13
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) UvA-DARE (Digital Academic Repository) Single molecule fluorescence for organocatalysis Zheng, D. Publication date 2019 Document Version Other version License Other Link to publication Citation for published version (APA): Zheng, D. (2019). Single molecule fluorescence for organocatalysis. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date:21 Aug 2021

UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Single molecule fluorescence for organocatalysis

Zheng, D.

Publication date2019Document VersionOther versionLicenseOther

Link to publication

Citation for published version (APA):Zheng, D. (2019). Single molecule fluorescence for organocatalysis.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an opencontent license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, pleaselet the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the materialinaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letterto: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. Youwill be contacted as soon as possible.

Download date:21 Aug 2021

Page 2: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

139

Summary

Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to observe rare

events has been proven useful for the investigation of catalytic reactions, e.g.

with enzymes and zeolites. Applications in molecular chemistry, however, are

still uncommon. In this thesis, the focus is mainly on the study of organic

reactions catalysed by cinchona alkaloids. In order to monitor the reactions

using fluorescence, catalysts and reagents carrying bright and photostable

fluorophores were designed. For single molecule studies, reagents or catalysts

are immobilized at surfaces of glass cover slips, allowing to observe single-

molecule events.

In the introductory Chapter 1, we recall some basics of photoluminescence, a

brief history of organocatalysis using cinchona alkaloids, and single molecule

techniques. Chapter 2 gives an overview of the experimental methods and

describes general experimental details used in later chapters.

In Chapter 3, we explore the measurement of photoluminescence quantum

yields using standard reference materials. In this work, which is done in the

framework of the IUPAC project “Measurement of Photoluminescence

Quantum Yields” we measured the quantum yields of 26 air-equilibrated dye

solutions (15 different dyes) using the classical “relative method” with a set of 8

standard reference compounds. The results indicate that the inter-laboratory

variability of QY measurements using standards is mostly < 10%. Some of the

dyes investigated could be considered as new standards. In some cases, pitfalls

were identified, and measures are described to avoid them. The use of zinc

tetraphenylporphyrin is not recommended, based on the divergent results of

different laboratories, and the common standard 9,10-diphenylanthracene

should only be used after removal of oxygen from the solution.

In Chapters 4 to 7, the cinchona alkaloid organocatalysts play the main role. In

Chapter 4, we introduce cinchona alkaloid derivates PMI-BnCPD 1 and PMI-

dHQD, 2, in which a fluorescent perylene monoimide unit is linked to the

quinuclidine ring of the alkaloid structure. We describe and analyze the

photophysical processes of compounds 1 and 2, in solvents of different

polarities, ranging from toluene to acetonitrile. The dynamics of excited state

electron transfer of 1 and 2 are studied using fluorescence and transient

absorption spectroscopy. The excited state absorption spectrum of the charge

separated state resembles that of the perylene monoimide anion, but the

spectrum of the locally excited state is rather similar. Using global target

Page 3: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

140 Summary

analysis of the transient absorption data definitive evidence for the charge-

separation could be obtained.

In Chapter 5, we investigate cinchona alkaloid catalyzed reactions between

nucleophiles and a fluorogenic BODIPY-maleimide in solution and at a surface.

The surface immobilizations of a cinchona organocatalyst and of a thiol reactant

are described here, and their functionalities are tested with the BODIPY-

maleimide probe using steady state spectra and single molecule techniques.

When the catalyst (BnCPD, cupreidine benzyl ether) is immobilized through its

vinyl group it retains the high reactivity as in solution, but when the OH group

is used to make the link to the surface, the activity is reduced. The immobilized

thiol on the coverslip surface has high Michael addition reactivity, and binding

of the BODIPY-maleimide to the thiol leads to brightly fluorescent surface-

immobilized adducts. Importantly, this work provides the methods for the

cinchona organocatalysis investigation at the single molecule level presented in

Chapter 6.

