30
Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering (CARS) by Andreas Volkmer 3 rd Institute of Physics, University of Stuttgart, Pfaffenwaldring 57 70550 Stuttgart, Germany [email protected] Universität Stuttgart AG Volkmer (Coherent microscopy & single-molecule spectroscopy) FRISNO-8, Ein Bokek, 20-25 February 2005

Vibrational imaging and microspectroscopies based on coherent anti … · 2005. 2. 21. · Gaussian fields • Incident fields are polarized along the x axis • refractive index

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering (CARS)

    by

    Andreas Volkmer

    3rd Institute of Physics,University of Stuttgart,

    Pfaffenwaldring 5770550 Stuttgart,

    Germany

    [email protected]

    Universität Stuttgart

    AG Volkmer(Coherent microscopy &

    single-molecule spectroscopy)

    FRISNO-8, Ein Bokek, 20-25 February 2005

  • Noninvasive three-dimensional characterization of mesoscopic objects within complex heterogeneous systems

    • with high spatial resolution,• with high spectral resolution,• with high temporal resolution,• and with high sensitivity.

    Ultimate goal in Optical Microscopy

  • Fluorescence-based microscopyConfocal fluorescence laser scanning microscopyTwo-photon induced fluorescence laser scanning microscopy

    Limitations of fluorescence-based spectroscopic studies:

    • dye labeling required (photo-toxicity)

    • perturbation of structure and dynamics by fluorophore

    • photo-stability (# emitted photons)

    !

    knr

    abs kfl

  • 102 103 104 105 106 10710-2

    10-1

    100

    101

    102

    103

    NF

    (I0/2) / W cm-2

    CW (one-photon)excitation at 514 nm

    102 103 104 105 106 10710-2

    10-1

    100

    101

    102

    103

    NF

    Iav

    / kW cm-2102 103 104 105 106 107

    10-2

    10-1

    100

    101

    102

    103

    NF

    (I0/2) / W cm-2

    Pulsed fs (one-photon)excitation at 350 nm

    Pulsed fs (two-photon)excitation at 800 nm

    Fluorescence photobleaching of Rhodamine 6G / water

    Excited-statephotolysis model:

    Eggeling, Volkmer, Seidel, Chem. Phys. Chem. (2005) submitted.

  • Chemical contrast mechanism based on molecular vibrations, which is intrinsic to the samples: NO requirement of natural or artificial fluorescent probes!

    2900-3000Lipids, C-H stretching

    1500-1700Polypeptide backbone, C=O stretching (Amide I)

    ~ 1000

    DNA backbone,

    C-O stretching

    Raman bands / cm-1species

    Intrinsic chemical contrast mechanism

    [N. Jamin et al., PNAS 95 (1998) 4837-4840 ]

    Spontaneous Raman microscopy:

    • weak signal=> requirement for high excitation power

    • fluorescence background

    Infrared microscopy:

    • low spatial resolution (~2-3 µm)• low S/B ratio• water absorption

  • CARS fundamentals

    ( ) 2)3( ASASCARS PI ω∝

    ( )[ ] Γ+−−Ω= ispr ωωχ 1)3( 1

    ( ) ( )( ) ( )[ ] ( ) ( )SSPPnrASrASAS EEP ωωχωχω *233)3( +=

    Resonant CARS

    ωASωP ωSv=1v=0

    ω‘P

    CARS signal:

    induced third-order polarization:

    .)3(

    constnr =χ No vibrational contrast !

    Two-photon enhancednon-resonant CARS

    Non-resonant CARS

    ωAS

    ω‘P

    ωP

    ωS

    ωASωP ωSv=1v=0

    ω‘P

    ( )SPAS ωωω −= 2

  • 1982 - Duncan, Reintjes, Manuccia, Optics Lett. 7, 350

    Picosecond visible laser,Noncollinear geometry

    Development of CARS Microscopy

    (CARS image on the 2450-cm-1 band of D20)

    Onion-skin cells, soaked in D2O

  • 853 nm (100 µW)

    1135 nm (100 µW)

    ⇒ CARS signal at 675 nm

    (Raman-shift of 2913 cm-1, on resonance with C-H vibrations)

