9
191 Applied Rheology Volume 13 · Issue 4 Viscoelastic Characterization of Polymer-Modified Asphalt Binders of Pavement Applications Waheed Uddin The University of Mississippi, Carrier 203, University, MS 38677-1848, USA Email: [email protected] Fax: 001.662.915.5523 Received: 20.2.2003, Final version: 20.6.2003 Abstract: Rutting is a primary reason of premature deterioration of asphalt highway pavements. Pavements constructed with polymer and other modifiers are showing improved performance. The virgin asphalt and modified asphalt binders and mixes used on several test sections of the I-55 highway rehabilitation project in northern Missis- sippi are compared. The laboratory creep compliance data for these binders were measured at low temperatures using a modified test procedure adapted for the Bending Beam Rheometer device. Dynamic Shear Rheometer was used at high service temperatures. The creep compliance data of the binder was used as an input to simu- late creep compliance behavior of the mix using a micromechanical model. The field evaluation confirms the relatively poor performance of the virgin asphalt section with respect to rutting, compared to modified binder sections. Zusammenfassung: Fahrrinnenbildung ist ein Hauptgrund für die vorzeitige Alterung von Asphaltbelägen auf Autobahnen. Beläge mit Polymeren und anderen Modifikatoren zeigen eine verbesserte Güte. Der unbehandelte Asphalt und modi- fizierte Zusatzstoffe und Mischungen, welche auf verschiedenen Testabschnitten des Sanierungsprojektes auf der I-55 im Norden Mississippis benutzt wurden, werden verglichen. Die im Labor ermittelten Daten der Kriech- nachgiebigkeit für diese Zusatzstoffe wurden bei niedrigen Temperaturen gemessen, wobei eine modifiziertes Testverfahren benutzt wurde, welches an das Biegebalken Rheometer angepasst ist. Das dynamische Scher- rheometer wurde bei hohen Temperaturen eingesetzt. Die Kriechnachgiebigkeitsdaten der Zusatzstoffe wur- den als Eingabedaten zur Simulation des Kriechnachgiebigkeitsverhaltens der Mischung benutzt, wobei ein mikromechanisches Modell herangezogen wurde. Die Auswertung der Feldstudie belegt die relativ geringe Güte des Primärasphaltes in Bezug auf die Bildung von Fahrrinnen, verglichen mit den Abschnitten, welche mit modi- fiziertem Bindemittel asphaltiert wurden. Résumé: La première cause de détérioration prématurée des revêtements asphaltiques des autoroutes est la formation d’ornières. Les revêtements obtenus avec du polymère et d’autres adjuvants présentent des performances accrues. L’asphalte vierge, l’asphalte modifié avec des liants ainsi que des mélanges utilisés sur plusieurs sec- tions tests de l’autoroute I-55 dans le cadre d’un projet de réhabilitation de cette autoroute du nord du Missis- sipi, ont été comparés. Des données de relaxation en fluage ont été obtenues en laboratoire pour ces mélanges à basses températures, à l’aide d’un rhéomètre de fluage dont le protocole expérimental a du être modifié. Un rhéomètre de cisaillement dynamique a été utilisé pour l’obtention de données à hautes températures. Les don- nées de compliance en fluage obtenues pour l’asphalte modifié avec du liant ont été utilisées comme paramètres dans un modèle micromécanique pour simuler le comportement en fluage du mélange. L’évaluation faite sur le terrain confirme les performances relativement pauvres de l’asphalte vierge comparé à l’asphalte modifié avec du liant, en ce qui concerne la formation d’ornières. Key Words: asphalt, binder, polymer-asphalt, laboratory, pavement, Superpave © Appl. Rheol. 13 (2003) 191-199

Viscoelastic Characterization of Polymer-Modified Asphalt Binders of Pavement Applications

Embed Size (px)

DESCRIPTION

Caracterização Viscoelástica de Polímeros

Citation preview

