5
This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the author guidelines. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. Accepted Manuscript rsc.li/chemcomm ChemComm Chemical Communications www.rsc.org/chemcomm ISSN 1359-7345 COMMUNICATION Marilyn M. Olmstead, Alan L. Balch, Josep M. Poblet, Luis Echegoyen et al. Reactivity differences of Sc3N@C2n (2n= 68 and 80). Synthesis of the first methanofullerene derivatives of Sc3N@D5h-C80 Volume 52 Number 1 4 January 2016 Pages 1–216 ChemComm View Article Online View Journal This article can be cited before page numbers have been issued, to do this please use: U. K. Das, L. Shimon and D. Milstein, Chem. Commun., 2017, DOI: 10.1039/C7CC08322J.

View Article Online ChemComm - weizmann.ac.il

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: View Article Online ChemComm - weizmann.ac.il

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Accepted Manuscript

rsc.li/chemcomm

ChemCommChemical Communicationswww.rsc.org/chemcomm

ISSN 1359-7345

COMMUNICATIONMarilyn M. Olmstead, Alan L. Balch, Josep M. Poblet, Luis Echegoyen et al. Reactivity diff erences of Sc

3N@C

2n (2n = 68 and 80). Synthesis of the

fi rst methanofullerene derivatives of Sc3N@D

5h-C

80

Volume 52 Number 1 4 January 2016 Pages 1–216

ChemCommChemical Communications

View Article OnlineView Journal

This article can be cited before page numbers have been issued, to do this please use: U. K. Das, L.

Shimon and D. Milstein, Chem. Commun., 2017, DOI: 10.1039/C7CC08322J.

Page 2: View Article Online ChemComm - weizmann.ac.il

Journal  Name    

COMMUNICATION  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx   J.  Name.,  2013,  00,  1-­‐3  |  1    

Please  do  not  adjust  margins  

Please  do  not  adjust  margins  

Received  00th  January  20xx,  Accepted  00th  January  20xx  

DOI:  10.1039/x0xx00000x  

www.rsc.org/  

Imidazoles  Synthesis  by  Transition  Metal  Free,  Base-­‐Mediated  Deaminative  Coupling  of  Benzylamines  and  Nitriles    Uttam  Kumar  Das,a  Linda  J.  W.  Shimonb  and  David  Milstein*a  

 

A  transition  metal   free,  straightforward  synthetic  method  for  the  preparation   of   substituted   imidazoles   is   reported   herein.   Base  promoted,   deaminative   coupling   of   benzylamines   with   nitriles  results   in   the  one-­‐step   synthesis  of  2,4,5-­‐trisubstituted   imidazole  with   liberation   of   ammonia.   This   protocol   provides   a   practical  strategy   for   synthesis   of   valuable   imidazole   derivatives   from  readily  available  starting  materials.  

N-­‐heterocycles   are   key   structural   units   frequently   found   in  several   drugs,   dyes,   and   biologically   active  molecules   used   in  pharmaceutical  and  agrochemical  industries.1              Among   the   nitrogen-­‐containing   heterocyclic   compounds,  the   imidazole   motif   is   of   key   importance.   It   is   an   essential  motif  in  many  natural  products  and  in  living  organisms,  and  is  present   in   compounds   such   as   histidine,   histamine,   vitamin  B12,   pilocarpine   alkaloids,   nucleic   acid   bases   and   biotin.2  Imidazoles   have   a   wide   range   of   applications   in   the  pharmaceutical   industry.1a,   3   Noteworthy,   some   of   the  compounds   have   antifungal,4   anticancer,5   antitumor,6  antibacterial,7   antiplasmodium,8   and   anti-­‐inflammatory.9  properties.            In  academia  and  industry  the  popular  classical  approach  for  the   synthesis   of   imidazoles   involves   traditional  cyclocondensation   methods   (Figure   1,   a).10   Most   literature  reports   involve   modified   condensation   methods   of   carbonyl  compounds   and   ammonium   salts.11   In   a   large   number   of  reports,   substituted   imidazoles   have   been   prepared   via  transition   metal-­‐free   methods,12   catalytic   C–H   activation,13  transition   metal   catalysis14,   and   cycloaddition   reactions   of  methylene  isocyanides  to  unsaturated  bonds15.  In  2011,  García  et.   al.   reported   nickel   catalyzed   hydrogenative   coupling   of  aromatic  nitriles  to  form  2,4,5-­‐trisubstituted  imidazoles  (Figure  1,  b).16  

