20
NATIONAL ADVISORY COMMITTEE _ FOR AERONAUTICS - WAlr’nm EIIPOIM’ ORIGINALLY ISSUED September 1943 as IkU.-ameConf’ldentlalReport 31~ EFmcl!sm’-mlm mAmmcnf TEE AEmJJ!mMac CEWUEKBTtCS OF SCM? ILW4XAG JUXFOIEI By Milton Dul@Yy t IkwidBon and Wu’old R. !lumer3 Jr. hkol?id J&’01MUtiC81 “~bo~tory ~ Field,?a. ,, . WASHINGTON NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were pre- viously held under a security status but are now unclassified. Some of these reports were not tech- d tally edited. All have been reproduced without change in order to expedite general dtstribution. L-@ https://ntrs.nasa.gov/search.jsp?R=19930092778 2020-04-04T19:07:20+00:00Z

WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

NATIONAL ADVISORY COMMITTEE

_

FOR AERONAUTICS -

WAlr’nm EIIPOIM’ORIGINALLY ISSUEDSeptember 1943 as

IkU.-ameConf’ldentlalReport 31~

EFmcl!sm’-mlm mAmmcnf TEE AEmJJ!mMac

CEWUEKBTtCS OF SCM? ILW4XAG JUXFOIEI

By Milton

Dul@Yy

t

IkwidBon and Wu’old R. !lumer3 Jr.

hkol?id J&’01MUtiC81 “~bo~tory

~ Field,?a.

,,

.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution ofadvance research results to an authorized group requiring them for the war effort. They were pre-viously held under a security status but are now unclassified. Some of these reports were not tech-d tally edited. All have been reproduced without change in order to expedite general dtstribution.

L-@

https://ntrs.nasa.gov/search.jsp?R=19930092778 2020-04-04T19:07:20+00:00Z

Page 2: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

-.— .—

;

.

..

. .

. .

..

..

. ..- .—-—.—

‘ :$ --.’+ udUMiiilun- ._?.?17601-6862

ENrIcmALAm80RY’Cmidm!3mR AEmAUTIcs—_ ___ 1

AlmEOEamFIlx!mmLmmRl?. .

Immzcsar’MEAmnw$’LoAntmOHmE”A3mmmac-.. .mR@!&6TIf2iC@’“BoldELow-lnw AIm’cms

,Byyilton Dmldsal andma R- TLuwr, Jr.

The effect of variations In the tme of wan llne cm thesection characteristics of mver4 repi%emtative l’W2AI.uw-dragairfoils ‘wasinvestigated● The test results are ooqpered withtheoretical predictions and indloate trends that facilitate theoholce of mean llne in the dhmnce of tests.

Immmclrml

lllievlng *signer, &t& a variety of man llnes at hls dlqmml,is oacfrcnted with the problem of chcos~ the pzmper mean llne fora particular alrfoll application. As an aid In the proper selectionOr meanlines, tests have been made In the IWACAtwo-MmensionaJ.luw-turbulenoe pressure tunnel of some EUM#iluw-drag drfolls to observethe effects of varying the -an line of airfoils of the samefemily.The rolatlve adwntages to be gahd by the use of loading of onetype in preference to mother are dlmmsed, and ~erlmental. twtdata and tiemeticnlly calculated values for the airfoils tested aregiven to Indicate the limltati~ns of the theo~.

TESTMOrHoIsl. .

In orbr to obtain a representative test -p of Wrfoils,membem of the HACA 63-sertes, NACA65-series, end WCA 66-seriee

Wit the tlm this paper was crigjnally p@llehe~ some of thecorrections reguired fcr ccmrwthg the test data to free-a,lrcmdltiaushad not been dete~ed. The meaeured vslues of section lift coeffi-cient Cl (fl@ .1 to U, fi~ , 13 and15) shcu3d be corrected bythe fclloqlng egpatlan

c%ormcta)= 0*$)6*Z + O*O1

The measured aeoticm en@es of sero M% (fig. 12) vIU therefore besli@My differant afterthe aforemmnticned correction is @lledto the llft data●

Page 3: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

+’”*, .,-.

