 kW. De installaties zijngemiddeld 3.500 bedrijfsuren per jaar in bedrijf. Volgens de evaluatie van

    marktgegevens door de werkgroep, zijn er in de Europese Unie ongeveer321.265 compressoren in bedrijf. In de volgende tabel is een opstellinggemaakt naar vermogen en betreffende landen.

    Land Totaal 10-110 kW 110-300 kW

    Frankrijk 43 765 28 885 14 880

    Duitsland 62 000 43 400 18 600

    Griekenland + Spanje + Portugal 35 660 25 685 9 976

    Itali 43 800 30 660 13 140

    Groot Brittani 55 000 46 750 8 250

    Overige landen binnen EU 81 040 56 015 25 024

    Totalen 321 265 231 395 89 870

    De markt voor persluchtinstallaties is op Europees niveau nagenoeg stabiel,met een groeipercentage van 1-2 % in Itali, Griekenland en Spanje en eenstagnatie (0-groei) in de overige EU-landen.

    De totale efficiency van een persluchtinstallatie hangt zowel van de efficiencyvan de individuele componenten van de installatie af, als ook van het

    totaalontwerp en de juiste inzet ervan. De economisch en technisch haalbareenergiebesparingen bedragen meer dan 30 %, welke in een tijdsbestek van

  • 8/10/2019 web-version.pdf

    30/172

    Compressed Air SystemsSamenvatting 20 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    15 jaar te realiseren zijn. Alle onderzochte technische maatregelen zijn in veeltoepassingen rendabel (terugverdientijden < 3 jaar). De belangrijkste energie-besparingsmaatregelen zijn:

    verlaging van lekkageverlies. verbetering van ontwerp van installaties. toepassing van toerental-variabele aandrijvingen. warmteterugwinning.

    In de navolgende tabel wordt het energiebesparingpotentieel van de onder-zochte technische maatregelen samengevat:

    Energiebesparingsmaatregel%

    toepasbaar-heid (1)

    %efficiency-

    voordeel (2)

    Totaal-potentieel (3)

    Nieuwe installaties resp.vervangingsinvesteringen

    Verbeterde aandrijving(high efficiencymotoren, HEM)

    25 % 2 % 0.5 %

    Verbeterde aandrijving (toerental variabeleaandrijving, ASD)

    25 % 15 % 3.8 %

    Technische Optimalisering van decompressoren

    30 % 7 % 2.1 %

    Toepassing efficinte en overkoepelendebesturingen

    20 % 12 % 2.4 %

    Warmteterugwinning voor gebruik inandere functies

    20 % 20 % 4.0 %

    Verbeterde persluchtconditionering(koeling, droging en filtering)

    10 % 5 % 0.5 %

    Totaalontwerp incl. installaties metverschillende drukken

    50 % 9 % 4.5 %

    Vermindering drukverlies inverdeelsystemen

    50 % 3 % 1.5 %

    Optimalisatie van persluchtapparatuur 5 % 40 % 2.0 %

    Het bedrijven van installaties en onderhoud/instandhouding

    Vermindering van lekkageverlies 80 % 20 % 16.0 %

    Het frequenter vervangen van filters 40 % 2 % 0.8 %

    TOTALEN 32.9 %

    Legenda: (1) DLA, waarbij deze maatregelen toepasbaar en rendabel zijn(2) energiebesparing van het jaarlijkse energieverbruik(3) Besparingspotentieel = toepasbaarheid * efficiencyvoordeel

    Energiebesparingen zijn bij ontwerp van een nieuwe persluchtinstallatie op demeest gunstigste en efficinte wijze te realiseren. Hoge besparingen zijn echterook in bestaande installaties te realiseren, door hoofdcomponenten tevervangen. Bovendien kunnen maatregelen, die met de instandhouding en hetbedrijven van de persluchtinstallatie in verbinding staan, in het bijzonder deregelmatige vervanging van filters en het opsporen en verhelpen vanlekkageverliezen, op elk willekeurig tijdstip tijdens de levensduur van eeninstallatie worden doorgevoerd.

