Spanwise Distribution of Lift for Min Induced Drag

Embed Size (px)

Citation preview

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    1/16

    TECHNICAL NOTE

    2249

    THE SPANWISE DISTRIBUTION OF LIFT FOR MINIMUM

    INDUCED DRAG OF

    WINGS

    HAVING

    A

    GIVEN LIFT AND

    A

    GIVEN BENDINGMOMENT

    Robert T. Jones

    Ames Aeronautical Laboratory

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    2/16

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    3/16

    NATIONAL

    ADVISORY COMMITTEE FOR AERONAUTICS

    TECHNICAL NOTE

    49

    THE SPANWISE DISTRIBUTION

    OF LIFT

    FOR

    MINIMUM

    INDUCED

    DRAG

    OF

    WINGS

    HAVING A

    GIVEN LIFT AND

    A

    GIVEN

    BENDING MOMENT

    By Robert T. Jones

    SUMMARY

    The problem of th e minimup induced dra g of w ings having a given l i f t

    and a given span i s extended to inc lude

    cases

    i n which t h e ben ding moment

    t o be supported by t he wing i s also g iven . A s i n t he c l a ss i cd l p roblem

    of induced drag, th e theory i s l i m it e d t o l i f t i n g s u r fa c es t r a ve l in g a t

    subsonic speeds.

    t r ib ut io n can be obtained i n an elementary way which i s app l i cab le t o a

    v a ri e ty of such problems.

    responding spanwise load distribut ions are a l so g iven fo r t he case in

    which th e l i f t and t h e bending moment about th e wing roo t are f ixed w hi le

    the span i s al lowed t o vary.

    the induced drag with a 15-percent incr ease i n span as compared with

    re su l t s fo r an e l l i p t i c a l ly l oaded wing hav ing the

    s a m e

    t o t a l l i f t and

    bending moment.

    It

    i s found th a t t he r equ ired shape of th e downwash di s-

    Expre ssions f o r th e minimum drag and t h e cor-

    The results show

    a

    15-percent redu ction of

    INTRODUCTION

    I n t h e problem of minimum induced dr ag

    as

    or ig in al ly t r ea te d by Munk

    (references 1 and 2) t h e s pan of t h e wing and t h e t o t a l l i f t w e r e supposed

    t o be g iv en and t h e d i s t r i b u t i o n of l i f t o ve r t h e sp an r e s u l t i n g i n

    a

    min-

    innun of

    drag

    wa s

    sought . The so lu t io n of t h i s problem thus provided

    a

    convenient lower bound for the induced drag of a wing of g iven dimensions.

    In t h e p r a c t i c a l d e s i g n of wings the requirements for low induced

    drag and the requi remen ts fo r s t ru c t u r a l s t reng th are opposed.

    bending moment developed by th e l i f t becomes an imp ortant conside ra-

    H e r e

    t h e

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    4/16

    NACA TN

    2249

    A

    complete

    l i s t

    of symbols employed i n t he a na ly s i s

    w i l l

    be found in

    the appendix.

    GENERAL FORMULAS FOR LIFT,

    DRAG, AND BENDING MOMENT

    Reference may b e made t o t h e o r i g i n a l papers of P ra n dt l and Munk

    ( r e f e r ences

    1

    and

    2 ) ,

    o r t o any of th e s tandard te x t books on aerodynamics ,

    f o r t h e fundamental developments of wing theory which form t h e b a s i s f o r

    the c a l c u la t io ns of i nduced d rag .

    i s

    given by

    I n t h e s e d ev elo pm en ts t h e o v e r -a l l l i f t

    S

    r d y

    1)

    J S

    and th e drag

    i s

    given by

    S

    wi

    r dy

    In the se formulas th e wing span

    i s

    supposed t o ex tend a long th e y ax i s

    between - s and + s ,

    r

    i s

    t h e l o c a l c i r c u l a t i o n o r v o r t e x ' s t re n g t h , and

    V

    i s th e consta nt ve lo c i ty of f l ig h t . The induced downwash ve lo c i ty

    w i

    i s

    var iable a long the span and

    i s

    c on ne ct ed w i t h t h e v o r t e x d i s t r i b u t i o n

    l

    (y)

    t hro ug h t h e r e l a t i o n

    With t h i s v a l u e f o r

    W i

    a

    d ou bl e i n t e g r a l i n vo lv in g t h e s pan wise d i s t r i b u t i o n of l i f t

    as

    repre-

    s e n te d by t h e c i r c u l a t i o n s t r e n g t h

    th e express ion fo r t h e drag may be conver ted

    t o

    I

    This i n te g ra l may be reduced t o a more symmetric fo rm i f

    i t

    i s i n t e g r a t e d

    by p a r t s on t h e s u p p o s it i o n t h a t

    I'

    f a l l s t o zero

    a t

    t h e wing t i p s .