9

. . . . .. . . .....’.. . . . . . . . .’, . . .

2

famlli-eawprewere Cadbered

-. .. . . . . ... . . ..

~. ~ .... - *. “. ,.

. . . . .. . . . .

milecrk~ &zfolls ti.tibident$w#. ~asic tklelmess foniw(see reference 1)”for the’same design lift wltb the

uniform-1.wyitiap M.ne, that isf wlt?a a =,1.00, end ~ti ~ l-sother than a = 1 Al;””AM’oIIs of We IUCA $-series were chomn togivO a caniberand a thickness variatlcm,

. . . .“. ,%. ... .

All the altioils, mnetzwtad as described In reference 1,were i3binch-ahordmodels and were tceted in the smooth conditim

at Reynolde nunibexwof approximately 6 x 106 end 9 X 10G; t.models of thickness equalto or greater than 18 perceut of thechcmd (OJ& ) were aleu tested with a standard roughness [email protected]

., to.the @uUng edgb .(@ee.reference 2) at..aReynoldsnuniber of

apjroklmately””6“x 1060 Lift @d. “~ values were obtained fnmtuuriel~ and wake-.eurveypreewure meamrements, and ltchln&

7moment values ‘were obtained”from a belance (reference 1 .

Ammage tunnel conctant3 for these tests m

Tunnel texlk“. . R@ldF~ number, R “ pressure -c pres~ n%;r

.“ (atm) (lb/sq ffi)

6 x 106t

89: 0.1376 ,103

.,”. 9 k ti8 ,153

RI!sum3

Routine-test remits giving section characteristicsfor airfoilstested in a c3moth oontition are presenteflh figures 1 to 7. Thereeul.taare @.vem In standard chart form, with two alrfcdia to eachchart, for the folhwlng airfollo:

. .

NAOA 63,4-4a), a = 1.0

W-W 63,4-4=, a = o.3

I’?ACA65a-415# a =“1.0 .

-,

NAY65a-4158“a = O *5

.mm “~ -%18, ‘a=l.O. .. ..

. . .-. . “m.-

Page 4: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

E40A---...- ..---- -.

RAti... .......

E&u

. SU04. ..m. . . . .

mu

\ 19AOA

.. *. ISA*

N4CA

u (!A● .

65s-418., a..E.-0.5., .......... .

.6S442i, al= .i,o “ ... . .. -.

66,3-418, a m 1.9 .,. ...-.

66,3-418, s .= 0,8. ” “

-6.6,3-6.18i a E 190. ..

6S$~618, a =..06$- . . ..

66,2416,:.a== 1.0

‘Charts of the air follfi “w$th “a.standard roughness” qre“ given in figures 8 to. llj the .llft r.nd drag characteristicsaxe preyented in thqsd charts” for all of the afore-mentionedalrfoile , 0.180 Ishiok or thiokep , “with the exception Qf theITACA 66,3-418, a = 1.0 an-d the HA(IA 66,%418, a = 0.8 air-foila; “The oharacteristios for the corresponding smoothairfoil with ha = 1.0 are also shown on each chart for com-parleon. ..

Measured values and theoretical mean-lice values ofangle of 5er~ lift, design eection lift ooefflcient, andsection pitching-moment coef’fioient are given in figures12 to 14, reOpect Lvely. The theoretloal mean-line va~~eshave been computed by using the valuee aad methods of ref-erences 1 and 3.

Figure 15 shows”the variation of design seotion liftcoefficslent and seotion pitching-moment coefficient wi$hairfoil thiakness for.several airfoils of ttie MAW 66Aserias. The results ~lven were obtalnod from tunnel meas-urements: from mean-line (thin+airfoll-theory) Wloula.ttons:from integratlag of tbo oom%ined theoretical pressure dis~tributions due to basic form thiokness and to camber

‘=(+’~)’(see .refeaence 1); and from a 9!heodorsen

calculation (see reference 4) on the HA(!A 6%-418, a = 1-Oalrfotlm !Che symbols in”the=formula for “S are defined as

...

. .