    HeLa cellsE-coli

    1999 - Zumbusch, Holtom, Xie, Phys. Rev. Lett. 82, 4142

    Femtosecond near-IR laser,Collinear geometry,Forward detection

    High NA objectives

    FilterSample

    S

    ωAS

  • • Intrinsic sensitivity to specific chemical bonds

    => No dye labeling

    • Coherent signal enhanced by orders of magnitudes

    => Less laser power required compared to conventional Raman

    compared to spontaneous Raman signal microscopy

    • No population of higher electronic states

    => No photobleaching

    • Confinement of nonlinear excitation to confocal volume

    => Inherent 3D spatial sectioning capability

    Advantages of CARS-microscopy

  • Theory of collinear CARS microscopy

    Distinct features:

    (ii) Actual extent of wave-vector mismatch is controlled by geometry for propagation directions of both incident beams and the CARS radiation

    (iii) Heterogeneous sample of Raman scatterers of arbitrary shape and size embedded in nonlinear medium

    (i) Under tight focusing conditions -> breakdown of paraxial approximation

  • Amplitude distribution

    -2 -1 0 1 2-2

    -1

    0

    1

    2

    x / λ

    z / λ

    (i) Description of a tightly focused Gaussian field

    -1 0 1-1

    0

    1

    -2.0-1.7-1.4-1.1-0.80-0.50-0.200.100.400.701.01.31.61.92.0

    x / λ

    z / λ

    Phase distribution (φ-kz)

    Cheng, Volkmer, Book, Xie, JOSA B, 19 (2002) 1363

  • (ii) Wave-vector mismatch in collinear CARS microscopy

    Wave-vector mismatch in collinear beam geometry:

    phase matching condition:

    (interaction length

  • (iii) CARS signal generation for microscopic scatterer

    Assuming:

    • tightly focused incident Gaussian fields

    • Incident fields are polarized along the x axis

    • refractive index mismatch between sample and solvent is negligible

    Volkmer, Cheng, Xie, Phys. Rev. Lett. 87, 023901 (2001).

    Φ

    w0

    Θ

    R

    r

    x

    z

    f

    Einc

    γ

    0

    objχ

    ( )( )rχrRε objAS ,,

    solvχ

  • Simulated size dependence of CARS signals

    0 2 4 6 810-310-1101103

    I CA

    RS (

    a.u.

    )

    D / λp

    F-CARS E-CARS

    kp, kS

    objχsolvχ

    0 2 4 6 810-310-1101103

    D / λp

    F-CARS E-CARS

    kp, kS

    )(reflected solvχ

    0 2 4 6 810-410-2100102 C-CARS (forward)

    C-CARS (backward)

    D / λp

    kS

    kp

    objχ

    Volkmer, J. Phys. D : Appl. Phys. 38 (2005) R59

  • 0.0 0.5 1.0 1.5 2.0 2.5 3.00

    50100150200

    x (µm)

    sign

    al (

    cts)

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    5

    10

    15

    20

    sign

    al (

    cts)

    x (µm)

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    sign

    al (

    cts)

    x (µm)

    (c) C-CARS xy- image

    (a) F-CARS xy-image

    FWHM0.34 µm

    FWHM0.34 µm

    FWHM0.36 µm

    (b) E-CARS xy- image

    (d) F-CARS xz- image

    0 500 1000

    4.0

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    z (µ

    m)

    signal (cts)

    FWHM1.18 µm

    Experimental characterization of CARS microscopyfor a single 500-nm polystyrene bead in water

    (Raman shift ~1600 cm-1)

    Volkmer, J. Phys. D : Appl. Phys. 38 (2005) R59

  • P-CARS xy- image

    0 20 40 600

    20406080

    x (µm )

    sig

    nal (

    cts)

    0 20 40 600

    100

    200

    x (µm)

    sig

    nal (

    cts)

    (a) (b)F-CARS xy- image E-CARS xy- image

    sign

    al (

    cts)

    (c)

    0 10 20 30 40 50 600

    100

    200

    x (µm)

    Picosecond CARS imaging of a live unstained cell

    Epithelial cells@ Raman shift ~1570 cm-1

    (amide I)

    NIH3T3 cells@ Raman shift ~2860 cm-1

    (C-H strectch)

  • -150 -100 -50 0 50 100 1500

    200

    400

    600

    2 ps(7.5 cm-1) X 10

    Raman profie

    X 1

    X 100

    pulse width0.5 ps(29 cm-1)

    10 ps (1.5 cm-1)

    CA

    RS

    inte

    nsity

    (a.

    u.)