  • 8/10/2019 web-version.pdf

    31/172

  • 8/10/2019 web-version.pdf

    32/172

    Compressed Air SystemsSamenvatting 22 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    volgende voorstellen voor maatregelen uitgewerkt en vond daaromtrent enwaardering plaats:

    Reclamecampagne voor het verhogen van het bewustzijn omtrent hetenergieverbruik bij persluchtinstallaties;

    Demonstratie- en pilootprojecten met innovatieve concepten, zoals b.v.door gasturbine of aardgasmotor aangedreven compressoren, nieuweleidingsverbinding-technieken om lekkages te verminderen, nieuweconcepten van persluchtconditionering, door aardgas-expansiemotoraangedreven compressoren of een geautomatiseerde lekkagebewaking.;

    Meetcampagne,om het energiebesparingpotentieel van persluchtinstallatiesen distributie op efficinte wijze voor de eindgebruiker zichtbaar te maken;

    Concurrentie en prijzen: Motivatie tot optimaal installatieontwerp;

    Informatiecampagnes, Opleidingen en kennisoverdracht m.b.t. energie-besparingen bij persluchtinstallaties;

    Lifetime-cyclecosts, welke aantonen, dat geoptimaliseerde en milieu-gerichte beslissingen ook economisch optimaal zijn;

    Kenmerken en certificatie van zowel installatiecomponenten alsook vantotale installaties;

    Eigen verantwoordingsgevoel van fabrikanten en eindgebruikers;

    Het opstellen van richtlijnen, om outsourcingcontracten voorpersluchtleveringen te verbeteren. Hetzelfde geldt voor contracting-contracten;

    Belastingheffing op energie of CO2;

    Subsidies, in het bijzonder voor ondersteuning bij de keuze en conceptenvan installaties en voor audits;

    Voorschriften en normen voor systeemontwerp en toepassing.

    De individuele maatregelen worden als richtlijnen in twee programmas samen-gevat:

    Het "Awareness Raising Programme (ARP)" (aandachtprogramma), (alsaanvulling op het bestaande EU GreenLights Programm) omvat de

    maatregelen in het bereik van informatie en ondersteuning van beslissingenen kan besparingen opleveren tot 16.5 % van het huidige energieverbruik bijpersluchtinstallaties.

    Het "Economic and Regulatory Programm (ERP)" (Efficiency, voor-schriften, subsidies, en belastingprogrammas) kan, samen met de ARPbesparingen opleveren tot 24,7 % (daarbij is aan te merken, dat volgens hetprojectteam de ERP zonder het ARP niet kan functioneren).

    Volgens de mening van de projectmedewerkers, is de realisatie van hetenergiebesparingpotentieel een behoorlijke inspanning, zijn echter van mening

    dat dit over een tijdsbestek van 15 jaar haalbaar moet zijn. Om succes te

  • 8/10/2019 web-version.pdf

    33/172

    Compressed Air Systemsin the European Union 23 Samenvatting

    ADEME Fraunhofer ISI SAVE DoE ECE

    kunnen boeken, zouden minimaal de volgende raamafspraken gemaakt moetenworden:

    optimale afstemming binnen de EU en de maatregelen binnen de diverselidstaten;

    voldoende beschikbare financin, ook op lange termijn;

    voldoende personele bezetting;

    politieke ondersteuning op voldoende hoog niveau, om zodoende een bredeacceptatie in het openbaar te verkrijgen;

    voldoende inzet van het economische bedrijfsleven en vakgespecialiseerdeondernemingen.

    Voorstel voor de Europese commissie

    De studie stelt voor, dat de commissie het volledige "Awareness RaisingProgramme" of gedeelten daarvan uitvoert. Daarbij dienen minimaal de driekernactiviteiten "reclamecampagne", "informatie" en "opleiding", alsmede een"meetcampagne" gerealiseerd te worden. Een globale inventarisering levert tothet jaar 2015 een besparingspotentieel op van 11 TWh/jaar (of meer dan 5miljoen CO2).

    Dit programma zal het meest efficint kunnen functioneren als op nationaal eneuropees niveau goed op elkaar afgestemde maatregelen worden getroffen,b.v. de integratie in een programma tot verbetering van energie-efficiency bij

    toepassing en gebruik van (Motor Challenge Programme).