Based on the previous work in Chapter 5 in which we functionalized coverslips

with catalysts and reactive molecules, in Chapter 6 we go on to use single-

molecule fluorescence techniques to gain insight into the mechanism of the

Michael addition of thiol to maleimide catalyzed by cinchona alkaloid

derivatives in heterogeneous conditions. Using total internal reflection

fluorescence microscopy (TIRFm), we acquired the kinetics of hydrogen

bonding between the bifunctional catalyst and a thiol and a maleimide, we

propose that Wynberg’s model, in which the main interactions are between the

quinuclidine base group of the catalyst and the thiol, and between the hydroxy

group of the catalyst and the carbonyl group of the Michael acceptor, is

appropriate for the pre-reaction complex. From the fraction of binding sites

occupied by the catalyst at equilibrium on both thiol and maleimide

functionalized surfaces, a binding constant of 2 mM-1 can be (crudely) estimated.

From the histogram of the duration of the binding of the fluorophore to the

surface, we can estimate the activation barrier for the hydrogen bond breaking

as ~64 kJ/ mol at 22 ºC in toluene. We determined the rate constant for the

formation of the product from the intermediate state as ~10 s-1 under our

experimental conditions. The average binding time of the reaction product to

the catalyst-functionalized surface is somewhat shorter than the binding times

of catalyst and immobilized reagents.

In Chapter 7, we describe preliminary results of the use of single-molecule

fluorescence techniques to study the mechanism of the Biginelli reaction, a

three-component reaction producing 3,4-dihydropyrimidin-2(1H)-ones (DHPM)

from derivatives of benzaldehyde, ethyl acetoacetate, and urea, catalyzed by

acid and by chiral organocatalysts such as the cinchona alkaloids. In an attempt

Page 4: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

141

to determine the order in which the 3 reagents react, we designed two

fluorescent probes, a BODIPY-benzaldehyde (2) and a PMI-ethyl acetoacetate (6)

and applied them to track the reaction progress in homogeneous and

heterogeneous conditions. Until now, however, the DHPM product could only

be isolated with the BODIPY-benzaldehyde, but not with the PMI-ethyl

acetoacetate. Of the product of the latter only a mass spectrum could be

obtained. The BODIPY-benzaldehyde was applied to further study the kinetics

of the reaction at the single-molecule level with urea immobilized to the glass

surface. We obtained the time constant of binding between the BODIPY-

benzaldehyde and the tethered urea as 140 ms, from which the activation

energy of the barrier for this bond breaking is estimated as 67 kJ/ mol. The

nature of the binding could be hydrogen bonding, or a weak covalent bond.

Importantly, this binding time constant does not appear to be affected by the

addition of ethyl acetoacetate (3), showing that the bound species is not a

reactive intermediate towards the Biginelli product.

Page 5: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to
Page 6: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

143

Samenvatting

Fluorescentie van individuele moleculen voor organokatalyse

Enkel-moleculaire fluorescentiedetectie is vanwege zijn potentieel om zeldzame

gebeurtenissen waar te nemen, zeer nuttig gebleken voor het onderzoeken van

katalytische reacties, bijvoorbeeld met enzymen en zeolieten. Toepassingen in

de moleculaire chemie zijn er echter nog niet veel. In dit proefschrift ligt de

nadruk vooral op de studie van organische reacties gekatalyseerd door

cinchona-alkaloïden. Om de reacties te volgen met behulp van fluorescentie,

werden katalysatoren en reagentia ontworpen die heldere en fotostabiele

fluoroforen dragen. Voor onderzoek met enkele moleculen worden reagentia of

katalysatoren vastgemaakt op oppervlakken van glazen dekglaasjes, waardoor

gebeurtenissen met één molecuul kunnen worden waargenomen.

In het inleidende hoofdstuk 1 bespreken we enkele basisprincipes van

fotoluminescentie, geven we een korte geschiedenis van de organokatalyse met

behulp van cinchona-alkaloïden en bespreken we technieken voor de studie

van fluorescentie met individuele moleculen. Hoofdstuk 2 geeft een overzicht

van de experimentele methoden en beschrijft algemene experimentele details

die in latere hoofdstukken worden gebruikt.