Page 5: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

s pressure coefficient. ..,. . . .

v velocity on surface of basic thickness form,.

v free-e tream ;eloctty

Au velocity in~;eaent due to mean-line load distr~-l)ution . .. . . .

,Dt$CUSSIGN

Soct20n Chara~teristics Applicable to Ylng Design

Aerodynamically, wing design u8ually Conststs of theselection of suitable root agd tip airfoil eections~ Theselection of sultqble roGt and tip sections Involves thepropor choics of noan line: h~aco, the aerodynamicist mustevaluate available .nean.-llne data. Yhe advantages cf choos-ing one me~n line in preference to another for a particularapplication can tsst bo shown By the effect~ of differentmean linss on the airfoil sect-ion characteristics The mostl~portant of theoe cha.raoterietlca qre

“.

at “ angle of aero lifto

.,

a. slope of section lift curve, per d.egreo..

cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge

C;=x maximum sectloa lift coefficient

c~-ran~o angular rango corresponding to dlfferonce betweenangle of attack at c2&= and at Cz=cl

. . .

Cd.-range extent of minimum section profilq-drag coefficient

. .

cmc/4 section pitching-moment coefficient about section... . . quarter-chord point . ..

.

Vc section critical speed

Page 6: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

6

Seleqtlon -of Ifean Itlnes .,... . . . .

Rdferenae 1, ‘which presen{s ““mean llnes with values “}

of a ranging from 0-3 to 1.0.,recommends that a valueof & be seleeted which 3s” eqUal to or g~eater than the

b’.iextent of the falltng pressure for the associated basltithiqknee-s fobm. & large variety ~fc loadinga may be ob-tained by com’binatlons of the varidue mean. llaes: however.

.’ the pr~ent paper ts uonceraed with only the values of a“as reoomminded in reference 1. “ .

Whecq the loading of an alrf.oll is changed, th”e lnher-“ent characterist#.ce of *he basic thickaess form may be re-tained and yet the airfoil seotion character’ie~lcs may be

“ “greatly varied. For example, by employing one type of.cam-ber in preference to another, K higher section critical

‘- speed, a hi,gher maximum sect,ion lift coefficient, and ahigher sectic~ pitch.ing+n?ment coefficient may be obtainedwithout any bhango In seotton ]fllnlmumprofile-drag coeffl-c$onto “ .

The trend of section,characterlstics can %e shownp&tly by thaory end pertly b~ gonorallmtion~ from testresults, Thin-airfoil theory Indicates that a higher ‘critical speed, a greatc~ section pitchinemonent cooffl-cimnt, and a lowor valuo of section angle of.soro lift areobtained as the mean line progresses in the direction froma= o.? to a = 1.0: howevor, Indications of what happensto tha maximum seotion lift coofficieat nust be obtalnod

‘ from test results..

. .Test results giving the section characteristics of

airfoils with a uniform-load meaq line and-airfoils withloadings othor than a E. 1.0 are presented. in figures 1,to”ll. The charts for the airfOilS In the smooth cond-

ition (figk. 1 to 7) indicate a higher ~a~~s a greater

ao, and a narrower c~-range for the airfo$ls with. a = 100. .‘.than~with a < 1.0, .The plots of . cd Qgalnst . ~Z show no

significant difference la Cd. alt@ough_ at the highermih -

values of c $, the drag Is conefderably less for the air-. foil with ‘a = 1.0 than with other mean-line loadtngs. ItIs noted that the cdo-range for the airfoile with .a ~ l.o

shifts toward higher lift coefficients as compared to theairfoil with the a = 1.0 loading, and also the cloptIs greater in almost every. ln~tance. The section pitchin~

—-

Page 7: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

6

moment ooeffioient, .as is expected, Is greater (more nega-tive) for the airfoil with the a =. 1.0 lo~ding, “

With regard. to rloughn~ss, ai~folls with a = 1.0appear to be more oontaervative than airfoils with a < 3*00!Che charts of the airfoils with roughne66 (flgsp 8 to 11)show tlkt the a = 1,0 airfoll~ havo higher values ofcl an-d lower values of Od throughout the al-range

maxthan the a < l.O airfoils,

..