    Thus1

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    5/16

    NACA

    TN 49

    I n mathemat ica l

    terms the problem

    i s

    t o m in im iz e t h e d o ub le i n t e g r a l ,

    equa t ion (5), whi le ho ld ing f ixe d va lue s o f

    L = pV

    lS+ dy

    and

    where

    B i s

    th e bending moment sp ec i f ie d about th e po int s o . For the

    t i m e being

    although

    l a t e r

    another example w i l l appear.

    s o

    w i l l

    be taken as t h e o r i g i n , o r wing r o o t s o =

    0),

    Although t h e de r i va t i on of t h e formulas f o r induced drag lfiakes use

    of

    t h e c on ce pt o f t h e l i f t i n g l i n e , i t is i m po rt an t t o n o t e that t h e r e s u l t s

    are n ot a c t u a l ly r e s t r i c t e d t o

    t h i s appr ox ima tion .

    well-known sta gg er theorem th e induced drag of

    a

    l i f t i n g s ur fa ce

    w i l l

    b e

    e q ua l t o t h a t of

    a

    l i f t i n g l i n e i f t h e spanw ise l oa d d i s t r i b u t i o n s are

    t h e same.

    According t o Munk's

    It should be noted fur ther tha t the induced drag of

    a

    wing having

    a

    g iv en l i f t a nd

    a

    given spanwise load d i s t r i bu t i on i s n o t a f f e c t e d by t h e

    compr ess ib i l i t y o f t he

    a i r

    a t

    subsonic speeds.

    a d d i t i o n a l d r a g a s s o c i a t e d w i t h t h e f or m at io n o f waves

    arises

    and the

    induced drag, which

    i s

    as so ci at ed with th e vo r t ex wake, becomes only

    a

    p a r t o f t h e t o t a l p r e s s u r e d ra g.

    A t

    supersonic speeds an

    THE

    DISTRIBUTION

    OF DOWNWASH FOR MINIMUM DRAG

    I n g e ne r al , i f t h e dr a g

    i s

    t o b e

    a

    minimum,

    a

    s m a l l

    v a r i a t i o n i n t h e

    shape of th e curve of spanwise loading

    w i l l

    produce no f i r s t -o rd er change

    i n t h e d ra g.

    t o t h e o r i g i n a l l o ad in g ; i t i s t hen necessa ry t o f i nd cond i t ions unde r

    which t h e drag added by

    a

    s m a l l a d d i t i o n a l l o a d i n g i s zero.

    The var ia t i on i n shape may t ak e t h e form of

    a small

    add i t ion

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    6/16

    NACA TN 2249

    Consider now an i n i t i a l di st r i bu ti on designed t o achieve minimum

    drag. (See f i g . 1.)

    The

    drag added by

    a

    s m a l l

    addi t iona l loading

    w i l l

    be composed of three parts,

    namely:

    1.

    2.

    3.

    The drag of the addi t iona l l i f t ac t in g a lone

    The drag of th e o ri gi na l loading ar i si n g from th e downwash

    'J e

    drag of the additional loading induced by the downwash field

    f i e l d o f t he add i t i ona l loadi ng

    of the or i g in a l load ing

    I t e m

    1

    s of second ord er in terms of th e magnitude of t he added l i f t f or

    smooth dis t r ib ut i ons , th at i s , so-called weak va ria tio ns. (The fa c t

    that this second-order

    t e r m is

    invar iab ly pos i t i ve insures th a t the drag

    w i l l be a minimum and not a maximum.)

    mutual drag theorem.

    The

    f ir s t- or de r va ria t io n i n drag can then be com-

    puted by consid ering only the drag of th e small a d di ti on a l l i f t a c ti n g

    i n

    the induced downwash f i e l d wi(y) of the or ig in al l i f t .