                                               Figure  1.  Strategies   for  synthesis  of  substituted   imidazoles   (a,  b);  coupling  of  nitriles  and  amines  (c);  this  work  (d).                  While  synthetically  useful,  several  of  these  methods  suffer  from   drawbacks   such   as   low   yields,   low   selectivity,   harsh  conditions,   multi-­‐step   synthetic   operations,   and   tedious  isolation   procedures.11b,   12c,   d,   16b   Some   of   the   cases   employ  noble  metal-­‐based   catalysts  which   are   expensive   and   rare.14c  In  this  respect,  the  design  of  economical,  highly  efficient,  mild  and  straightforward  approaches  for  imidazole  preparation  is  of  prime  importance.  In  general,  the  development  of  inexpensive,  transition-­‐metal-­‐free,   environmentally   benign   protocols   for  organic   synthesis   and  material   science   is   currently   an  area  of  much  interest.17              Our   group   has   developed   recently   the   hydrogenative  coupling  of  nitriles  and  amines  to  give  secondary,  self-­‐coupled  imines,   as   well   as   cross-­‐imines,   as   major   products   using   Ru-­‐PNN18a   and   Fe-­‐PNP18b   pincer   systems.   Coupling   of   benzylic  amines   with   nitriles   generally   produces   imines,   secondary  amines,  or  other  adducts  (Figure  1,  c).18,  19    

Page 1 of 4 ChemComm

Che

mC

omm

Acc

epte

dM

anus

crip

t

Publ

ishe

d on

14

Nov

embe

r 20

17. D

ownl

oade

d by

Wei

zman

n In

stitu

te o

f Sc

ienc

e L

ibra

ry o

n 14

/11/

2017

12:

23:5

6.

View Article OnlineDOI: 10.1039/C7CC08322J

Page 3: View Article Online ChemComm - weizmann.ac.il

COMMUNICATION   Journal  Name  

2  |  J.  Name.,  2012,  00,  1-­‐3   This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Please  do  not  adjust  margins  

Table  1.  Optimization  study.a  

[a]   1   mmol   benzylamine   (1a),   2   mmols   benzonitrile   (2a),   1  mmol  base  and  3  mL  solvent  were  used.  [b]  G.C  yield  [c]  Yield  of  isolated  product.  KHMDS  =  potassium  hexamethyldisilazane.              Herein,   we   report   a   new,   transition   metal   free,   KOtBu  promoted   intermolecular   C-­‐C   and   C-­‐N   coupling   of  benzylamines   with   nitriles   to   form   2,4,5-­‐trisubstituted  imidazoles.  To  our  knowledge  there   is  no  report  on   imidazole  synthesis  by  coupling  of  nitriles  and  benzylamines.            In   optimization   studies   the   coupling   of   benzylamine   (1a)  with   benzonitrile   (2a)   was   chosen   as   a   model   reaction.   As  shown   in   Table   1,   coupling   of   one   equivalent   1a   with   two  equivalents  2a   in   presence   of   one   equivalent   potassium   tert-­‐butoxide   (KOtBu)   in   3  mL   THF   at   110°C,   followed   by   workup  with  water/EtOAc,  resulted  in  formation  of  2,4,5-­‐triphenyl-­‐1H-­‐imidazole  (3a)   in  85%  yield  after  8h  (Table  1,  entry  1).  A  brief  solvent   scope   examination   showed   that   THF,   dioxane   and  toluene   are   effective   solvents   (Table   1).   The   reaction   of   1a  with  2a  in  toluene  in  the  presence  of  one  equivalent  of  KOtBu  at   110°C   produced   90%   of   2,4,5-­‐triphenyl-­‐1H-­‐imidazole   (3a)  after  12  h.  (Table  1,  entry  4).  Raising  the  temperature  to  130°C,  3a  was  obtained  in  96%  yield  after  5  h  (Table  1,  entry  5).  The  efficacy   of   other   bases  was   also   studied   (entries   6-­‐11).  Using  equivalent  amount  of  KH  or  KHMDS  at  130  °C  in  toluene,  80%  and   86%  of  3a  was   obtained   after   5   h,   respectively   (Table   1,  entries  6–7).  However,  using  weaker  bases  or  performing   the  reaction  at  room  temperature,  did  not  result   in  any  imidazole  product  (Table  1,  entries  9–12).            The  coupling  reaction  of  benzylamines  with  nitriles  bearing  both  aliphatic  and  aromatic  substituents,  in  presence  of  KOtBu,  afforded   exclusively   2,4,5-­‐trisubstituted   imidazoles   in   high  yields  (Scheme  1).  As  shown  in  scheme  1,  coupling  of  the  para-­‐substituted  benzylamines  and  benzonitriles  proceeds  smoothly  to  selectively  afford   the  corresponding  substituted   imidazoles  in   good   to   excellent   77%−98%   isolated   yields   (Scheme   1,  3a-­‐3e).      