  • 8/10/2019 web-version.pdf

    34/172

  • 8/10/2019 web-version.pdf

    35/172

    Compressed Air Systemsin the European Union 25 Introduction

    ADEME Fraunhofer ISI SAVE DoE ECE

    Introduction

    Using compressed air in the manufacturing and service sectors is a commonpractice, since production, handling and use are safe and easy. Air-compressors are thus available in a large variety of types, to match differentuser requirements in terms of air quality, volume and pressure. Generatingcompressed air accounts for as much as 10 % of industrial consumption ofelectricity, and up to 30 % in certain sectors of activity, such as the glass indus-try. Estimates indicate that compressed air accounts for over 80 TWh of elec-tricity, and 55 million tons of CO2per year for the EU.

    Nonetheless, the energy efficiency of many compressed air systems is low:case studies show that savings in the range from 5 to 50 % are possible. It is

    clear that market functioning at present is not integrating economically feasiblemeasures into industry choices. In order to achieve the electricity savings and tomake cost effective use of possible improvements, there is a need for a markettransformation.

    This document is the final report of the SAVE Compressed Air Systems MarketTransformation Study, which aims to identify measures, policies and pro-grammes which could lead to more energy efficient compressed air systems.The study adopts a systems approach, taking into account improvements at allstages of the compressed air use cycle. This type of approach is necessary be-cause the most important actions to improve efficiency involve system issues:

    system operations and maintenance practices, in particular to reduce airleaks and to properly maintain filters; system design, including optimal pressure choice, compressor controls, pip-

    ing topology, etc; recovery of waste heat, which is a design issue related to the integration of

    the compressed air system into its industrial environment.

    Thus, the study examines technical as well as organisational measures, whichcould be cost effective in transforming market functioning. The document is or-ganised according to the tasks of the project work plan:

    PHASE 1: DATA COLLECTIONTask 1 Characterisation of compressed air systems in the EUTask 2 Model energy consumption and growthTask 3 Technical and Economic Energy Savings Potential

    PHASE 2: ANALYSIS AND ELABORATION OF RECOMMENDATIONSTask 4 Organisational aspects of energy savingsTask 5 Analysis of impactsTask 6 Identification of actions to promote energy efficient compressed air

    systemsTask 7 Evaluation of the impact of measures

    PHASE 3: DISSEMINATION OF RESULTSTask 8 Final report and dissemination of results

  • 8/10/2019 web-version.pdf

    36/172

  • 8/10/2019 web-version.pdf

    37/172

    Compressed Air Systems 1. Characterisation of Com-in the European Union 27 pressed Air Systems in the EU

    ADEME Fraunhofer ISI SAVE DoE ECE

    1. Characterisation of Compressed Air Systemsin the EU

    Work on this task was organised with respect to the basic objective of the task:provide sufficiently accurate information to help identify priority energy savingsmeasures, and to judge their cost effectiveness.

    Data collection was co-ordinated with the other ongoing related SAVE studies:in particular the Pumps study, the Variable Speed Drive study and the Motorsstudy.

    1.1 Data Collection Methods

    The compressed air systems (CAS) market is a capital goods market, charac-terised by a relatively small number of producers for air compressors (the maincomponent of CAS). The market is highly segmented, by type of compressorand power range. Thus, confidentiality of data poses a major problem, becauseof the limited number of producers for each category of equipment1.

    In order to overcome this difficulty, the study has negotiated an agreement ondata collection with Pneurop, the European Compressed Air Equipment Manu-facturers' trade association. According to the terms of this agreement, the studyteam will develop data from national sources, essentially from the countries ofteam members (France, Germany, Italy, Netherlands, with co-operation fromETSU in the United Kingdom).

    A numeric data collection guide was circulated to team members (copy in Ap-pendix 1). This very complete guide was used to obtain existing data. Of coursenot all data represented exists in each country. Best available data was used, inconjunction with optimal industrial statistics extrapolation methods, in order tocreate an aggregated skeleton model. This model was submitted to PneuropCompressor Committee. After review, a meeting was held (London, 16-17

    September, in conjunction with the International Compressed Air Systems con-ference) in order to further improve the model.

    Furthermore, Pneurop has agreed to circulate a qualitative data collection guideamong its members.

    A different data collection system was used for those target groups that are notrepresented by Pneurop:1 Statistical confidentiality rules differ from country to country. In general, if a small number of

    producers (from 3 to 5) account for a large part of a market, it is considered that publicationof data would violate confidentiality. The solution, from the statistician's point of view, is toaggregate data with other industries. Unfortunately, this makes it useless for the needs of adetailed study such as ours.