Oom~arison of measured values and theoretical mean-line values are shown 86 an aid in predicting airfoil.seotlo~ characteristics from mean+llne ~.ta based on “thin- “airfoil theory. Beaause thin-airfoil theory does not takeInto account ‘alrfotl-thiakness and boundary-layer con~id~r-Stlo”na, .meav-line. data and .meaeured results might be 6x-poctod to. diverge considerably, A compari60u of moaeuredvalues acd theoretical man-line values (figc. 12.150 15.)‘ .shows that, for tha a < l*G airfoils, the theorettoalangles of zero lift and the theoretical pitahing-mbmentooeffleients are In fair agreement with *hoOe measured:,the measured desi~n section lift ooeffioientfj, however, areusuall,v higher than the theoretical values ks indicated inthe”airfoll designation mumbers. Although, for the airfoilswith a = lmO, the theoretical.and measured design lift co-efficients are in fair agreement, thq measured angles ofzero lift and the measured pitching-moment coefficients aroconsiderably less than t~ose indicated by theory. The de-viation of values of measured pitching-moment coeffici~ntfrom the theoretical values results because In Gxperimanta uniform load was not naintalned over the airfoil to thetrailing adge. This fact Buggosts that a reducing ‘factormight ba applied In order that tho thoorotical values ofpitching-moment coafficlant might conform ~ore closely totho measured values.

.

. Ifith increasing airfoil thickness, thoro Is an acco=panylng Inorease In soctlon design lift and seotlon pitchin~moment coeffi.oient. (See fig. 15. ) Although thin-kirfoiltheory obviousl~ gives no evidence of th16. increase, it Isapparent from integrated theoretical pressure-distributioncalculations and is substantiated by test results.

00NCLUSIOE,

.

.“ The general affecte of variation In the type of maanline on the seotion characteristics of several representa- “

—..— . .

Page 8: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

7

tive low-drag airfoils are shown.. Zhe aonelatenay of

. ,,rseults I,ndicatea that these general trends are aultable ofor uae in the seloatlori of-mean lines f?or applloatton toairfoils for wttioh teat reaulta are not available?

Langley Memo~lal Aeronautical Labbrstory,l?at~onal Advlwory Ooaumlttee for A.eroaautias,

Langley Field. Pa.

1. Jacoba, Eaatman ~., Abbott, $ra E,, and Davidaon,Mlltons Preliminary Zow-Pra#irfoll and ~lapData from Tests at Large Reynolds Humbera.and LowTurbulence, and Supplement. NACA A.C.R., March1942.

2. Jaooba, Eaatman H., Abbott, Ira H., and Davidson,Mtlton: Invoatigation of ~xtreme Leadin@dgeEoughneSa on Thiok Low-Drag Airfoils to Indicatethose Oritlcal to Separation. XACA CP3$, June 1942.

3. Jaooba, E. M., and Abbott, I. H.: Angles of zeroLift for Some HACA Low-Drag Airfoils. HACACJ3.,Teb. 1942.

4. Theodoraen, T., and Garrlokp I. 3,; General Potential “Theory of Arbitrary Wing Sections. Eep, No. 452, INACA, 1933.

Page 9: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

2.8

2.4

2.0

6.3,f-420,a=’LO/.6 \\

d \

$“,2“% “ \g t r

1\

5 .8 rQ /“*

.& .4~/

j~

o

-.4Airhils:NACA#,4420

-.8 )‘ .R:9x I06Chod: 24in.Tesfs:Z?T 24/,402

.4‘ 408,421,und42dI I i I I I I 1 1 I

““2 -16 -8 01 I I

/6 24Sectionungk of o%ck, ~, u’eg

-J.2 -.8 -.4 0 .4 .8 k2 1.6 20Sec+im /if+ coeffikkwt, ct.

Figure 1.- Section characteristics of two NACA63,4-420 airfoils.●

+

Page 10: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

>

,032

/ ~— — —

\ \.028— — — — — —- .— -- v

1/ -

-1.2- -A -.4 0 4 .8 L2 1.6 2.0Sedim Ii#coeffkientc1

Fipyre 2.- Section characteristics of two NACA652-415 airfoils.