191Applied RheologyVolume 13 Issue 4Viscoelastic Characterization of Polymer-Modified AsphaltBinders of Pavement ApplicationsWaheed UddinThe University of Mississippi, Carrier 203, University, MS 38677-1848, USAEmail: [email protected]: 001.662.915.5523Received: 20.2.2003, Final version: 20.6.2003Abstract:Rutting is a primary reason of premature deterioration of asphalt highway pavements. Pavements constructedwith polymer and other modifiers are showing improved performance. The virgin asphalt and modified asphaltbinders and mixes used on several test sections of the I-55 highway rehabilitation project in northern Missis-sippi are compared. The laboratory creep compliance data for these binders were measured at low temperaturesusing a modified test procedure adapted for the Bending Beam Rheometer device. Dynamic Shear Rheometerwas used at high service temperatures. The creep compliance data of the binder was used as an input to simu-late creep compliance behavior of the mix using a micromechanical model. The field evaluation confirms therelatively poor performance of the virgin asphalt section with respect to rutting, compared to modified bindersections.Zusammenfassung:Fahrrinnenbildung ist ein Hauptgrund fr die vorzeitige Alterung von Asphaltbelgen auf Autobahnen. Belgemit Polymeren und anderen Modifikatoren zeigen eine verbesserte Gte. Der unbehandelte Asphalt und modi-fizierte Zusatzstoffe und Mischungen, welche auf verschiedenen Testabschnitten des Sanierungsprojektes aufder I-55 im Norden Mississippis benutzt wurden, werden verglichen. Die im Labor ermittelten Daten der Kriech-nachgiebigkeit fr diese Zusatzstoffe wurden bei niedrigen Temperaturen gemessen, wobei eine modifiziertesTestverfahrenbenutztwurde,welchesandasBiegebalkenRheometerangepasstist.DasdynamischeScher-rheometer wurde bei hohen Temperaturen eingesetzt. Die Kriechnachgiebigkeitsdaten der Zusatzstoffe wur-denalsEingabedatenzurSimulationdesKriechnachgiebigkeitsverhaltensderMischungbenutzt,wobeieinmikromechanisches Modell herangezogen wurde. Die Auswertung der Feldstudie belegt die relativ geringe Gtedes Primrasphaltes in Bezug auf die Bildung von Fahrrinnen, verglichen mit den Abschnitten, welche mit modi-fiziertem Bindemittel asphaltiert wurden.Rsum:La premire cause de dtrioration prmature des revtements asphaltiques des autoroutes est la formationdornires.Lesrevtementsobtenusavecdupolymreetdautresadjuvantsprsententdesperformancesaccrues. Lasphalte vierge, lasphalte modifi avec des liants ainsi que des mlanges utiliss sur plusieurs sec-tions tests de lautoroute I-55 dans le cadre dun projet de rhabilitation de cette autoroute du nord du Missis-sipi, ont t compars. Des donnes de relaxation en fluage ont t obtenues en laboratoire pour ces mlanges basses tempratures, laide dun rhomtre de fluage dont le protocole exprimental a du tre modifi. Unrhomtre de cisaillement dynamique a t utilis pour lobtention de donnes hautes tempratures. Les don-nes de compliance en fluage obtenues pour lasphalte modifi avec du liant ont t utilises comme paramtresdans un modle micromcanique pour simuler le comportement en fluage du mlange. Lvaluation faite surleterrainconfirmelesperformancesrelativementpauvresdelasphalteviergecomparlasphaltemodifiavec du liant, en ce qui concerne la formation dornires.Key Words: asphalt, binder, polymer-asphalt, laboratory, pavement, Superpave Appl. Rheol. 13 (2003) 191-199Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 191192Applied RheologyVolume 13 Issue 41 INTRODUCTIONAsphalt is predominantly used to construct pave-mentsforroads,highways,andairports.Bothasphaltbinderandasphalt-aggregatemixtureshow temperature- and time-dependent behav-ior.Ruttingorpermanentdeformationistheleading cause of pavement deterioration in tem-perateandwarmclimaticregionsoftheworldandlow-temperaturecrackingisacommonproblemincoldregions[1-4].Asthehighwaypavementinfrastructurehasagedanddeterio-rated,morepavementsareinneedofmainte-nance, rehabilitation, and reconstruction. This istraditionallydonebyplacinghot-mixasphaltoverlay.TheMississippiDepartmentofTrans-portation(MDOT)hasadoptedtheSuperpavePerformance Grade (PG) binder specification andmix design system [1], developed by the Strate-gicHighwayResearchProgram(SHRP),thatrelatestheasphaltmixdesigntoperformance.Polymer-modifiedasphalthasbeenclaimedtoresist rutting and has been used in a side-by-sideexperimental study in Mississippi. This comprehensive study included lab-oratory testing for creep compliance characteri-zation of asphalt layers, deflection testing, in situpavementperformanceeval uati