    Items 2 and 3 are equal by th e

    The condit ions of f ixed bending moment and f ixed t o t a l ' l i f t

    are

    m e t

    by al lowing only those curves of l i f t var i at i on th at produce no change i n

    t hese quan t i t i e s , t ha t

    i s ,

    curves having zero area and zero moment. It

    can be seen th at such curves of va ri at io n must have a t l e a s t t h r ee ele-

    ments to m e e t the condi t ions of zero area and ze ro moment. Furthermore ,

    any curve meeting t hes e condit io ns can be subdivided in to groups of th re e

    elements

    s o

    tha t the ind iv idua l g roups a l so sa t i s f y the condi tions.

    Hence,

    as

    the r epresen ta t ive of such re s t r i c te d curves of v ar ia t io n

    w e

    may adopt three small elements having areas

    21,

    22, and

    Z3

    ( f i g . 1 ) .

    These

    elements, toge ther with t h e ir po sit i ons yl , y2, and y3 and th e

    l o c a l val ue s of t h e downwash

    w -

    etc.,

    due to the or ig ina l load ing

    must sa t i s f y the fol lowing thre e equations :

    1

    ,

    o r

    6L

    =

    0,

    l

    + +

    Z3 = 0

    f o r

    f o r

    6B

    = 0,

    6 D i =

    0,

    Z l Y l Z2Y2 Z3Y3 =

    Zlwil

    +

    Z2wi2

    +

    Z 3w i 3

    =

    0

    I t can be seen that these equat ions

    w i l l

    be cons i s ten t

    if

    w

    a+by2 and wi3 a+by3, where

    a

    and b are cons tan t s t o be

    w i l a+byl,

    52

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    7/16

    NACA

    TN

    2249

    Hence, for a minimum induced drag with a giv en t o t a l l i f t and

    a

    given

    bending moment t h e dowzlwash must show

    a

    l in ea r var ia t ion a long the span .2

    (See f ig . 2.)

    The for egoin g method may be r'eadily extended t o a more general class

    of problems inv olvin g bending moments or ro ll in g

    moments.

    Suppose, for

    example,

    a

    braced wing

    i s

    considered,

    as

    i n t he do tt ed ou t l i n e of f i g -

    u r e

    3.

    I n t h i s

    case

    th e bending moment developed by t h a t po rt io n of th e

    l i f t a c t i n g i nb oa rd

    of

    the point of bracing attachment may be of no con-

    cern, but

    it

    may be des ire d t o l i m i t the bending moment developed by that

    porti on of th e spanwise load curve extending between t h i s point and the

    t i p. I n t h i s case so w i l l not be zero. A t

    least

    three elements

    are

    required t o preserve st at io na ry values of the l i f t and bending moment,

    and

    it

    i s

    evident

    that

    a t least two

    of t h e elemen ts must

    l i e

    t o t h e ri g h t

    of the point

    sQ.

    The th re e s imul taneous equat ions

    are

    (see f i g . 2):

    Here y2 and y3 are t o t h e r i g h t of the po in t

    so

    and y1 l i e s t o t h e

    l e f t o f th i s po in t. For these equa t ions3 t o be cons i s ten t wi must have

    the form

    yil

    a;

    wi

    a+b(y2-s0);

    wi3

    a+b(yg-s0)

    2

    Hence, i n gen er al , t h e downwash w i l l be

    a

    constant over the portio n of t he

    span f o r which t he moment

    i s

    not spec i f i ed ,

    as

    i l l u s t r a t e d i n f ig u r e

    3.

    I f no res t r ic t i on whatever i s plac ed on th e moment th e r e i s obtained the

    so lu ti on of Munk's o r i g i n a l problem, namely, t h a t th e downwash should be

    cons tant over the en t i re span.

    21t

    may be noticed a t t h i s poi nt th at , whereas th e discussion has empha-

    size d th e id ea of minimizing t he drag, the a na ly si s ac tu al ly makes no

    di s t i nc t io n between the l i f t , bending moment, or drag, i n th at s ta t io n-

    ary values of a l l t h r ee a re demanded.