Scheme   1.   Synthesis   of   2,4,5-­‐trisubstituted   imidazoles  mediated  by  KOtBu.a                                                                        [a]   Reaction   conditions:   benzylic   amine   (1   mmol),   nitrile   (2  mmol),   KOtBu   (1  mmol),   toluene   (3  mL),   130°C,   5-­‐12   hrs.   All  yields  are  for  isolated  products.  [#]  Yield  of  gram  scale  reaction.  [*]   Yields   of   tautomeric  mixture.   [b]   Amine   and   nitrile  molar  ratio  was  1:3.    Coupling   of   benzylamine   with   benzonitrile   gave   2,4,5-­‐triphenyl-­‐1H-­‐imidazole   (lophine)   in   96%  yield   (Scheme  1,  3a).  4-­‐methyl-­‐   benzylamine   and   4-­‐methoxy-­‐benzylamine   yielded  the   imidazole   derivatives   3b   and   3c   in   92%   and   98%   yield,  respectively.            However,   4-­‐chloro   benzylamine   and   4-­‐fluoro   benzylamine  produced  the  imidazoles  3d  and  3e   in  somewhat  lower  yields,  77%   and   82%,   respectively,   perhaps   due   to   the   lower  nucleophilicity   of   the   amine.   Benzylamine   p-­‐substituted   with  the   strong   electron   withdrawing   -­‐CF3   group   was   completely  inactive  under  the  optimized  condition.                To   further   explore   the   scope   of   the   reaction,   various  substituted  aromatic  nitriles  were  reacted  with  benzyl  amines,  giving   moderate   to   excellent   isolated   yields   (71–93%)   of   the  corresponding  imidazole  products  (Scheme  1,  3f-­‐3j).  4-­‐Methyl-­‐

Entry   Base   Solvent   T(°C)   T(h)   Yield(%)b  1.   KOtBu   THF   110   8   85  2.   KOtBu   THF   110   12   90  (86)c  3.   KOtBu   Dioxane   110   12   80  4.   KOtBu   Toluene   110   12   91  5.   KOtBu   Toluene   130   5   98  (96)c  6.   KH   Toluene   130   5   80  7.   KHMDS   Toluene   130   5   86  8.   KHMDS   Toluene   130   12   90  9.   NaOEt   Toluene   130   12   -­‐  10.   KOH   THF   130   12   -­‐  11.   NaOH   Toluene   130   12   -­‐  12.   KOtBu   Toluene   25   36   -­‐  13.   KOtBu   MeOH   65   24   -­‐  14.   KOtBu   DCM   65   12   -­‐  15.   KOtBu   Benzene   100   12   65  

Page 2 of 4ChemComm

Che

mC

omm

Acc

epte

dM

anus

crip

t

Publ

ishe

d on

14

Nov

embe

r 20

17. D

ownl

oade

d by

Wei

zman

n In

stitu

te o

f Sc

ienc

e L

ibra

ry o

n 14

/11/

2017

12:

23:5

6.

View Article OnlineDOI: 10.1039/C7CC08322J

Page 4: View Article Online ChemComm - weizmann.ac.il

Journal  Name    COMMUNICATION  

This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx   J.  Name.,  2013,  00,  1-­‐3  |  3  