  • 8/10/2019 web-version.pdf

    38/172

    1. Characterisation of Com- Compressed Air Systemspressed Air Systems in the EU 28 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    the high volume turbo compressor market. This is a speciality market. Thestudy concluded, that because of its nature (very large, custom designedsystems), this market segment is probably of little interest for the energysavings aims of the study;

    distribution networks, in those countries where distributors are not repre-sented by Pneurop member associations;

    end users;

    energy providers;

    CAS value chain service providers, particularly engineering consultants, andcompressed air outsourcing service providers.

    For those areas where the study directly collected data, specific data collectiontools have been developed, in the form of data collection guides, attached in

    Appendices 2 and 3.

    1.2 Numeric Data

    The level of numeric data produced by the study is summarised in the followingtables. The data was collected either through direct interviews with producersand users of CAS, or through a questionnaire designed specifically for Task 2and distributed to Pneurop and the study group members. With respect to this

    questionnaire, only scanty data is available. Furthermore, national data sourcesare inconsistent in their classification schemes. For instance, in France, data isavailable by power range but not by type of compressors (screw, piston, cen-trifugal, etc.), whereas in Germany, official statistics are classified by compres-sor types and volume flows, but not by power. Furthermore, some data may beconfidential, in market segments where less than 5 companies offer products. Inaddition, it is difficult to distinguish between process gas compressors and aircompressors. Data collected by the study group comes from bibliography, dis-cussions with manufacturers or associations, comments from experts from in-dustry and university, etc.

    According to a decision at the kick off meeting, confirmed in discussions withPneurop, the study is focused on CAS within the 10 kW to 300 kW power range.Smaller units, while very numerous, account for only a small part of total con-sumption of compressed air. Larger units, above 300 kW, are specifically de-signed machines. Because of their high cost, they are usually integrated intowell designed and maintained systems, for which the energy efficiency meas-ures covered in this study are not applicable.

    The total electricity consumption in the EU for CAS is approximately 80 TWh,that is to say roughly 10 % of the total electricity consumption in industry. Thestudy has agreed to the values listed in Table 1. Ademe source is "Prospective

    de la consommation d'lectricit dans l'industrie l'horizon 2010, rapport d'en-qute sur les moteurs", March 1994, CEREN.

  • 8/10/2019 web-version.pdf

    39/172

    Compressed Air Systems 1. Characterisation of Com-in the European Union 29 pressed Air Systems in the EU

    ADEME Fraunhofer ISI SAVE DoE ECE

    Table 1: Electricity consumption in compressed air systems

    CountryCAS con-sumption,

    TWh

    % ofindustrial

    electricityconsumption

    Source and remarks

    France 12 11 Source ADEME, for 1990, from an inquiry, forcompressor > 10 kW

    Germany 14 7 Statistisches Bundesamt, OIT, 19982

    Italy 12 11 From Afisac, 1998

    United Kingdom 10 10 From 'Best practices leaflet', 1996

    Rest of the EU 32 11 Best guesses, based on 1996 electricity con-sumption, extrapolated to industrial electricityconsumption per country

    CAS consumption, TWh

    12

    14

    1210

    32France

    GermanyItaly

    UK

    Rest of the EU

    Figure 1: CAS electricity consumption

    The ADEME study allows disagregation of air compressor data by power range.The British Compressed Air Society proposes values for the United Kingdom.Afisac proposes some values for Italy, including the range 4-10 kW, which havebeen adjusted to the study's target power range. Table 2presents the numberof installed machines and their division into power ranges.

    2 While electricity consumption of CAS in Germany, expressed in absolute terms, is the largest

    in any of the European countries, it appears to be the smallest as a percentage of industrialelectricity consumption. This could be due either to a difference in the statistical categoriesused in the different countries, or to the specificity of industry activity in Germany.