In Hoofdstuk 3 verkennen we de meting van fotoluminescentie kwantum-

opbrengsten met behulp van standaard referentiematerialen. In dit werk, dat

wordt gedaan in het kader van het IUPAC-project "Measurement of

Photoluminescence Quantum Yields", hebben we de kwantumopbrengsten van

26 kleurstofoplossingen (15 verschillende kleurstoffen) gemeten met behulp van

de klassieke "relatieve methode" met een set van 8 standaard

referentieverbindingen (zonder zuurstof te verwijderen). De resultaten geven

aan dat de variabiliteit van kwantumopbrengst-metingen met behulp van

standaarden tussen verschillende laboratoria meestal <10% is. Sommige van de

onderzochte kleurstoffen kunnen als nieuwe standaarden worden beschouwd.

In sommige gevallen werden problemen geïdentificeerd en maatregelen

beschreven om ze te vermijden. Het gebruik van zink tetrafenylporfyrine wordt

niet aanbevolen, op basis van de uiteenlopende resultaten van verschillende

laboratoria, en de algemene standaard 9,10-difenylantraceen mag alleen

worden gebruikt na verwijdering van zuurstof uit de oplossing.

In hoofdstuk 4 tot 7 spelen de cinchona alkaloïde organokatalysatoren de

hoofdrol. In hoofdstuk 4 introduceren we cinchona alkaloïde derivaten PMI-

BnCPD 1 en PMI-dHQD, 2, waarin een fluorescente peryleenmonoimide-

eenheid is gekoppeld aan de chinuclidine-ring van de alkaloïdstructuur. We

Page 7: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

144

beschrijven en analyseren de fotofysische processen van verbindingen 1 en 2, in

oplosmiddelen met verschillende polariteiten, variërend van tolueen tot

acetonitril. De dynamica van elektronoverdracht in de aangeslagen toestand

van 1 en 2 wordt bestudeerd met behulp van fluorescentie en tijdsopgeloste

absorptiespectroscopie. Het absorptiespectrum van de ladings-gescheiden

toestand ziet er precies uit als dat van het peryleenmonoimide-anion, maar het

spectrum van de lokaal geëxciteerde toestand is tamelijk vergelijkbaar. Met

behulp van globale analyse van de tijdsopgeloste absorptiespectra kon definitief

bewijs voor de ladingsscheiding worden verkregen.

In Hoofdstuk 5 onderzoeken we cinchona-alkaloïde gekatalyseerde reacties

tussen nucleofielen en een fluorogeen BODIPY-maleïmide derivaat in oplossing

en aan een oppervlak. De immobilisatie aan het glasoppervlak van een

cinchona organo-katalysator en van een thiol reactant worden hier beschreven

en hun functionaliteiten worden getest met de BODIPY-maleïmide-probe met

behulp van steady-state spectra en technieken met een enkele molecule.

Wanneer de katalysator (BnCPD, cupreidine benzylether) via zijn vinylgroep

aan het oppervlak wordt gebonden behoudt deze de hoge reactiviteit zoals in

oplossing, maar wanneer de OH-groep wordt gebruikt om de verbinding met

het oppervlak te maken, wordt de activiteit verminderd. Het geïmmobiliseerde

thiol op het dekglaasje-oppervlak heeft een hoge Michael-additie reactiviteit en

binding van het BODIPY-maleïmide aan het thiol leidt tot helder fluorescerende

(op het oppervlak vastgehechte) adducten. Belangrijk is dat dit werk de

methoden verschaft voor het onderzoek naar de cinchona organokatalyse met

behulp van afzonderlijke moleculen in hoofdstuk 6.