on, andadvancedfiniteelementcomputersimulationsof an in-service asphalt highway pavement on I-55 highway near Grenada in northern Mississip-pi[1-2].TheanalysisandresultsoflaboratorybindertestswereconductedusingSuperpaveequipment for different asphalt binders used inthis study. The objectives of this paper are to: syn-thesize the laboratory test results of binders andmixes, compare the laboratory test results withthefieldperformanceintermsofresistancetorutting, and evaluate the effect of measured vis-coelastic properties of the asphalt layer on finiteelementdynamicresponseanalysisofthecon-structed asphalt pavement.The pavement test sections were pavedin 1996 with virgin asphalt and eight other mod-ified binders including six polymers, two rubbers,and one chemical. Based upon the MDOT pave-ment design 76 mm thick (38 mm binder and 38mmsurface)asphaltlayerwasremovedandreplaced by the same thickness of new modifiedmix in each test section. The control and transi-tionsectionswereconstructedusingAC-30grade,thestandardunmodifiedvirginasphaltused by the MDOT in Mississippi [1]. The optimumbinder content of these mixes, determined usingthe Superpave level I mix design method, was 5.2% by weight of total mix. Other details of the con-structedsectionsareprovidedbyUddinandYamini [2].2 SUPERPAVE BINDER TESTSThe Superpave binder PG specifications and mixdesignarerecommendedbytheFederalHigh-wayAdministration(FHWA)forimprovedandlonglifehighwaypavements[5,6].LaboratorySuperpavebindertestswereconductedattheUniversityofMississippi[7]usingasphaltandmodifiedasphaltbindersamplesfromI-55testsections. The PG binder for the test was PG58-10(fasttraffic),where58-10representsthehigh(58C)andlow(-10C)pavementtemperaturesfor northern Mississippi.2.1 DYNAMIC SHEAR RHEOMETER TESTSDynamic Shear Rheometer (DSR) tests were con-ducted on all nine kinds of binders. In the DSR testoperation,theasphaltsampleiscompressedbetween two parallel plates, one of which is fixedandtheotheroneoscillates,asshowninFig.1.The DSR test measures the complex shear mod-ulus,G*,andphaseangle,d,ofthebinder.Thecomplexshearmodulusisameasureoftotalresistance of a material to deform when exposedtorepeatedpulsesofshearstress.Thephaseangle is an indicator of the relative amounts oftherecoverableandnon-recoverabledeforma-tion. The DSR tests were conducted at 46, 58,70, 82C for Novophalt and control asphalt sam-ples.Thetestswerealsoconductedatseveraltemperatures 46, 52, 58, 64, 70, 76, 82C on Cry-opolymer. For the rest of the asphalt binder sam-ples the SHRP Spec Tests was conducted at 46CAAACB1 cyclePosition of Oscillating PlateTimeAC BApplied Stressor StrainOscillatingPlateAsphaltFixed PlateFigure 1:Dynamic ShearRheometer (DSR) principle.Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 192193Applied RheologyVolume 13 Issue 4only because of time constraints. The DSR ruttingfactor, G*/sind, represents a measure of the hightemperaturestiffnessorruttingresistanceofasphalt binders. The SHRP Superpave PG binderspecifies minimum values for G*/sind of 1000 Pafororiginalasphaltbinderand2200Paafteraging the binder using the Rolling Thin Film Oven(RTFO) procedure [7, 8]. The G*/sind results for all nine types ofbinders at 46C are shown in Fig. 2. The results ofG*/sind valueswerecomparedforcontrolasphalt,NovophaltandCryopolymerat46,58,70, and 82C. At 46 and 58C Novophalt performsbetterthaneithercontrolasphaltorCryopoly-mer. At higher temperatures (70 and 82C), all ofthethreebindersperforminthesamewayasshown in Fig. 3. The results in Fig. 2 and Fig. 3 show thatNovophalt may offer better resistance to ruttingat high service temperature. It is observed that,withtheexceptionofUltrapave,themodifiedasphalt binders and the control asphalt meet theSHRPPGspecificationrequirements.Thisdoesnotsupportthepoorfieldperformanceofcon-trol asphalt, compared to the modified binders.Therefore, it can be concluded that the SHRP SpecTest,originallydesignedonlyforvirginasphaltbindersmaynotbeapplicabletomodifiedasphalt binders. The DSR test can be adopted toconduct creep compliance tests of these bindersathightemperaturesrepresentingin-serviceconditions in warm climatic regions.2.2 BENDING BEAM RHEOMETER