I

Page 11: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

2.8

2.4

2.0‘

65.3-4 /8,a= /.0/.6 T \

(7

j’,2

:$ “ +’ \#4 I

k \U~ .8

65,,-4/8,a= 0.5

% /\.

g .4 f* /u 1‘u% -0 b’

-.4Airfoils: NACA653-4/8

\

-.&R:9XI06

d Chord:24 in.Teds: TDT 3/4, 320,

406 und411

‘/”2 -/6 -8 01 [

8 /6 24Sec+ion angle of utiack, a., iieg

.032.__.,. .— _-

.028

,

(f/

Figure 3.- Section characteristics of two NACA653-418 airfoils. w

Page 12: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

Seciim lift coeffiutit. c1%1_l-J.09

Figure 4.-” Section characteristics of two NACA654-421 airfoils.0

IP

Page 13: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

Secfbn angle of o+tuck, do, deg

+-H-H-F+

) -.8 -.4 0 .4 .8 /.2 “/.6 2.0Sectiw lift coefficient cl

w.m

Figure 5.- Section characteristics of two NACA65,3-418 airfoils. m

Page 14: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

28

2.4

2065 3;618 a=LO

t‘1

1.6 / / ‘%+ ,_! ,+’ ‘+\

c YY) ~

$ /.2:Qtwg .8 /)4

t*

g .4~

$

0 ‘

i#

-.4 ~ /I+

A)+fai’s: NAOl 653-&’8_

+/ and 65J -6/8

-.8R: 9x/OeChar-a! 24 IFI.Tes+s: TDT 19522240Z.

and 420-1.2 1 1 I I 1 1

-/6 -8 0 8 16 24Sec+im anqle of u++ock, d, deg

Figure 6.- Section characters653-618, a = 0.5 ai

t

r

.03?

-/.2 -.8 -.4 0 .4 8 /.2 /.6 2.0Sec+ion Iif+ coefflcknt, c1

ics of an NACA65,3-618, a = 1.0 and an NACAfoil. m

Page 15: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

_-

2.8

2.4 ‘

2,0 r

66, 2-2 ’16, a= /.0/.6

c\

~-,2\\

\:G “

b

st)~ .8.

k;.

$ .42u$0

I

-.4 Ly

I Airfoi/s: IVACA66,2-216 _

-.8 }{ .R:9x I06Chord: 24in. “Tesfs: TDT 2/5,247,

4 and 249-/.2~4LJ

O 8 16 24Sec+ionongleof ffffock, aj, deg Secfion lift coefffcien~ ~ “-- “--

Figure 7.- Section characteristics of two NACA66,2-216 airfoils.

Page 16: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

NACA Figs. 8,s

Figure 9.- Lift and-drag characteristics of two NACA 653-418 air-foilswith a standard roughness applied to the leading edges.

Page 17: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

.

ITACA Figs . 10,11

2.0 ,&o

[

6S4 -421,a =/. O1.6 ~+.. .040- /

‘. J‘. ‘. ~— x%. . /“”” 7 r

‘.\, ;>.~

‘y Jd

/

~.I.2*’X, D

$ .Cm ,

i

/ Y/ ~- ~,, Q)\\/

\s. .

z / /k

+

j8 / I

L

2 , ., 654-421, a = c25.< /8

,f

.= 4 N %. -b & ‘> ‘04 I

4“ J.010 ~ m

// ‘Wx-E -_~ X-Xq

o +/

o-4irfof7s: 654+21

1~ R: 6 x foeChcmd: 24 in.Test: TOT 3/6 M 434

-.4-8 0 8. f6 24 -.4 0 .4 .8 1.2 i.6Section anqle of ottock,~, O@ S= fionItft coefftinf. cz

Figure 10.- Lift and drag characteristics of two NACA 654-421 airfoi-lswith a standard roughness applied to the leading edge~.