Please  do  not  adjust  margins  

Please  do  not  adjust  margins  

benzonitrile   and   4-­‐methoxy-­‐benzonitrile   gave   nearly   identical  yields   in  the  reactions  with  benzylamine  (3f  and  3g).  Coupling  of   4-­‐tert-­‐butoxy   benzonitrile   with   benzylamine   gave   79%   of  the  corresponding  imidazole  (3h).              The  coupling  reaction  scope  with  respect  to  aliphatic  nitriles  was   also   examined.   Isobutyronitrile   (2e)   was   coupled   with  benzylamine   in  presence  of  KOtBu  at  130°C  overnight   in  good  yield.   The   imidazole   product,   2,4(5)-­‐diisopropyl-­‐5(4)-­‐phenyl-­‐1H-­‐imidazole   (3i)   was   isolated   in   95%   yield   and   was  structurally   characterized   by   single-­‐crystal   X   ray  crystallography   (Figure   2).     As   expected,  cyclohexanecarbonitrile   (2f)   followed   the   same   trend   and  produced   2,4(5)-­‐dicyclohexyl-­‐5(4)-­‐phenyl-­‐1H-­‐imidazole   (3j)   in  85%   yield.   The   bulkier   nitriles   like   3,4-­‐dimethoxynitrile   and  naphthalene-­‐2-­‐carbonitrile   were   also   coupled   with  benzylamine   to   produce   tri-­‐substituted   imidazoles   in   good  yields  (3n  and  3o).  The  yields  of  all  products  shown  in  Scheme  1   are   for   the  pure  products   as   judged  by  NMR   spectroscopy.  Except  for  3a,  3k  and  3l  all  products  are  present  as  a  mixture  of   tautomer.   However,   reactions   of   secondary   amines   or  aliphatic   amines   with   benzonitrile   were   not   successful   under  the  standard  conditions  at  present.  We  have  observed  that  4-­‐fluorobenzonitrile   undergoes   fluoride   substitution   reaction  with   KOtBu   in   toluene   at   130   °C   to   form   4-­‐(tert-­‐butoxy)  benzonitrile   in  95%  yield.20  However,  we  got  compound  3h   in  71%   isolated   yield   from   the   reaction   of   benzylamine   with   4-­‐fluoro-­‐benzonitrile  in  the  presence  of  3.5  equivalent  of  KOtBu.  Following   the   same   procedure,   we   isolated   2.63   g   (89%)   of  2,4,5-­‐triphenyle   imidazole   (Scheme  1,  3a#)   from  a   gram   scale  reaction   between   1.07   g   of   benzylamine   and   2.06   g   of  benzonitrile   in   presence   of   1.11   g   of   KOtBu   in   a   100mL  pressure  tube  using  20  mL  of  toluene.                                    Figure   2.   Molecular   structure   of   2,5-­‐diisopropyl-­‐4-­‐phenyl-­‐1H-­‐imidazole  (3i).  Thermal  ellipsoids  are  drawn  at  50%  probability.  Selected   hydrogen   atoms   are   omitted   for   clarity   (see  Supporting  Information).    We  were  interested  in  the  mechanism  of  formation  of  the  tri-­‐substituted   imidazole  products   (3)  by   coupling  of   amines  and  nitriles   (Scheme   2).   Direct   addition   of   benzylamine   to  benzonitrile,   forming   N-­‐benzylbenzimidamide   (A)   as  intermediate   is   expected.   Such   a   transformation   was  reported.19c,  d,  21  Our  observation  that  secondary  benzyl  amines  do   not   react   suggests   that   the   addition   to   the   nitrile   is  inhibited   by   N-­‐substitution   of   the   amine.   In   support   of   the  

intermediacy  of   (A),     reaction  of    N-­‐benzylbenzimidamide   (A)  and  benzonitrile  under   the   same   reaction   conditions   resulted  in   93%   yield   of   the   desired   2,4,5-­‐triphenyl-­‐1H-­‐imidazole   (3a)  (Scheme  3,  eq.  1).  We  also  observed  that,  aliphatic  amines  are  unreactive  towards  this  coupling  reaction,  hence  the  benzylic-­‐CH2   is   essential   in   this   imidazole   synthesis.17h   Compound   A  reacts  in  presence  of  a  strong  base  with  the  nitrile  leading  to  C-­‐C  bond   formation  at   the  benzylic   carbon,   liberating  ammonia  to   effectively   afford   the   potassium   salt   of   trisubstituted  imidazole   product   (B).   This   potassium   salt   (B)   precipitated  from   the   solution   and   was   characterized   by   1H   MNR  spectroscopy  in  DMSO-­‐d6.  Formation  of  KOtBu  in  solution  was  confirmed   by  GC-­‐MS.   The   salt  B   is   converted   to   pure  3   after  workup  with  water  (see  Supporting  Information).  Noteworthy,  addition   of   the   radical   scavengers   galvinoxyl   or   TEMPO  resulted   in  no  noticeable  effect  on  the  yield  of  3a   (Scheme  3,  eq.   2).   This   indicates   that   radical   intermediates   are   not  involved  in  this  base-­‐mediated  imidazole  formation  reaction.                              Scheme   2.   Plausible  mechanism   of   the   substituted   imidazole  synthesis  by  coupling  of  benzyl  amines  and  nitriles.                      Scheme  3.  Mechanistic  experiments.                In   conclusion,   we   have   developed   a   base-­‐mediated,  transition   metal   free,   novel   synthetic   methodology   of  substituted   imidazoles   by   coupling   of   readily   available   benzyl  amines   and   nitriles.   The   reaction   is   promoted   by   KOtBu   and  liberates   NH3.   We   believe   that   this   step-­‐economical,  straightforward   and   easy   to   handle   methodology   for   the  synthesis   of   2,4,5-­‐trisubstituted   imidazoles   has   significant  synthetic  potential.            We  acknowledge  the  European  Research  Council   (ERC  AdG  692775)   support   of   this   research.   U.   K.   D   is   thankful   to   The  Science  &  Engineering  Research  Board   (SERB),  DST,  and  Govt.  of  India  for  the  SERB  Overseas  Postdoctoral  Fellowship.  