    (ωp-ω

    s)-ω

    R (cm-1)

    Simulation of CARS spectra as afunction of pulse widths

    ( )( )

    ( )33nr

    sp i

    A χωω

    χ +Γ−−−Ω

    =2Γ = 10 cm−1 … line width

    2.0=AnrχΩ … vibration frequency

    ( )∫+∞

    ∞−

    = asasCARS dPI ωω2)3(

    The CARS intensity is:

  • 50 100 1500.0

    0.2

    0.4

    0.6

    0.8

    1.0

    ×

    03

    Resonant

    Non-resonant ( 0.01)

    Ir/I

    nr

    Pulse temporal width (fs)

    1001503005000S

    igna

    l / b

    ackg

    roun

    d

    CA

    RS

    inte

    nsity

    (a.

    u.)

    Pulse spectral width (cm-1)

    Γ = 25 cm-1

    ω

    | χ |2

    |χ |2

    ω

    CARS intensity vs. excitation pulse spectral width

    Cheng, Volkmer, Book, Xie, J. Phys. Chem. B 105, 1277 (2001).

  • Synchro-Locksystem

    PZT drivers& galvo’s

    The CARS microscope

    Telescopes Pol

    Pol

    ω s

    ω p

    BC

    6.7 ps Ti:sapphiremode-locked oscillator

    6.7 ps Ti:sapphiremode-locked oscillator

    microscope

  • acquisition of CARS spectrum in one”shot”!

    ωAS

    ωp

    ωs

    ωp’

    Obj

    DL

    FA

    BC

    Spectrometer +LN2-CCD array

    Telescopes P SHWP

    FM

    L

    Obj

    ωAS

    ωp

    QWP

    ωS

    ω

    CARSpumpStokes

    Multiplex-CARS Microspectroscopyin the Frequency-Domain

  • Inte

    nsity

    (a.

    u.)

    Raman shift / cm-12800 2900 3000

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Raman

    2800 2900 30000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Inte

    nsity

    (a.

    u.)

    Raman shift (cm-1)

    Raman

    Example: Monitoring the thermodynamic state of phospholipid membranes in the C-H stretch region

    DSPCTg=55°C

    DOPCTg=-20°C

    2800 2900 30000

    1

    2

    3

    Nor

    mal

    ized

    CA

    RS

    Int. CARS

    ωp−ωs / cm–12800 2900 3000

    0.0

    0.4

    0.8

    1.2

    Nor

    mal

    ized

    CA

    RS

    Int.

    CARS

    ωp−ωs / cm–1[Cheng, Volkmer, Book, Xie, J. Phys. Chem. B 2002, 106, 8493-8498]

    entropy

  • Model system for Stratum Corneum lipids

    νa(CH2)

    νa(CH2)cycl

    Raman spectra in CH-stretching mode region

    νs(CH2)

    wavenumbers /cm-1

  • Spectrally integrated CARSimage section

    10 µm

    2700 2900 3100

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    Extracted CARS ratio spectrafor each image pixel

    ( )( )νν~

    ~ref

    CARS

    CARSI

    I

    1/~ −cmν

    Hyper-spectral CARS imaging of a Stratum Corneum

    Existence of cholesterol-enriched micro-domains

    (see Poster by Nandakumar et al : Mo-4)

  • CARS microspectroscopy in the time-domain

    0 timeτ

    )(τCARSI

    ( ) ( ) 22 , tt Sp EE ( ) 2' tpE

    ( ) 2)3( , tτP

    Raman Free Induction Decay (RFID):

    Obj

    D

    L

    F

    A

    BC

    S

    Obj

    ωAS

    Telescopes P

    BC

    VD

    FD

    ωp’

    ωp

    ωS

    ωP ωS

    ωP’ ωAS

    |0>|1>

    Three-color CARS set-up:

  • -500 0 500 1000 1500

    102

    103

    104

    105

    water bead

    CA

    RS

    sig

    nal /

    cps

    τ / fs

    3000 3040 3080

    inte

    nsity

    (a.

    u.)