    Thus

    equation

    (9)

    may be consid-

    ered a necessary condit ion f o r th e solu tio n of th e following problems:

    1)

    g iven t he t o t a l l i f t and t he induced d rag t o f i nd t he d i s t r i bu t i on

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    8/16

    NACA TN 2249

    Determination of Span Loading and Induced

    Drag From t h e Downwash D i s t r i b u t i o n

    The case of b i l a t e r a l symmetry with moment sp ec if ie d about t he

    r o o t s e c t i o n w i l l serve as an example of t h e c a l c u l a t i o n o f t h e a c t u a l

    span load ing and induced drag.

    th a t th e downwash d i s t r ib u t io n w i l l c o n s i s t of t w o s t r a i g h t - l i n e

    segments w it h

    a

    reversal of s lope a t t h e pl ane of symmetry.

    necessary t o compute t he spanwise var ia t i on of

    T

    corresponding t o

    such a curve of downwash.

    It w i l l be evident f rom the foregoing

    It

    i s then

    o

    per fo rm t h i s ca lc u l a t io n by s tandard methods o f a i r f o i l theory ,

    use i s made of th e idea th a t

    a t a

    gre a t d i s ta nce beh ind the wing t he

    vor tex sheet forms

    a

    two-dimensional f i e l d of motion, with t h e discon-

    t i n u i t y i n t h e l a t e r a l ve lo c i t y ac ros s th e shee t g iven by and

    t h e downwash

    w

    given by

    t w i c e

    t h e va lu e of t h e induced downwash

    wi

    a t

    th e wing. Hence, t h e qu an ti ty 1 / 2 (dI'/dy)

    -

    2iwi can be eval uate d

    by means of th e fam il ia r complex ve lo ci ty fun ct io n

    v

    - i w of t h e two-

    d imens iona l po te n t i a l theory using f o r

    vor tex shee t .

    i s

    g iv en a lo ng t h e l i n e r e p r e s e n t i n g t h e

    t race

    of th e span, then the

    v e l o c i t y v e c t o r a t any o t he r p o i nt i n t h e f i e l d

    obta ined f rom th e re la t i on ( reference 4)

    dr/dy,

    v

    i t s va lue ju s t abbve th e

    I n t h i s t h eo r y i f t h e v e r t i c a l c omponent of v e l o c i t y

    w

    =

    y

    +

    i z may be

    A s noted above,

    - -r -

    v(y + o i l

    -

    v(y - o i )

    =

    2vfy + o i l

    dY

    Introducing

    w =

    a + b y f o r y

    > 0

    and

    w = a

    - by fo r y

    < 0

    i n t o

    equat ion 11) y i e l d s, a f t e r i n t e g ra t i o n ,

    and hence

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    9/16

    NACA

    TN 2249

    Equation

    (13)

    fo r th e spanwise d i s t r ib u t io n of c i r cu la t ion enables

    th e determination of t he over-all l i f t , bending moment, and drag i n

    t e r m s

    of t he unassigned co nstan ts

    a

    and

    b.

    The us e of equation s (2),

    6 ) ,

    and (7),

    tog eth er wit h t h e wing semispan

    s,

    yields the fol lowing values :

    B

    =

    0 V s 3 f 6 a + I b s )

    \

    a

    b

    Di

    =

    V L + V B

    It

    i s

    convenient to sp ecify th e bending moment of th e l i f t i n t e r m s of

    the l a t e r a l posi t ion of the centroid, or cente r of pressure, of the load

    curve. The

    l a t e r a l

    cent ro id

    as

    a fr ac ti on of th e semispan

    s

    may be

    denoted by

    y

    ( i . e . , y ' = 2B/Ls). Then, sol vin g f o r

    a

    and b,

    The expression for induced drag

    i n terms

    of t he l i f t and t he

    l a t e r a l

    center of pressure becomes

    This equation y ie ld s th e minimum drag fo r th e given po sit i on of

    the l a t e ra l cen t e r of pressure i s spec i f i ed so as t o co inc ide wi th tha t

    f o r an e l l i p t i ca l l oad i ng

    ( i .e . ,

    b

    =

    ;

    '

    =

    4/33), then the above

    formula reduces to

    y ' .

    I f

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    10/16

    NACA

    TN 2249

    Drag for

    a

    Given Bending Moment with Unrestricted Span

    The foregoing calculations show,

    as w a s

    to be expected , th a t the

    However,

    i f t h e r e s t r i c t i o n on

    the

    span

    i s

    removed,

    e l l i p t i c l oa din g y i e ld s a

    smaller

    drag than any of th e oth er s within a

    r es t r i c ted span .

    s t i l l lower valu es of th e induced drag can be obtain ed without any

    in cr ea se i n th e bending moment a t th e wing roo t.

    obtained by permitt ing the span to increase and

    a t

    t h e

    s a m e t i m e

    adopt-

    ing a more tapere d form of t h e load ing curve.