  • 8/10/2019 web-version.pdf

    40/172

    1. Characterisation of Com- Compressed Air Systemspressed Air Systems in the EU 30 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    Table 2: Number of air compressors installed

    CountryNumber ofsystems

    10-110 kW 110-300 kW3 Source and remarks

    France 43 765 28 885 (66 %) 14 880 (34 %) ADEME study, range of 10-70kW and more than 70 kW

    Germany 62 000 43 400 (70 %) 18 600 (30 %) Share from German statistics,CA number from extrapolation

    Italy 43 800 30 660 (70 %) 13 140 (30 %) AFISAC (CA number) andextrapolation

    UnitedKingdom

    55 000 46 750 (85 %) 8 250 (15 %) Insurance data, BCAS, ex-trapolation

    Rest of the EU 116 700 81 700 (70 %) 35 000 (30 %) Extrapolation

    Total 321 265 231 395 (72 %) 89 870 (28 %)

    Note that while the data for the total number of compressors is derived fromreliable data for France, Germany, Italy and the United Kingdom, the break-down between the 2 power ranges depends on extrapolations and estimates.The study team believes that the above data is an accurate representation ofthe situation, given existing data sources. Nevertheless, some contradictoryevidence indicates that the number of large machines might be somewhat lowerthan these estimates.

    Number of systems

    0

    30000

    60000

    90000

    France Germany Italy UK Rest of the EU

    Number

    10-110 kW

    110-300 kW

    Figure 2: Number of air compressors by power range

    3 There is a large difference between the proportion of large machines in the United Kingdom

    and in other countries. This is surprising, given that statistics for the United Kingdom andFrance, in particular, are both considered to be of a very reliable nature, resulting from pro-cedures which actually counted over 100 000 machines in the field. The difference might bedue to the size of companies which use CAS in each country.

  • 8/10/2019 web-version.pdf

    41/172

    Compressed Air Systems 1. Characterisation of Com-in the European Union 31 pressed Air Systems in the EU

    ADEME Fraunhofer ISI SAVE DoE ECE

    The other parameters are estimated using data from ADEME, Afisac and Pneu-rop. We propose:

    for the growth rate of the installed stock of air compressors:

    2 % for Italy, Greece and Spain, for the 5 years to come, 1 % for the fol-lowing 5 years, afterwards only a renewal of the stock,

    a 0 % growth rate for the rest of the EU countries,

    an average lifetime of:

    13 years for compressors between 10 and 110 kW,

    16 years between 110 and 300 kW,

    an average power of

    42 kW for compressors between 10 and 110 kW,

    132 kW between 110 and 300 kW,

    an average power loss of 15 % upstream from the compressor (motor powerloss, cooling, etc.),

    3500 hours as the number of operating hours per year.

    Operating hours vary between countries and years: 3500 hours in Italy, 2700hours in France in 1990 but only 2000 hours in 1984. Generally speaking, oper-ating hours increase with power. Specific information on age is available: inFrance, the average age of installed machines is 11 years and one third of thestock in the EU is older than 13 years.

    1.3 Qualitative Data on CAS Decision Processes

    The basic aim of qualitative data collection is to understand:

    from the CAS users' point of view, the key decision criteria affecting userchoice in purchases. Specifically, how energy consumption issues are (or arenot) integrated into the decision process.

    from the CAS manufacturers' and service providers' point of view, how en-ergy efficiency issues (and more broadly, operating costs) are integrated intosales strategies and practices.

    In order to collect this information, in depth interviews were conducted within 19companies: 7 in France (of which 3 service providers), 4 in Germany and 8 inItaly. (See Appendix 1 for detailed information on these interviews.)

  • 8/10/2019 web-version.pdf

    42/172

    1. Characterisation of Com- Compressed Air Systemspressed Air Systems in the EU 32 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    1.3.1 CAS Users

    Qualitative data collection, through in depth interviews with representative CASusers, was focused on determining users' performance criteria in the choice and

    design of systems. Data collected (Appendix 1) shows that for users, perform-ance criteria are the following:

    Reliability. Since compressed air is an essential part of the production proc-ess for most industrial compressed air users, system reliability is the absoluteprimary performance criterion. System breakdown usually equates to lostproduction, and is therefore very costly. The cost of lost production is cer-tainly viewed by most users as more important than potential energy savings.

    Quality. Compressed air quality is important for two main reasons:

    Damage to production equipment. Impurities in compressed air cancause breakdowns in production equipment that uses the air. In this case,quality of air is an issue in many respects similar to the reliability issuementioned above.

    Product quality. In some production systems, compressed air enters di-rectly into the finished product, or comes into contact with the product (forexample in food processing, pharmaceuticals and electronics). In thiscase, poor air quality can lead to reduced product quality.