    Raman shift / cm-1

    )~(~|| να

    0 1 2 3 4 50.00.51.01.52.0

    x / µm

    0.00.51.01.52.0

    inte

    nsity

    x10

    -5 /

    cps τ = 0 fs

    S/B(τ=0) ≈ 3

    inte

    nsity

    x10

    -3 /

    cps

    0 1 2 3 4 501234

    x / µm

    01234 τ = 484 fs

    S/B (τ=484 fs) ≈ 35Complete removal of the non-resonant CARS contributions !

    λ P1 = 714.6 nm (~85 fs) λS = 914.1 nm (~115 fs)

    λ P2 = 798.1 nm (~185 fs)

    Quantum beat recurs at ~ 1280 fs (mode beating at difference frequencies of~ 26 cm-1)

    Volkmer, Book, Xie, Appl. Phys. Lett. 80 (2002) 1505c

    Example: RFID imaging of 1-µm polystyrene bead

  • Coherent Vibrational Imaging beyond CARS

    Simplifying coherent Raman microscopy by use of a nonlinear optical imaging technique which

    maps only the imaginary part of χ(3)

  • Stimulated Raman gain for probe laser in the presence of strong pump laser, when frequency difference equals Raman frequency

    P(ω2) = χ (3) (- ω2; ω2, -ω1, ω1) E(ω2) |E(ω1)|2

    ωS= ωS- ωp+ ωpkS = kS – kP + kp

    Stimulated Raman scattering (SRS) microscopy

    ♦ Depends only on the Im χ (3)♦ Linear on χ (3)♦ Linear on number density♦ Linear in pump and Stokes intensities♦ Automatic Phase matching

    Advantages:

    ks kS

    kp kp

    χ (3)

    LωP ωP

    ωS ωS

    Disadvantage: Tiny signal over huge background signal from the Stokes field!

  • 1 5

    Slope 1.01

    pump power / mW1.5 5

    Slope 1.005SR

    S s

    igna

    l (a.

    u)

    Stoke power / mW

    0.5 µm

    ♦ Pixel intensity ∝ No. of C=C bonds ♦ No signal from surrounding water♦ No interference effect in image contrast

    SRS images of a polystyrene 1-µm bead in water

    2 8 0 0 2 9 0 0 3 0 0 0

    4

    8

    1 2

    1 6

    SR

    S in

    tens

    ity (

    a.u.

    )

    R a m a n s h if t / c m -1

    νs(CH2-aliph.)2853 cm-1

    νas(CH2-aliph.)2912 cm-1

    Nandakumar, Kovalev, Volkmer, manuscript in preparation

  • Summary

    • Under tight focusing conditions, size-selectivity in CARS signal generation is introduced by wave-vector mismatch geometries, e.g. epi-detected CARS (E-CARS) microscopy

    allows efficient rejection of bulk solvent signal

    E-CARS is easily implemented with a commonly used confocal epi-fluorescence microscope

    • Combination of CARS microscopy with spectroscopic techniques provides wealth of chemical and physical structure information within a femto-liter volume in both the frequency-domain (multiplex CARS microspectroscopy) and time-domain (RFID imaging)

    allows rejection of nonresonant background contributions by polarization-sensitive and time-delayed detection schemes

    • Highly sensitive tool for the chemical mapping of unstained live cells in a spectral region for DNA, membranes and proteins.

    [J. Phys. D : Appl. Phys. 38 (2005) R59 (Topical review)]

    • First demonstration of Stimulated Raman Scattering (SRS) microscopy on model systems of polystyrene beads embedded in water

    No interference effects with nonresonant contributions from both object and matrixSRS spectra qualitatively reproduce the Raman spectra

  • Harvard University

    X.S. XieJ.-X. ChengL.D. Book

    3. Physikalische Institut, Universität Stuttgart:

    P. NandakumarA. Kovalev

    Roswell Park Cancer Institute, Buffalo, NY:

    A. SenM. Koehler

    Acknowledgements

    Emmy Noether Program Faculty of Arts and Sciences of Harvard University

    €€ $$