Page 3 of 4 ChemComm

Che

mC

omm

Acc

epte

dM

anus

crip

t

Publ

ishe

d on

14

Nov

embe

r 20

17. D

ownl

oade

d by

Wei

zman

n In

stitu

te o

f Sc

ienc

e L

ibra

ry o

n 14

/11/

2017

12:

23:5

6.

View Article OnlineDOI: 10.1039/C7CC08322J

Page 5: View Article Online ChemComm - weizmann.ac.il

COMMUNICATION   Journal  Name  

4  |  J.  Name.,  2012,  00,  1-­‐3   This  journal  is  ©  The  Royal  Society  of  Chemistry  20xx  

Please  do  not  adjust  margins  

Please  do  not  adjust  margins  

Conflicts  of  interest  There  are  no  conflicts  to  declare.  

References  1 (a)  B.  Cui,  B.  L.  Zheng,  K.  He  and  Q.  Y.  Zheng,  J.  Nat.  Prod.,  2003,  66,  

1101;  (b)  S.  Tsukamoto,  T.  Kawabata,  H.  Kato,  T.  Ohta,  H.  Rotinsulu,  R.  E.  P.  Mangindaan,  R.  W.  M.  Van  Soest,  K.  Ukai,  H.  Kobayashi  and  M.  Namikoshi,  J.  Nat.  Prod.,  2007,  70,  1658;  (c)  J.  Zhong,  Nat.  Prod.  Rep.,  2009,  26,  382;  (d)  M.  Roue,  I.  Domart-­‐  Coulon,  A.  Ereskovsky,  C.  Djediat,  T.  Perez  and  M.  L.  Bourguet-­‐Kondracki,   J.  Nat.  Prod.,  2010,  73,  1277;  (e)  L.  Zhang,  X.  M.  Peng,  G.  L.  Damu,  R.  X.  Geng  and  C.  H.  Zhou,  Med.  Res.  Rev.,  2014,  34,  340.  

2 (a)   V.   Kumar,   M.   P.   Mahajan,   Heterocycles   in   Natural   Product  Synthesis,  ed.  K.  C.  Majumdar,  and  S.  K.  Chattopadhyay,  Wiley-­‐VCH,  Weinheim,  2011,  pp.  507–533;  (b)  S.  Arshadi,  A.  R.  Bekhradnia  and  A.  Ebrahimnejad,   Can.   J.   Chem.,   2011,   89,   1403;   (c)   S.   N.   Azizi,   P.  Shakeri,  M.   J.   Chaichi,   A.   Bekhradnia,  M.   Taghavi   and  M.   Ghaemy,  Spectrochim.  Acta,  Part  A,  2014,  122,  482;  (d)  G.  K  Gupta,  V.  Kumar  and  K.  Kaur,  Nat.  Prod.  J.,  2014,  4,  73.  

3 (a)   B.   Forte,   B.  Malgesini,   C.   Piutti,   F.   Quartieri,   A.   Scolaro   and   G.  Papeo,  Mar.   Drugs,   2009,   7,   705;(b)   K.   Bonezzi,   G.   Taraboletti,   P.  Borsotti,  F.  Bellina,  R.  Rossi  and  R.  Giavazzi,  J.  Med.  Chem.,  2009,  52,  9606;   (c)   J.   Dietrich,   V.   Gokhale,   X.   Wang,   L.   H.   Hurley   and   G.   A.  Flynn,   Bioorg.   Med.   Chem.   2010,   18,   292;   (d)   A.   Bhatnagar,   P.   K.  Sharma  and  N.  Kumar,   Int.   J.   Pharm  Tech  Res.,   2011,  3,   268;   (e)  B.  Sadek,   Pharma   Chem.,   2011,   3,   410;(f)   S.   N.   Riduan   and   Y.   Zhang,  Chem.   Soc.   Rev.,   2013,   42,   9055;   (g)   C.   H.   Jin,   M.     Krishnaiah,   D.  Sreenu,  V.  B.  Subrahmanyam,  K.  S.  Rao,  H.  J.  Lee,  S.  J.  Park,  K.  Lee,  Y.  Y.   Sheen   and   D.   K.   Kim,   J.   Med.   Chem.,   2014,   57,   4213;   (h)   E.  Vessally,   S.   Soleimani-­‐Amiri,   A.   Hosseinian,   L.   Edjlalid   and   A.  Bekhradnia,  RSC  Adv.,  2017,  7,  7079.  