TESTTheBendingBeamRheometer(BBR)isusedtoaccuratelyevaluatebinderpropertiesatlowtemperaturesatwhichasphaltbindersaretoostifftoreliablymeasurerheologicalpropertiesusingtheparallelplategeometryoftheDSRequipment. Used together, the DSR and the BBRtestsproviderheologicalbehaviorofasphaltbinders over a wide range of in-service tempera-turesincoldtowarmclimaticregions.Fig.4shows a close up of the BBR equipment. The BBRtest measures creep stiffness value at the lowestin-servicetemperature,S(t)asdesignatedbySHRP, which is indicative of the susceptibility tolow-temperature cracking. To prevent this crack-ing,S(t)hasamaximumlimitof300MPa,asrequiredbytheSuperpavePGbinderspecifica-tions.Sincelow-temperaturecrackingoccursonly after the pavement has been in-service forsometime,thisspecificationaddressestheseproperties using binder aged in both the RollingThin Film Oven (RTFO) and Pressure Aging Vessel(PAV) devices.Therateofchangeofbinderstiffnesswith time is represented by the m-value, whichistheslopeofthelogstiffnessversuslogtimecurve from the BBR test results, as shown in Fig.5a. A high m-value is desired because as the tem-peraturedecreasesandpavementcontractionbeginstooccur,thebinderwillrespondasamaterialthatislessstiff.Thisdecreaseinstiff-5741,7001,8901,5901,2402,3404,2001,5801,42001,0002,0003,0004,0005,0006,0001 2 3 4 5 6 7 8 9Test Temperature: 460CUltrapaveStyrelfNovophaltKratonCryopolymerSealoflexMultigradeControl AsphaltRouse RubberG'/sind [Pa]Binder Type1,0002,0003,0004,0005,00040 50 60 70 80 90NovophaltContr AsphaltCryopolymerTest Temperatures: 46, 58, 70, 82 deg CTemperature [C]G'/sind [Pa]ol1101001000Log Creep Stiffness S(t)8 30 60 120 240Slope = m-valueLog Loading Time t[s]Figure 2 (left above):Comparison of G*/sindvalues for asphalt andmodified asphalt bindersamples at 46C.Figure 3 (left below):Comparison of G*/sindvalues for control asphalt,Novophalt, and Cryopoly-mer binders at varioustemperatures.Figure 4 (right above):Bending Beam Rheometer(BBR) equipment.Figure 5 a) (right below):Rate of change of binderstiffness with time,represented by the m-value.Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 193194Applied RheologyVolume 13 Issue 4ness leads to smaller tensile stresses in the binderand less chance for low-temperature cracking. Aminimumm-valueof0.3after60secondsisrequiredbytheSuperpavePGbinderspecifica-tion [7]. As shown in Fig. 5b, all binders show high-er than the required minimum m-value. The S(t)test results of all these binders satisfy the SHRPSuperpave PG binder specifications [7]. Fig. 6 compares the S(t) test results at -12C. Excessively high stiffness values, shown bysome polymer-asphalt binders (Novophalt, Kra-ton,andMultigrade),indicatethattheasphaltmixproducedusingthesebindersmaybesus-ceptible to low-temperature cracking, especiallyin the areas of cold climate. On the other hand,controlasphaltandothermodifiedasphaltbindersincludingRouseRubber,Sealoflex,andStyrelf may perform better. 3 BINDERCREEPCOMPLIANCETESTSUSING BBRAdditionallaboratorytestswereconductedusingBBRtoevaluatecreepcomplianceoftheselected binders for longer duration of 3600 sec-onds. The creep compliance, as a function of time,is defined as:(1)where e(t) is the time-dependent strain under aconstantstress,s.Thecreepcomplianceisthereciprocal of the relaxation modulus, E.AmodifiedtestprocedurefortheBBRequipmentwasadaptedforasphaltandmodi-C tt( )( )= fied binders at different temperatures. The mod-ified test was conducted by increasing the totaltest duration for a longer time of 3600 seconds.The BBRAN computer program was developed toanalyze and summarize the output generated bythe BBR machine. Creep compliance and relaxation modu-lus values were calculated for several binders at atemperature of -12C. Tests at temperatures of -18,-12 and 0C were also conducted during this study.It is apparent from this study that the binder creepcompliance data at 0C may not be reliable usingthe BBR equipment. Therefore, future binder creepcompliancetestswillbeconductedat0Cusingthe DSR equipment. Fig. 7 shows the binder relax-ation modulus calculated from BBR tests at -12Cand at 1 second. The relaxation modulus value forSealoflexmodifiedbinderwassimilartothatofthe