r

2.0 .050

i~v

x66,3618, a =1.01:8 r Smooth.. I /

l?oL@, . . . . /$, >& s

G ‘. ;? / I /

i‘. x?’./

“;/2 f /

I~ /

/f x

ic cc .$

‘8~“ /

~.a?o“, +-‘,,653-6M a = 0.5 w /

j/?oq?h x

/

+\

_ & /

.4 .010- x

%x-

- x-x a

x x- — /

0A/rfods:85,3-6B and

653- 6/8- R: 6xIOE

*’ ChordZWin.Tes+:1950nd 407

-.4-8 0 8 16 24 -.4 0 .4 .8 1.2 1.6

S~tim angle of otfock$ a& deg Sec+iOn lift coeff!ciknt. c1

Figure 11.- Lift and dra~ characteristics of an NACA 65,3-618, a = 1.0 and an NACA653-6U3, a = 0.5 airfOil with a standard roughness applied to the leading edge.

Page 18: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

-8

~-7

*

$’-6

[

:-50qm+8 654-42/,u =0.5-;g — 652-4/5, a =0.51~ t I 1 [ I

$-3653 -4/8, u=, O.5:: “653-6/6 u =0.5

,‘. ~------~65)3-418,‘u=0.8

8 654-421,u=1.O-—‘;>’.~65~-415,u= 1.0b

>..-?-~ ?,,“;’653-418,U=i.0-—>

:‘~,:6%3-418,u= l.O__

, , “63,4-420,u=1.0i 6~4-420,u =0.3-

‘...‘--6G2-216ju= 1.0..66,2-2/6,u= 0.6-

0 -1 -2 -3 -4 -5 -6 -7 o7heoreiiml seqtion angle of zem /ift for 7%e

owfoil meon line, deg

I I, I r 1

I /1 I IW+t+--t+--l=””’’’‘ ‘/

654- +21, u = O./j., “.

65,3- 4/8,u -0.8--.:;

r-

./ .2 .3 .4 .5 .6, .7 .87heorefico/ section design W coefficid tbr +he

uirfoi/ meon line, Cli

Figure 12. - Comparison of theoretical Figure 13. - Comparison of theoretical ~and measured section and measured section design ~

angles of zero lift for some NACA lift coefficients for some NACAlow-drag airfoils. low-drag airfoils.

+N“+w

Page 19: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

.6

~ -.18.$ #4 --- ---- ---- --= ---- -— ---------- --- ---0 “\-+s.

‘t&/6 Cl!

,0.b Curve{ <c Source

UL.2 —— — Meosun?d – “ “Ex@erimnfol test dm% —

L -./4$$ II ‘ Meun I/he Mean hne from fhi~1 1

J

airfoi/ +heory I 1

0 - --- -!--- i-Pressure Jnfegrdd fheorei&ol_& dkfrlbuiio~ pressure didrihuhon

.+. -. /2 -. /2 ~ S= (v/V *Au/V);1

v Theodorsen cu/cuA7fion8%

-. /0 653-618, 0 = 0.5---? <+-------------------------------------------m..$ -.10“

*,65,3-418, u= /.0 -) =/. o.2Q 654-42/, u’=0.’5--7 ‘---w /

& -.W —653 -4/8,o =0.5,:2

$Q-.06$ 634-4Za 0= 0.3

/“

c b%u -.04 ‘~ X 654 -&/, O= /.0

8$-.02

A 653-41.8$ u= 0.5

0 -.02 -.04 -.06 708 7/0 -./2 714Theoretic/ momen+ coefficied for +he uirfoi/ Airfoil fhickness, t/c

mean line obou+ quorfer- chord poin+

Figure 14. - Comparison of theoretical Figure 15. - Variation of moment coeffi -and measured moment cient cmc/4 and section lift

coefficients for some NACAlow-drag coefficient CL with airfoil thicknessairfoils. for some NACAlow-drag airfoils.

9

6$●

K.t--0

I

I

Page 20: WAlr’nm EIIPOIM’ - NASA · a. slope of section lift curve, per d.egreo.. cl . optimum lift coefficient, & 09ctlon lift coef-Opt ficiemt selected as middle of lo~-drag ra~ge C;=x

~lllfit3117601403585