4 (a)  D.  J.  Wolff,  G.  A.  Datto  and  R.  A.  Samatovicz,  J.  Biol.  Chem.  1993,  268,   9430;   (b)   N.   Sennequier,   D.   Wolan   and   D.   J.   Stuehr,   J.   Biol.  Chem.,  1999,  274,  930;  (c)  H.  Koga,  Y.    Nanjoh,  K.  Makimura  and  R.  Tsuboi,  Med.  Mycol.,  2009,  47,  640;  (d)  V.  Zoete,  O.  Michielin,  U.  F.  Rohrig,   S.  R.  Majjigapu,  M.  Chambon,   S.  Bron  and   L.   Pilotte,  Eur.   J.  Med.  Chem.,  2014,  84,  284.  

5 (a)  S.  Baroniya,  Z.  Anwer,  P.  K.  Sharma,  R.  Dudhe  and  N.  Kumar,  Der  Pharmacia  Sinica,  2010,  1,  172;  (b)  E.  M.  Perchellet,  J.  –P.  Perchellet  and  P.  W.  Baures,  J.  Med.  Chem.,  2005,  48,  5955.  

6 (a)   M.   Fukui,   M.   Inaba,   S.   Tsukagoshi   and   Y.   Sakurai,   Cancer   Res.,  1982,  42,   1098;   (b)  G.   J.   Atwell,   J.   Fan,   K.   Tan   and  W.  A.  Denny,   J.  Med.  Chem.,  1998,  41,  4744;  (c)  S.  Y.  Al-­‐Raqa,  A.  M.  S.  ElSharief,  S.  E.  Khalil  and  A.  M.  Al-­‐Amri,  Heteroat.  Chem.,  2006,  7,  643.  

7 (a)   A.   Vijesh,   A.   M.   Isloor,   S.   Telkar,   S.   Peethambar,   S.   Rai   and   N.  Isloor,  Eur.  J.  Med.  Chem.,  2011,  46,  3531.  (b)  W.  R.  Roush,  J.  Y.  Choi,  M.  S.  Plummer,  J.  Starr,  C.  R.  Desbonnet,  H.  Soutter  and  J.  Chang,  J.  Med.  Chem.,  2012,  55,  852;  (c)  L.  Yurttaş,  M.  Duran,  Ş.  Demirayak,  H.  K.  Gençer  and  Y.  Tunalı,  Bioorg.  Med.  Chem.  Lett.,  2013,  23,  6764.  

8 J.  Z.  Vlahakis,  C.  Lazar,   I.  E.  Crandall  and  W.  A.  Szarek,  Bioorg.  Med.  Chem.,  2010,  18,  6184.  

9 (a)   J.   C.   Lee,   J.   T.   Laydon   and   P.   C.  Mcdonnell,  Nature,   1994,   372,  739;   (b)   J.   L.   Adams,   J.   C.   Boehm,   T.   F.   Gallagher,   S.   Kassis,   E.   F.  Webb,  R.  Hall,  M.  Sorenson,  R.  Garigipati,  D.  E.  Griswoldc  and   J.  C.  Lee,  Bioorg.  Med.  Chem.  Lett.,  2001,  11,  2867.    

10 (a)   H.   Debus,   Justus   Liebigs   Ann.   Chem.,   1858,   107,   199.   (b)   B.  Radzisewski,  Chem.  Ber.,  1882,  15,  2706.   (c)  T.  Benincori,  E.  Brenna  and   F.   J.   Sannicolo,  Chem.   Soc.,   Perkin   Trans.,   1,   1993,   675.   (d)  W.  Marckwald,   Chem.   Ber.,   1892,   25,   2359.   (e)   A.   M.   Vanleusen,   J.  Wildeman  and  O.  Oldenziel,  J.  Org.  Chem.,  1977,  42,  1153.    

