VoLTE Calculation

Embed Size (px)

Citation preview

  • 8/11/2019 VoLTE Calculation

    1/7

    2014-06-12 HUAWEI Confidential Page1, Total7

    How Big is VoLTE Voice Call?

    Global Challenges

    The third generation mobile telecommunication technologies and the

    increasing popularity of Smartphone have greatly driven user demand for

    mobile broadband services. Explosive growth of data traffic and the cha llenge

    of increasing network capacity force mobile carriers to upgrade their networks

    and increase the network transmission rate. The LTE technology is the best

    option for all the operators across the globe.

    In the LTE era, the time has come for mobile operators to move to voice over

    LTE (VoLTE). Globally, voice is still the major revenue source for the

    telecommunications industry, and will probably still be when LTE goes

    mainstream. However, basic voice may not be enough to remain relevant in an

    LTE environment, because subscriber communication is shifting from plain

    voice to rich & quality voice.

    So, What is VoLTE? and how does the VoLTE will impact operators network

    when it comes to us, here we will have a deep dive into the VoLTE voice callsand to discover the possibilities of the VoLTE, both to benefits Huawei &

    Operators.

    VoLTE Architectures

    Before we starts, lets have a look into the complete network architectures

    proposed by 3GPP on this VoLTE, which is to replace the CSFB currently,

    thats experiencing delay, long latency, and also no significant voice quality

    improvements compare to legacy 2G/3G CS calls.

    Below is the complete network architecture of VoLTE interworking between

    EUTRAN, EPC, CS Domain, PS Domain & IMS network.

  • 8/11/2019 VoLTE Calculation

    2/7

    2014-06-12 HUAWEI Confidential Page2, Total7

    Huawei VoLTE network consists of the operation support layer, service layer,

    core layer, access layer, and terminal layer. In the LTE or 2G/3G networks,

    subscribers can use CSFB, Single Radio, and Dual Radio terminals to access

    the VoLTE network.

    Huawei VoLTE solution builds IMS and LTE on a live CS domain to provide

    E2E quality of service (QoS) guarantee, high-quality voice and video calls, and

    rich data services. With this solution, carriers can evolve their 2G/3G networks

    to LTE networks to extend their business from offering voice-only to

    multimedia-rich voice. Subscribers can use various LTE terminals such as

    CSFB, Single Radio, and Dual Radio terminals to access an LTE network or

    2G/3G network. When subscribers move out of LTE coverage, the LTE

    network smoothly hands over calls to a 2G/3G network. Centralized service

    provisioning, network management, and charging are available in the VoLTE

    architecture.

  • 8/11/2019 VoLTE Calculation

    3/7

    2014-06-12 HUAWEI Confidential Page3, Total7

    VoLTE (Voice over LTE) wi ll be a reality soon, as operators around the world

    are completing their field tests and prepare to roll out voice and otherIMS-based services to the eagerly awaiting public and to gain the leading

    position in their respective countries in order to win the market shares.

    Actually, in real life, the public probably doesnt care about VoLTE. All they

    want is good quality, high definition HD voice calls to complement their

    high-speed wireless data services. VoLTE is positioned to deliver the goods,

    but how does it compare with other wireless voice solutions such as 2G/3G CS

    calls? We can answer that question in a few manners, but lets start with

    something easy, which is [how many VoLTE calls can an LTE cell support?]

    VoLTE Packet Size

    As it turns out, that question doesnt have a simple answer. It depends on a lot

    of variables, including the voice coder choices, the RF conditions in the cell,

    the Huawei eNBs scheduler algorithm, the 3GPP protocol releases options,

    and so on. To keep this discussion at manageable levels, lets concentrate on

    one particular aspect of VoLTE capacity: how many Physical Resource Blocks

    (PRBs) are needed to deliver the traffic for one VoLTE call over a typical LTE

    Uu air interface?

    Lets assume for the moment that the operator has deployed channel

    bandwidth of 10 MHz LTE radio channels(Which is most operators are

    deploying their LTE services at phase 1 stage). This is fairly typical to provides

    50 PRBs per millisecond on the downlink (somehow it will be lesser than 50

    PRBs resources on the uplink, due to the PUCCH configuration & limitations).

    Lets further presume that VoLTE is configured to use the Adaptive Multi-Rate

    Wideband (AMR-WB) 12.65 coder, and that Robust Header Compression

    (RoHC) is enabled over the air interface which to reduce the overheadconsumption over the LTE air interface.

    Huawei VoLTE scheduling are based on 20ms per Time-Transmission-Interval,

    TTI( Huawei Proprietary), and the AMR-WB 12.65 coder generates 253 bits of

    coded speech every 20 ms (a net data rate of 12.65 kbps). In order to deliver

    each voice services to the UE, additional protocol headers are needed, such

    as an RTP header (typically 12 bytes), a UDP header (8 bytes), and an IPv6

    header (40 bytes). This brings the total packet length up to some 733 bits

    every 20 ms.

  • 8/11/2019 VoLTE Calculation

    4/7

    2014-06-12 HUAWEI Confidential Page4, Total7

    RoHC (Robust Overhead Compression), however, will replace with RTP, UDP

    and IP headers with a much smaller RoHC header before the packet is actually

    transmitted over the air. The length of the RoHC header will vary depending on

    the particular circumstances, but it will average around 3 bytes, or 24 bits. TheRLC and MAC layers will add their own overhead, so the end result is that the

    air interface will have to transport roughly 300 bits of data for every VoLTE

    packet scheduled to one User.