control asphalt binder, an indication of betterperformance at low temperatures. Fig.8plotforcontrolasphaltbindershowsanincreaseintherelaxationmoduluswhenthetesttemperatureisdecreased.Fig.9showsacomparisonoftherelaxationmodulusfor control asphalt and modified binders at -12C Figure 5 b) (left above):The m-value results at -12C.Figure 6 (left below):Comparison of measuredS(t) values for asphaltbinder samples at -12C.Figure 7 (right above):Binder relaxation modulusfor control asphalt andmodified binders at 1 secondfrom BBR tests at -12C.Figure 8 (right middle):Relaxation modulus forcontrol asphalt binder.Figure 9 (right below):Relaxation modulus forcontrol asphalt andmodified binders at -12C.Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 194195Applied RheologyVolume 13 Issue 4test temperature. Fig. 9 shows that the asphaltmodulusattenuationisrelativelymorebothinthe short-term and long-term ranges at -12C testtemperature. This test temperature is well belowthe low-temperature regime in northern Missis-sippi.Thebindercreepcompliancetestresultsand elastic properties of aggregate were used topredict creep compliance of the compacted mixusing the micromechanical analysis approach [9,10], as discussed in the following section.4 MICROMECHANICAL MODEL TOPREDICT MIX CREEP COMPLIANCEThe micromechanics approach for material mod-eling examines the interaction of the constituentmaterials directly on a microscopic scale [9 - 11].The micromechanics approach used in this studyisbasedupontheapplicationofAboudismethodofcellsmicromechanicalanalysistopredict viscoelastic response of resin matrix com-posites [9, 12]. The coupling of the method of cellswiththetime-steppingalgorithmprovidesanaccuratemodelfortheanalysisofcompositematerials displaying viscoelastic behavior. The most attractive advantage of usingthemicromechanicsapproach,incorporatedinthe ASPHALT program [10], is that overall prop-ertiesofthemixmaybedeterminedfromtheknown properties of the constituents. The time-dependentbehaviorofasphaltormodifiedbinder,asanonlinearviscoelasticcomponent(bindercreepcompliancedataandbulkmodu-lus)ischaracterizedbyatime-steppingalgo-rithm through the use of the hereditary integralformoftheconstitutiveequations.Theaggre-gate is characterized as a linearly elastic materi-al by its Youngs modulus and Poissons ratio. Fig.10showsmixrelaxationmodulusresults predicted by the micromechanical analy-sis for the control asphalt and several modifiedbinders at -12C.5 TEMPERATURE CONTROLLEDSTRESS-STRAIN TESTS ON COMPACTEDASPHALT MIXThe stress-strain behavior of asphalt and modi-fied asphalt highway mixes is dependent on timeof loading and test temperature. For accuratelymodeling asphalt mixes it is important to recog-nize the temperature- and time-dependent vis-coelasticmaterialbehaviorthatcanbecharac-terizedinthelaboratorybysimplestaticcreeptests [10]. The environmental controlled AsphaltTestingMachine(ATM)wasusedtoconductthesestress-straintestsatdifferenttempera-tures on compacted asphalt mix specimens pro-ducedusingtheU.S.ArmyCorpsofEngineersGyratory Testing Machine (GTM). The GTM wasdeveloped to produce laboratory test specimensbyakneadingcompactionprocessusinganappropriate gyration angle to simulate the fieldwheel rolling condition [13]. The principle of gyra-tory compaction has been adopted in the SHRPSuperpaveasphaltmixdesignsystem.SeveralGTMcompactedspecimenswerefabricatedusing the binders from the I-55 test site [1].TheATMtestswereconductedontheGTMspecimensattemperatureof10Cforthe01,0002,0003,0004,0005,0006,0007,0008,0000 300 600 900 1,200 1,500 1,800Time, SecondsE, MPaControlAsphaltSealoflexKratonNovophaltRouse RubberTest Temperature = -12.0 oC 4,535MPa4,703MPa5,004MPa5,277MPa5,064MPa01,0002,0003,0004,0005,0006,0007,0008,0001 2 3 4 5 6 7 8 9Relaxation Modulus Values, MPaUltrapaveStyrelfNovophaltKratonCryopolymerSealoflexMultigradeControl AsphaltRouse Results at 1.0 second Test Temperature = -12.0 oC Binder Figure 10 (left):Mix relaxation moduluspredictions from theASPHALT program.Figure 11 (right): Comparisonof lab relaxation modulusresults for virgin asphaltand modified asphaltmixes at 10C.Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 195196Applied RheologyVolume 13 Issue 4control asphalt and several modified binders andat 25C for the control asphalt. In this paper, onlythe results of the tests conducted at 10C are pre-sented for comparing the behavior of the controlasphaltwiththebehaviorofthemodifiedbinders. The test procedure consisted of an appli-cationofaconstantloadonthesurfaceoftheasphalt compacted mix specimen. This load wasappliedfor3600secondsandthenreleasedtomeasurethepermanentdeformationoftheasphaltspecimen.Thedataacquisitionequip-ment reads the displacement measured by twovertical Linear Variable Displacement Transduc-ers (LVDTs). Fig. 11 shows a comparison of the relax-ationmoduluscalculatedfromthetestdatameasuredforthefirst1800seconds.Therelax-ation modulus values are normalized by the ini-tial relaxation modulus calculated at 0.5 secondsfor the virgin asphalt mix. These plots show thetime-dependentpropertiesandviscoelasticbehaviorofthemixspecimens.Themodifiedasphalt mixes perform better than the unmodi-fiedcontrolasphaltmix.Moreruttingoftheasphalt section after four years, measured in thefield, confirms this finding.6 COMPARISON OF FIELD EVALUATIONWITH SUPERPAVE BINDER TEST RESULTSField rutting measurements were made on peri-odic basis by the MDOT staff for all nine types ofasphalt binder sections on highway I-55. Fig. 12 isthe box plot of the mean rut depth measured ontheoutsidewheelpath(OSWP)forthecontrolasphalt and modified asphalt binders sections inNovember1999.Itshowsthatthelargestamount of rutting (about 8 mm) occurred in thecontrol asphalt section and the minimum ruttingoccurredintheRouseRubbersectionandfol-lowedbytheSealoflex,Styrelf,KratonandNovophalt polymer-modified asphalt binder sec-tions.Themeanrutdepthmeasuredintheoutside wheelpath in November 1999 has beencorrelatedwiththerheologicalpropertiesofthesebinders.TheG*/sind valuesfortempera-turesof46,76Cfororiginalbinders,76CforRolling Thin Film Oven (RTFO) aged binders, and22C for Pressure Aging Vessel (PAV) have beenconsidered.Theseresultswereobtainedfromthe tests conducted at the University of Missis-sippi[7]andfromtheMDOTStateStudy123report [8]. From the plots of these properties andfieldrutdepthmeasurementsin1999,itisobservedthatthehighestcorrelationexistsbetween the mean rut depth and the DSR ruttingfactor G*/sind at a temperature of 76C for bothoriginal binders as well as the RTFO aged binders.The BBR binder test result at -12C for Rouse Rub-bershowsrelativelyhigherrelaxationmoduluscompared to the control asphalt, Sealoflex, Kra-ton, and Novophalt binders.7 BACKCALCULATION OF IN SITUMODULUS VALUESIn this study nondestructive evaluation (NDE) ofthepavementsectionswasconductedbymea-suringsurfacedeflectiondatausingthefallingweightdeflectometer(FWD),operatedbytheMississippiDepartmentofTransportation.Thedeflection data were measured in fall of 1997 and1998 at peak loads of around 4083 kgf (9000 lbf)and higher in the outer wheel path, about 1m (3ft) from the pavement edge [1]. The FWD deflec-tion data measured at the last drop height werenormalized to 4083 kgf (9000 lbf) peak load foranalysis.A comparative study using several back-calculation programs was done [1]. Based on theresults of this study, the PEDD modulus backcal-culationprogramwasselectedbecauseitensures the uniqueness of backcalculated mod-ulusresultsbypredictingseedmodulusvaluesusing in-built nonlinear deterministic equations.The I-55 pavement structure model consists of a76 mm (3 in) asphalt overlay on top of a 190.5 mm(7.5in)asphaltlayer,a305mm(12in)cementtreatedbase(CTB)andlimetreatedsubgrade(LTS) layer, and a semi-infinite subgrade layer. Insitu effective modulus values were backcalculat-0.14770.30110.15340.09090.05110.17610.06820.09660.05110.0455-0.050.000.050.100.150.200.250.300.350.40Ultrapave Control AsphaltMultigradeMultigrade BSealoflexCryopolymer KratonNovophaltStyrelfRouse RubberBinder TypeMean Rut Depth, inInterstate 55 - Outside Wheel PathFigure 12:Mean rut depth datameasured in 1999.Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 196197Applied RheologyVolume 13 Issue 4ed by the PEDD program using the FWD data col-lected on 9th September 1998 at in situ test tem-peratures in the range of 21.7 to 26.1C (71 to 79F).The in situ modulus results for the overlay layerare summarized in Fig. 13.TheinsituYoungsmodulusvaluesoftheoverlaybackcalculatedfromthedynamicdeflectiondataalsoshowsmallermodulusforthe control asphalt compared to all other binders.ThemodulusvaluesofRouseRubberandSealoflex pavement layers are closer to the con-trolasphaltmodulusindicatingadesirablebehavior at the low test temperature for in-ser-vice pavements in northern Mississippi. Howev-er,thelowermodulusvalueofthecontrolasphaltlayeratthetesttemperatureof26.1C(79F) makes it more susceptible to rutting dur-ingthewarmerin-servicetemperatures,whichmay exceed 50C (122F) during hot summer days.8 3D-FE SIMULATION USING VIS-COELASTIC MATERIAL PROPERTIESKeylimitationsofmostbackcalculationpro-gramsaretheassumptionsoflinearelastic,homogenousandisotropicmaterialpropertiesfor the pavement layers and static loading. Threedimensional-finiteelement(3D-FE)analysisenablesfortheevaluationofthethree-dimen-sional state of stress and strain in a continuum.Dynamic,static,andnonlinearanalysiscanbeconducted using 3D-FE models [14]. In this study, the LS-DYNA finite elementcode [15] was used to analyze and verify the back-calculated modulus values from the PEDD back-calculation program shown in Fig. 13. The 3D-FEhalfmodeldevelopedfortheI-55testsectioncontained7313solidbrickelementsand8528nodes.Theboundaryconditionsforthis3D-FEmodel were fixed at the bottom and roller sup-ports were used on the sides. Material type 6 in the LS-DYNA finite ele-ment program was used to simulate viscoelasticbehavior.TheviscoelasticpropertiesfortheLS-DYNAinputfileare:thebulkmodulus(B),theshort-termandlong-termshearmodulus(G0andG1),andthedecayparameter,b.Theele-mentsshearmodulusvalueG(t)andthebulkmodulus, B, are expressed by the following rela-tionships [15]:(2)(3)where E is the Youngs modulus and is the Pois-sons Ratio.ThesepropertieswerecalculatedfromtheATMtestsconductedat10ContheGTMcompacted specimens. From the relaxation mod-ulus plots G0, G1, and b were calculated. The G0value was calculated at the time of 0.5 secondsand G1at the time of 3000 seconds. A comparison between the elastic analy-sis and the viscoelastic analysis was done for thecontrolasphaltandSealoflexpavementssub-jectedtotheFWDimpulseloading.Detailedinputdataandresultsarenotshownhereforbrevity. The Sealoflex modified binder plot showslargerdeflectionsfromviscoelasticanalysis,compared to the control asphalt plot, as showninFig.14.ThisimpliessmallerinsituYoungsmodulus for the modified binder pavement layer.Theseresultsindicatethatcorrectproperties,appropri atemateri al model s, and3D-FEresponse analysis are needed for correct perfor-mance modeling of asphalt pavements.9 CONCLUSIONS AND RECOMMENDA-TIONSSeveralmodifiedasphaltbinderandcontrolasphalt samples from I-55 highway overlay pro-jectsiteweretestedusingtheSuperpaveDSRand BBR equipment to measure and analyze con-BE= 3 1 2 ( ) G t G G G et( ) = + ( )1 0 14,8292,9634,2883,1005,73411,3075,1688,0004,15102,5005,0007,50010,00012,50015,0001 2 3 4 5 6 7 8 9Backcalculated Modulus Values, MPaUltrapaveStyrelfNovophaltKratonBinder TypeCryopolymerSealoflexMultigradeControl AsphaltRouse Rubber-8.00-6.00-4.00-2.000.002.000.00 0.02 0.04 0.06 0.08 0.10 0.12Linear Elastic PropertiesViscoelastic Properties-203.4 m0.0 m50.8 m-8.00-6.00-4.00-2.000.002.000.00 0.02 0.04 0.06 0.08 0.10 0.12Linear Elastic PropertiesViscoelastic Properties-203.4m0.0m50.8mTime [s]Deflection [mils]Deflection [mils]Time [s]Figure 13 (left): The PEDDbackcalculated in situYoungs modulus values forthe overlay.Figure 14 (right):Comparison of FWDdeflection time historiesfrom 3D-FE elastic andviscoelastic dynamicanalysis.Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 197trol asphalt and modified asphalt binder proper-ties.Creepcomplianceandrelaxationmodulusdata for different binders were measured usinga modified BBR test procedure. The performanceof the modified asphalt binders was better thanthevirginasphalt.Thiswasconfirmedbymorerutting measured on the control asphalt sectionafter four years of traffic.The mix creep compliance and relaxation modulusresultspredictedusingthemicromechanicsapproachalsoindicatepoorperformanceofthecontrol asphalt section compared to Rouse Rubber,Sealoflex, and other modified binder sections. Thecorrect time- and temperature-dependent charac-terizationofasphaltmaterialsisimperativeforadvancedcomputermodelingandsimulation.Theseimprovedlaboratorymaterialcharacteriza-tion and analysis efforts are needed for more accu-rate and meaningful structural response analysis ofasphalt pavements and prediction of their perfor-mance for resistance to rutting.ACKNOWLEDGMENTSTheworkreportedhereinwasconductedasapart of the research studies funded by the Mis-sissippiDepartmentofTransportation,U.S.Department of Transportation Federal HighwayAdministration,andCenterforAdvancedInfra-structure Technology at the University of Missis-sippi.Theauthoracknowledgestheeffortsofseveralresearchassistantsandgraduatestu-dentsincludingBenSale,YaminiNangiri,andSergio Garza.DISCLAIMERThe contents of this paper reflect the views of theauthor who is responsible for the facts, findings,and data presented herein.REFERENCES[1] UddinW:ImprovedAsphaltThicknessDesignProcedures for New and Reconstructed HighwayPavements.ReportFHWA/MS-DOT-RD-99-122FinalReport-StateStudySS122.MississippiDepartment of Transportation (1999). [2] UddinWandNanagiriY:PerformanceofPoly-mer-Modified Asphalt Field Trials in MississippiBased on Mechanistic Analysis and Field Evalua-tion.IJP-InternationalJournalofPavements1(2002) 13-24.[3] MonismithCLandTayebaliAA:PermanentDeformation(Rutting)ConsiderationsinAsphaltConcretePavementSections.Proceed-ings,AssociationofAsphaltPavingTechnolo-gists 57 (1988) 414-463. [4] Ayers Jr.M and Witczak MW: Resilient ModulusPropertiesofAsphaltRubberMixesfromFieldDemonstrationProjectsinMaryland.InTrans-portationResearchRecord1492,TRB,NationalResearchCouncil,Washington,D.C.(1995)96-107.[5] Harvey J, Lee T, Sousa J, Park J, and Monismith CL:Evaluation of Fatigue and Permanent Deforma-tionPropertiesofSeveralAsphalt-AggregateFieldMixesUsingStrategicHighwayResearchProgramA-300AEquipment.InTransportationResearchRecord1454,TRB,NationalResearchCouncil, Washington, D.C. (1994) 123-133.[6] Tayebali AA, Deacon JA, and Monismith CL: Com-parison of Axial and Diametral Resilient StiffnessofAsphalt-AggregateMixes.InTransportationResearchRecord1492,TRB,NationalResearchCouncil, Washington, D.C., (1995) 135-143.[7] Nanagiri Y: Pavement-Subgrade Material Char-acterizationandAdvancedComputerSimula-tions. A Thesis for the Master of Sciences at TheUniversity of Mississippi (2001).[8] RichardSD:EvaluationofPolymerModifiedAsphalts for Potential Application on Mississip-piStateHighways.FinalReport-StateStudySS123.MississippiDepartmentofTransportation(1999).[9] Plaxico CA, Hackett RM, and Uddin W: A Micro-mechanicalAnalysisofTheViscoelasticResponse of Resin Matrix Composites. Proceed-ings,InternationalConferenceonFibreRein-forcedStructuralPlasticsinCivilEngineering,Madras, India (1995) 99-108.[10] Plaxico CA, Uddin W, and Hackett RM: A Micro-mechanical Model of Rubber-Modified Asphalt.Proceedings, Vol. 1, Material Congress, AmericanSocietyofCivilEngineers,Washington,D.C.(1996) 761-770.[11] Buttlar WG and Roque R: Evaluation of Empiri-cal and Theoretical Models to Determine AsphaltMixture Stiffnesses at Low Temperatures. PaperPreparedforPresentationattheAnnualMeet-ingofAssociationofAsphaltPavingTechnolo-gists, Baltimore (1996).[12] AboudiJ:MechanicsofCompositeMaterials.Elsevier Publishers (1991).198Applied RheologyVolume 13 Issue 4Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 198199Applied RheologyVolume 13 Issue 4[13] McRaeJL:UseofGyratoryTestingMachine(GTM)toEvaluateExistingAirfieldPavement,Base and Subgrade for Use by Larger Military Air-craft.Proceedings,FifthInternationalRILEMSymposium on Mechanical Tests for BituminousMaterials, Lyon, France (1997) 575-581.[14] UddinW:SimulationofFallingWeightDeflec-tometer for In Situ Material Characterization ofHighwayandAirportPavements.Proceedings,SixthInternationalLS-DYNAUsersConference,Simulation 2000, Dearborn, Michigan (2000) 16-21 to 16-32.[15] LSTC: LS-DYNA Keyword Users Manual Version950.LivermoreSoftwareTechnologyCorpora-tion (1999).Applied Rheology Vol.13/4.qxd09.09.200311:53 UhrSeite 199