Gebaseerd op het werk in hoofdstuk 5 waarin we de dekglaasjes met

katalysatoren en reactieve moleculen hebben gefunctionaliseerd, gaan we in

hoofdstuk 6 verder met het gebruik van fluorescentietechnieken gebaseerd op

de detectie van enkele moleculen om inzicht te krijgen in het mechanisme van

de Michael-additie van thiol aan maleïmide gekatalyseerd door cinchona-

alkaloïde derivaten in heterogene omstandigheden. Met behulp van totale

interne reflectie fluorescentiemicroscopie (TIRFm), hebben we de kinetiek van

de waterstofbruggen tussen de bi-functionele katalysator en een thiol en een

maleïmide verkregen. We stellen voor dat het model van Wynberg, waarin de

belangrijkste interacties plaatsvinden tussen de chinuclidine base groep van de

katalysator en het thiol en tussen de hydroxygroep van de katalysator en de

carbonylgroep van de Michael-acceptor, geschikt is voor het pre-reactiecomplex.

Uit de fractie van bindingsplaatsen bezet door de katalysator bij evenwicht op

zowel thiol als maleimide gefunctionaliseerde oppervlakken, kan een

bindingsconstante van 2 mM-1 (grof) worden geschat. Uit het histogram van de

duur van de binding van de fluorofoor aan het oppervlak kunnen we de

Page 8: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

145

activeringsenergie schatten voor het breken van de waterstofbruggen (~ 64

kJ/mol bij 22 ºC in tolueen).

We hebben de snelheidsconstante voor de vorming van het product uit de

tussentoestand bepaald (~ 10 s-1) onder onze experimentele omstandigheden.

De gemiddelde bindingstijd van het reactieproduct aan het met katalysator-

gefunctionaliseerde oppervlak is enigszins korter dan de bindingstijden van

katalysator en geïmmobiliseerde reagentia.

In Hoofdstuk 7 beschrijven we resultaten van het gebruik van

fluorescentietechnieken met een enkel molecuul om het mechanisme van de

Biginelli-reactie te bestuderen, een driecomponenten reactie die 3,4-

dihydropyrimidin-2(1H)-onen (DHPM) vormt uit derivaten van benzaldehyde,

ethylacetoacetaat en ureum, gekatalyseerd door zuur en door chirale

organokatalysatoren zoals de cinchona-alkaloïden. In een poging om de

volgorde te bepalen waarin de 3 reagentia reageren, hebben we twee

fluorescerende probes, een BODIPY-benzaldehyde (2) en een PMI-

ethylacetoacetaat (6) ontworpen en toegepast om de reactievoortgang in

homogene en heterogene omstandigheden te volgen. Tot nu toe kon het

DHPM-product alleen worden geïsoleerd met het BODIPY-benzaldehyde. Van

het product met het PMI-ethylacetoacetaat werd alleen een massaspectrum

verkregen. Het BODIPY-benzaldehyde werd gebruikt om de kinetiek van de

reactie op het niveau van het enkele molecuul verder te bestuderen met ureum

dat aan het glasoppervlak was geïmmobiliseerd. We verkregen de tijdconstante

van binding tussen het BODIPY-benzaldehyde en het gebonden ureum als 140

ms, waarmee de barrière voor deze bindingsbreking wordt geschat op 67

kJ/mol. Het is nog onzeker of de binding ontstaat door waterstofbruggen of

door een zwakke covalente binding. Belangrijk is dat deze

bindingstijdconstante niet wordt beïnvloed door de toevoeging van

ethylacetoacetaat (3), waaruit blijkt dat het intermediair niet snel doorreageert

tot het Biginelli-product.