    VoLTE vs. PRBs

    Now we need to relate the above data size back into our LTE Air Interface

    resources. A single PRB has 12 subcarriers and 14 symbols over the course of

    1 ms, or 12 x 14 = 168 resource elements (REs).

    Some of those REs are occupied by the PDCCH (Assuming max 3 symbols

    are used for PDCCH) and the downlink reference signals RS, leaving about

    120 REs per PRB to carry data on the downlink.

    NRB

    DL

    x

    R

    x

    R

    x R

    R x

    x R

    R x

    x

    R

    x

    R x

    x R

    R x

    x R

    R x

    R

    x

    R

    x

    R

    x

    R

    PDSCH

    Symbol

    Mapping

    PDSCH

    Symbols

    Subframe

    Reserved for

    Control

    NSC

    RB

    Subcarriers=

    12

    Physical ResourceBlock

    Resource

    Element

    NSymbDL

  • 8/11/2019 VoLTE Calculation

    5/7

    2014-06-12 HUAWEI Confidential Page5, Total7

    Each RE carries 2, 4 or 6 coded bits, depending on the modulation scheme in

    effect (QPSK, 16QAM or 64QAM, respectively), but some of those bits will be

    data bits, and some will be error protection bits. So how many data bits will fit

    in a single PRB? That depends on the specific RF conditions in the cell whichwill be feedback by the User on the uplink, that will be Channel Quality

    Indicator, CQI table below.

    Lets see what happens under good (CQI = 15), average (CQI = 7) and poor

    (CQI = 1) situations.

    CQI 15 transmissions use 64QAM modulation and a 948/1024 = 0.926

    effective coding rate, which means that each RE holds 6 x 0.926 = 5.55

    data bits on average. A single PRB can then carry 120 x 5.55 = 666data bits, or the equivalent of two VoLTE voice samples. LTE cant

    CQI Index Modulation Code Rate x 1024 Efficiency

    0 out of range

    1 QPSK 78 0.1523

    2 QPSK 120 0.2344

    3 QPSK 193 0.3770

    4 QPSK 308 0.6016

    5 QPSK 449 0.8770

    6 QPSK 602 1.1758

    7 16QAM 378 1.4766

    8 16QAM 490 1.9141

    9 16QAM 616 2.4063

    10 64QAM 466 2.7305

    11 64QAM 567 3.3223

    12 64QAM 666 3.9023

    13 64QAM 772 4.5234

    14 64QAM 873 5.1152

    15 64QAM 948 5.5547

  • 8/11/2019 VoLTE Calculation

    6/7

    2014-06-12 HUAWEI Confidential Page6, Total7

    allocate less than one PRB per user, though, so well count this as one

    PRB per VoLTE call.

    CQI 7 transmissions use 16QAM modulation and a 378/1024 = 0.369

    coding rate, resulting in 4 x 0.369 x 120 = 177 data bits. In other words,two PRBs are needed to carry a single VoLTE voice sample.

    CQI 1 transmissions use QPSK modulation and a 78/1024 = 0.076

    coding rate, supporting 2 x 0.076 x 120 = 18 data bits per PRB. This

    means that a single VoLTE packet requires about 16 PRBs.

    VoLTE by the Numbers

    So how many VoLTE calls can we squeeze into a 10 MHz LTE channel? Voice

    samples are generated every 20 ms, so if everything lines up exactly right (and

    no retransmissions are needed), then twenty VoLTE calls can share the same

    set of PRBs, one after the other. The maximum number of VoLTE calls that

    can be carried is then determined by:

    ((Number of Available PRBs) / (Number of PRBs per VoLTE Call)) x 20

    Here are the results, per CQI:

    Thus, how realistic are these numbers? There are many presumptions built in

    to this calculation, most of which wouldnt hold true out in the real world:

    All users in a cell would not report exactly the same CQI value, and a

    cell where every UE reports CQI value 1 is basically unusable.

    VoLTE packet arrivals would not be perfectly distributed across the 20ms coding intervals.

    Most packets would require at least one HARQ retransmission,

    especially at lower CQI values, which consumes additional PRBs.

    Some capacity needs to be reserved for non-VoLTE (data) subscribers.

    The uplink has a lower capacity than the downlink, in terms of the

    number of PRBs available and the efficiency of the transmissions.

  • 8/11/2019 VoLTE Calculation

    7/7

    2014-06-12 HUAWEI Confidential Page7, Total7

    VoLTE Conclusions

    Nevertheless, this document provides some hints into what the operators can

    expect to see when VoLTE is turned on in the field. Under good RF conditions,LTE can deliver VoLTE packets quickly and efficiently, with enough capacity

    left over for other users. Under poor conditions, LTE will struggle to support

    even a handful of users.

    The reality is that, in general, VoLTE is expected to have a call capacity

    comparable to other wireless voice solutions, like UMTS and CDMA2000 1x,

    on the order of 200 to 300 users per cell under 10MHz bandwidth. The

    challenge for the operators is to manage the end-to-end voice quality, and to

    juggle the conflicting demands of voice and data users.

    Happy reading Folks