    Cost. It seems that cost is the least important performance criterion for us-ers. This is an important result for the study, since the basic ts1ool that mustbe used to encourage energy efficiency is cost reduction. Several reasonsseem to explain the low priority which users give to compressed air costs,

    even in highly cost competitive industries. No compressed air cost accounting. In many cases, users are not

    aware of compressed air costs. Neither compressed air operating costs,nor energy for compressed air, appear as distinct items in corporate costaccounting. Compressed air energy costs are most often included in gen-eral overhead costs.

    Limited management time. Managers do not feel it is worth their time toimprove energy efficiency, since they feel this would have a negligible im-pact on total production costs. The idea that compressed air energy costsare a minor cost item is sometimes false. This issue is thus related to the

    preceding issue on lack of information on compressed air energy costs. Lack of awareness of possible savings. In some cases, even when cost

    accounting information on compressed air is available within the organisa-tion, managers with decision making power are not sufficiently aware ofthe existence of cost effective energy savings measures.

    Complex management structure. Because of the nature of compressedair energy costs, responsibility for cost reduction measures is often dividedbetween managers for maintenance, production, purchasing and finance.Co-ordination between these functions is a problem in all enterprises. Itgenerally requires very high level decisions to cut across the conflicting

    priorities of these functions, and this type of decision is rare for com-pressed air, which is not viewed as a strategic business issue for users.

  • 8/10/2019 web-version.pdf

    43/172

    Compressed Air Systems 1. Characterisation of Com-in the European Union 33 pressed Air Systems in the EU

    ADEME Fraunhofer ISI SAVE DoE ECE

    Energy Services and Energy Service Providers

    Energy services is a term used to refer to services that require energy intheir production. Examples are lighting, heating, refrigeration, motive

    power, transportation, communication, etc. The use of this term is impor-tant, because it highlights the distinction between the energy services thatfinal users require, and the primary energy used to produce these services.Compressed air can be used, for instance, to provide motive power (com-pressed air actuated pistons, pneumatic materials transport), cleaning (asin dust blowoff) or control (pneumatic industrial control logic devices).

    Energy products such as gasoline, electricity, piped gas, piped steam orchilled water permit the transportation and/or storage of energy, and theproduction of energy services. They are most often commercially sold assuch by the existing Power Utility Companies. Compressed air can be con-sidered to be an energy product, although, until recently, few Power Utili-ties sold compressed air.

    Energy service providers are organisations that produce and distributeenergy products or energy services. Energy service providers may be pri-vately or publicly owned businesses, national or municipal agencies, co-operative organisations or the end users themselves. In the past, the sec-tor was mainly limited to power utilities that sold energy products. Clientspaid for the quantity (litres of gasoline), or energy content (kWh of electric-ity) of the energy product. Today new actors are entering the market, andbilling is evolving towards a model in which users pay for the energy serv-ice rendered. Energy service providers are thus moving downstream in the

    energy value chain, sometimes going as far as installing end use devices.They often provide an integrated service composed of the equipment, themaintenance and the operation of installations that produce several typesof energy services. This business model, if properly controlled throughregulations and contractual arrangements, can permit energy service pro-viders to aid the development of rational use of energy.

    1.3.2 Compressed Air Service Providers

    As is the case with many "housekeeping" functions in industry, a major currenttrend is for businesses to outsource compressed air production4. The businessis dominated by a small number of large service providers, most of them fallinginto one of the following categories:

    industrial gas suppliers (e. g. Linde, Air Liquide, Messer, BOC, Praxair),

    general energy service providers (e. g. Vivendi/Dalkia, Suez-Lyonnaise/Elyo,Harpen, ECH),

    4 Because of its rapidly growing importance in France, ADEME has commissioned a study on

    outsourcing, carried out by ADAGE consultants. Much of the information in this paragraph isdrawn from this study.

  • 8/10/2019 web-version.pdf

    44/172

    1. Characterisation of Com- Compressed Air Systemspressed Air Systems in the EU 34 in the European Union

    ADEME Fraunhofer ISI SAVE DoE ECE

    power utility companies (e. g. Town owned utilities, EnBW, E.ON, HEW,RWE, EDF).

    The strategy of the companies in the first group is to provide an integrated solu-

    tion for all the industrial gas needs of a plant. They might install a system con-sisting of a large compressor unit coupled with membrane filtration systems toprovide nitrogen and oxygen as wel