    The

    lower values

    are

    Equation (16) which contains the th ree var ia ble s l i f t , span, and

    cente r of pressure can be e as i l y rearranged t o show the var i at io n of

    drag with span when th e bending moment and t h e l i f t

    are

    held a t f ixed

    val ues. I n t h i s

    case, t he

    l a t e r a l

    pos i t ion of t he cen ter

    o f

    pressure

    y ' s w i l l be f ixe d, while t he form and exte nt s of t he load curve w i l l

    vary. In order t o provide

    a

    convenient basis for comparison the span

    and shape of th e load curv es w i l l be r e l a t e d t o t h e e l l i p t i c lo ad in g.

    I f

    S/Se denotes the

    r a & h

    of th e semispan of th e wing t o

    that

    of

    an

    e l l ip t i c a l l y loaded wing having the s am e t o t a l l i f t and bending moment,

    then equation (16) can be rewrit ten:

    The quant i t y i n the bracket

    i s

    the ra t i o of th e induced drag to that of

    the corresponding el l i p t i c a l l y loaded wing.

    f i gu r e 4 t o show th e decrease of drag po ssib le by in crea se of the span.

    The forms of load curv e requ ir ed f o r t h e minimum dra g a t var ious values

    of

    s/se

    are shown i n f ig ur e

    5 .

    T hi s r a t i o i s p l o tt e d i n

    It w i l l

    be noted t ha t

    a

    15-percent redu ction of t he induced drag

    below tha t fo r e l l i p t i c load ing can be achieved wi th a 15-percent

    incre ase i n span.

    50 percent

    s =

    1.15 t o 1.50) yi el d no sig ni f ic an t reductions, however.

    A t s t i l l

    l a rg er va lues of

    s

    a t

    an i n f i n i t e va l ue o f s. For extreme values of

    s /se

    the curves begin

    to show negative loadings a t the tips and eventually the bending moment

    a t ce r ta in po in t s a long th e span

    w i l l

    exceed that

    a t

    th e wing ro ot.

    Further increases of span between

    15

    percent and

    th e drag becomes lower, and approaches ze ro

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    11/16

    NACA

    TN

    2249

    L

    2

    i

    B

    P

    r

    wi

    W

    V

    V

    Y,rl

    6

    S

    Y

    a,b

    APPENDIX

    DEFINITIONS OF SYMBOLS

    t o t a l l i f t

    element of l i f t

    induced drag

    bending moment

    a i r

    dens i ty

    c i r c u la t io n

    induced downwash velocity a t wing

    downwash velocity,

    a t

    i n f i n i t y

    l a t e ra l v e l o c i t y

    v e lo c i ty of f l i g h t

    distances along wing semispan

    point

    of

    orggin

    f o r

    bending moment

    length of wing semispan

    l a t e ra l pos i t ion

    of

    load centroid

    as

    a f r a c t i o n of

    constants

    w -

    2wi)

    s

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    12/16

    NACA

    TN

    2249

    REFERENCES

    1. Munk,

    Max M :

    The Minimum Induced Drag

    of

    Aerofoi l s .

    NACA

    Rep.

    121,

    1921.

    2. Prandtl,

    L. :

    Applications of Modern Hydrodynamics to Aeronautics.

    NACA

    Rep. 116, 1921.

    3.

    Bocher,

    M a x im e :

    Introduc tion to Higher Algebra.

    The MacMillan

    e o . ,

    N . Y . 1 9 0 7 p. 49.

    4 . Munk, Max M : Elements o f the Wing S ec ti on Theory and o f the Wing

    Theory. NACA Rep. 191, 1924.

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    13/16

    NACA TN 2249

    FiGURE 1

    SPANWISE LOAD

    ELEMENTS OF VARIATION

    -=T &7

    CURVE WITH

    THREE

    a

    by

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    14/16

    N

    A

    C

    A

    N

    1

    z

    M

    3

    d

    L

    n

    W

    I

    W

    I

    5

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    15/16

    N

    T

    5

    5

    3

  • 7/24/2019 Spanwise Distribution of Lift for Min Induced Drag

    16/16

    5