11 (a)  D.  F.  Frantz,  L.  Morency,  A.  Soheili,  J.  A.  Murry,  E.  J.  J.  Grabowski  and  R.  D.   Tillyer,  Org.   Lett.,  2004,  6,   843;   (b)   S.   Zaman,   K.  Mitsuru  and  A.  D.  Abell,  Org.  Lett.,  2005,  7,  609.  (c)  K.  Illgen,  S.  Nerdinger,  D.  Behnke  and  C.  Friedrich,  Org.  Lett.,  2005,  7,  39;  (d)  S.  A.  Siddiqui,  U.  C.   Narkhede,   S.   S.   Palimkar,   T.   Daniel,   R.   J.   Lahoti   and   K.   V.  

Srinivasan,  Tetrahedron,  2005,  61,   3539;   (e)   V.   Zuliani,   G.  Cocconcelli,   M.   Fantini,   C.   Ghiron   and   M.   Rivara,   J.   Org.  Chem.,  2007,  72,   4551;   (f)   G.   Bratulescu,   Synthesis,  2009,   2319.   (g)  M.  Adib,  S.  Ansari,  S.  Feizi,   J.  A.  Damavandi  and  P.  Mirzaei,  Synlett,  2009,   3263;   (h)   T.   S.   Chundawat,   N.   Sharma,   P.   Kumari   and   S.    Bhagat,  Synlett,  2016,  27,  404.    

12 (a)  C.  Kison  and  T.  Opatz,  Chem.  -­‐Eur.   J.  2009,  15,  843;   (b)  C.  Chen,  W.  Hu,  P.  Yan  and  G.  C.  Senadi,  J.  Wang,  Org.  Lett.,  2013,  15,  6116;  (c)  S.  Pusch  and  T.  Opatz,  Org.  Lett.,  2014,  16,  5430;  (d)  L.  Xiang,  Y.  Niu,  X.  Pang,  X.  Yang  and  R.  Yan,  Chem.  Commun.,   2015,  51,   6598;  (e)  S.  Aly,  M.  Romashko  and  B.  A.  Arndtsen,  J.  Org.  Chem.,  2015,  80,  2709;  (f)  X.  Zhang,  P.  Wu,  Y.  Fu,  F.  Zhang  and  B.  Chen,  Tetrahedron  Letters,  2017,  58,  870;  (g)  X.  Zhou,  H.  Ma,  C.  Shi,  Y.  Zhang,  X.  -­‐X.  Liu  and  G.  Huang,  Eur.  J.  Org.  Chem.,  2017,  237.    

13 (a)  K.  L.  Tan,  R.  G.  Bergman  and  J.  A.  Ellman,  J.  Am.  Chem.  Soc.,  2001,  123,  2685;  (b)  Y.  Fukumoto,  K.  Sawada,  M.  Hagaihara,  N.  Chatani  and  S.  Murai,  Angew.  Chem.  Int.  Ed.,  2002,  41,  2779;  (c)  B.  Sezen  and  D.  Sames,  J.  Am.  Chem.  Soc.,  2003,  125,  10580.    

14 (a)  D.  Tang,  P.  Wu,  X.  Liu,  Y.  X.  Chen,  S.  B.  Buo,  W.  L.  Chen,   J.  G.  Li  and   B.-­‐H.   Chen,   J.   Org.   Chem.,   2013,   78,   2746;   (b)   S.   Mitra,   A.   K.  Bagdi,  A.  Majee  and  A.  Hajra,  Tetrahedron  Lett.,  2013,  54,  4982;  (c)  H.   Hong,   Y.   Shao,   L.   Zhang   and   X.   Zhou,   Chem.   -­‐Eur.   J.,   2014,   20,  8551;  (d)  T.  Kumar,  D.  Verma,  R.  F.  S.  Menna-­‐  Barreto,  R.  F.  S.;  W.  O.  Valenca,  E.  N.  da  Silva  Junior  and  I.  N.  N.  Namboothiri,  Org.  Biomol.  Chem.,  2015,  13,  1996;  (e)  Y.  Zhu,  C.  Li,  J.  Zhang,  M.  She,  W.  Sun,  K.  Wan,  Y.  Wang,  B.  Yin,  P.  Liu  and  J.  Li,  Org.  Lett.,  2015,  17,  3872.  

15 (a)   C.   Kanazawa,   S.   Kamijo   and   Y.   Yamamoto,   J.   Am.   Chem.   Soc.,  2006,  128,  10662;  (b)  B.  Pooi,  L.  Lee,  K.  Choi,  H.  Hirao  and  S.  H.  Hong,  J.  Org.  Chem.,  2014,  79,  9231;  (c)  X.Huang,  X.  Cong,  P.  Mi  and  X.  Bi,  Chem.  Commun.,  2017,  53,  3858.    

16 (a)   J.   J.   García,   P.   Zerecero-­‐Silva,   G.   Reyes-­‐Rios,  M.   G.   Crestani,   A.  Arévalo  and  R.    Barrios-­‐Francisco,  Chem.  Commun.  2011,  47,  10121;  (b)   A.   Tlahuext-­‐Aca,   O.   Hernández-­‐Fajardo,   A.   Arévalo   and   J.   J.  García,  Dalton  Trans.  2014,  43,  15997.  

17 (a)  W.  Liu,  H.  Cao,  H.  Zhang,  H.  Zhang,  K.  H.  Chung,  C.  He,  H.  Wang,  F.  Y.   Kwong   and   A.   Lei,   J.   Am.   Chem.   Soc.,   2010,   132,   16737;   (b)   T.  Truong,  and  O.  Daugulis,  J.  Am.  Chem.  Soc.,  2011,  133,  4243;  (c)  J.  H.  Kim,   J.   Kim,   S.  H.   Cho   and   S.   Chang,   J.   Am.   Chem.   Soc.,   2011,  133,  16382;  (d)  C.–L.  Sun  and  Z.–J.  Shi,  Chem.  Rev.,  2014,  114,  9219;  (e)  A.  Yadav,   A.   Verma,   S.   Patel,   A.   Kumar,   V.   Rathore,   Meenakshi,   S.  Kumar   and   S   Kumar,   Chem.   Commun.,   2015,   51,   11658;   (f)   A.   A.  Toutov,   W.-­‐B.   Liu,   K.   N.   Betz,   A.   Fedorov,   B.   M.   Stoltz   and   R.   H.  Grubbs,  Nature,  2015,  518,  80;  (g)  J.  Chen  and  J.  Wu,  Angew.  Chem.  Int.  Ed.,  2017,  56,  3951;  (h)  M.  Li,  O.  Gutierrez,  S.  Berritt,  A.  Pascual-­‐Escudero,   A.   Yeşilçimen,   X.   Yang,   J.   Adrio,   G.   Huang,   E.   Nakamaru-­‐Ogiso,   M.   C.   Kozlowski   and   P.   J.   Walsh,   Nat.   Chem.,   2017,  doi:10.1038/nchem.2760.    

18 (a)   D.   Srimani,   M.   Feller,   Y.   Ben-­‐David   and   D.   Milstein,   Chem.  Commun.,   2012,   48,   11853;   (b)   S.   Chakraborty,   G.   Leitus   and   D.  Milstein,  Angew.  Chem.  Int.  Ed.,  2017,  56,  2074.    

19 (a)   N.   Habersaat,   R.   Fröhlich   and   E.   -­‐U.   Würthwein,   Eur.   J.   Org.  Chem.,   2004,   2567;   (b)   J.   Kuang,   B.   Chena   and   S.  Ma,  Org.   Chem.  Front.,   2014,  1,   186;   (c)   P.   Debnath,  M.   Baeten,  N.   Lefevre,   S.   Van  Daele  and  B.  U.  W.  Maes,  Adv.  Synth.  Catal.,  2015,  357,  197;  (d)  S.  D.  Veer,  K.  V.  Katkar  and  K.  G.  Akamanchi,  Tetrahedron  Let.,  2016,  57,  4039.    

20 (a)  E.  S.  Childress,  Y.  Kharel,  A.  M.  Brown,  D.  R.  Bevan,  K.R.  Lynch  and  W.  L.  Santos,  J.  Med.  Chem.,  2017,  60,  3933.  

21 (a)   P.   Debnath   and   K.   C.   Majumdar,   Tetrahedron   Let.,   2014,   55,  6976;   (b)  B.  Morel,  P.  Franck,   J.  Bidange,  S.  Sergeyev,  D.A.  Smith,   J.  D.  Moseley  and  B.  U.  W.  Maes,  ChemSusChem,  2017,  10,  624.    

Page 4 of 4ChemComm

Che

mC

omm

Acc

epte

dM

anus

crip

t

Publ

ishe

d on

14

Nov

embe

r 20

17. D

ownl

oade

d by

Wei

zman

n In

stitu

te o

f Sc

ienc

e L

ibra

ry o

n 14

/11/

2017

12:

23:5

6.

View Article OnlineDOI: 10.1039/C7CC08322J