Page 9: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

146

Page 10: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

147

总结

单分子荧光技术在有机催化的应用

由于单分子荧光检测具有观察稀有事件的潜力,并已被证明可应用于研究催

化反应。然而,在分子化学中的应用仍然不常见。本论文的重点主要是研究金鸡

纳生物碱催化的有机反应。为了使用荧光监测反应,我们设计了携带明亮和光稳

定荧光团的催化剂和反应物。在单分子研究中,反应物或催化剂固定在玻璃盖玻

片的表面,然后我们可以观察反应的单分子事件。

在第 1 章的介绍中,我们回顾了光致发光的一些基础知识,使用金鸡纳生物

碱的有机催化简史以及单分子技术。第 2 章概述了实验方法,并对后续章节中使

用的实验细节进行整体的概述。

在第 3 章中,我们探讨了使用标准参考样品来测量光致发光量子产率。这项

工作是在 IUPAC 项目“光致发光量子产率的测量”的框架内完成的,我们使用

经典的“相对方法”测量了 26 种空气饱和染料溶液(包含 15 种不同染料)的量

子产率,其中涉及到 8 种标准参考化合物。使用该种标准的 QY 测量方法,实验

室间的结果差异性大多是在 10%误差范围内。所研究的一些染料可被视为新的参

考样品。在测试中,我们发现了一些易犯的错误并提出了一些解决方法。由于四

苯基卟啉锌在各个实验室的结果存在巨大差异,所以该染料不建议使用;而常见

的标准样品 9,10-二苯基蒽要在除去氧气的溶剂中使用。

第 4 章至第 7 章,我们主要研究金鸡纳生物碱有机催化剂。在第 4 章中,我

们介绍了金鸡纳生物碱衍生物 PMI-BnCPD,1,和 PMI-dHQD,2,在该化合物

中带有荧光性质的苝单酰亚胺单元(PMI)连接到生物碱结构的奎宁环上。我们

描述和分析化合物 1 和 2 在不同极性溶剂(从甲苯到乙腈)的光物理过程。我们

利用荧光和瞬态吸收光谱研究了 1 和 2 激发态电子转移的动力学。我们发现该化

合物电荷分离态的激发态吸收光谱与 PMI 阴离子的相符合,但其和本地激发态的

光谱非常相似。使用瞬态吸收数据的全局和目标分析可以获得电荷分离的确切证

据。

在第 5 章中,我们研究了在金鸡纳生物碱催化下,亲核试剂与带有荧光试剂

BODIPY 的马来酰亚胺反应(分别在溶液和固体表面)。本文描述了金鸡纳有机

催化剂和硫醇反应物在固体表面的功能化,并且使用稳态光谱和单分子技术,在

BODIPY-马来酰亚胺探针的辅助下对他们的功能化进行检查。当催化剂

(BnCPD,哌啶苄基醚)通过其乙烯基固定在玻璃表面上,它仍然保持了如在溶

液中的高反应活性,但是当 OH 基团用于与表面连接时,催化剂的活性则降低。

盖玻片表面上的固定化硫醇具有高迈克尔加成反应性,并且 BODIPY-马来酰亚胺

与硫醇的结合会在玻璃表面上产生明亮的荧光加合物。重要的是,这项工作为第

6 章中的金鸡纳有机催化在单分子水平的研究提供了方法支持。

基于我们在第 5 章中使用催化剂和活性分子对盖玻片进行功能化的前期工

作,在第 6 章中我们继续使用单分子荧光技术来深入了解在非均相条件下,金鸡

纳生物碱衍生物催化的硫醇与马来酰亚胺的迈克尔加成机理。使用全内反射荧光

Page 11: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

148

显微镜(TIRFm),我们获得了双功能催化剂分别与硫醇和马来酰亚胺之间的氢

键动力学,我们提出了 Wynberg 的模型适合于预反应络合物,其中主要的相互作

用来自催化剂的奎宁环碱基和硫醇,以及催化剂的羟基和迈克尔受体的羰基。在

平衡状态下,从催化剂在硫醇和马来酰亚胺功能化表面上的结合位点的占有率,

可以(粗略地)估计其 2 mM-1的结合常数。根据荧光团与表面结合持续时间的统

计直方图,我们可以估算出在 22℃下甲苯中氢键断裂的活化能为~64 kJ / mol。在

特定的实验条件下,我们确定了从中间状态形成产物的速率常数为~10s-1。反应

产物与催化剂功能化表面的平均结合时间略短于催化剂和固定化反应试剂的结合

时间。

在第 7 章中,我们使用单分子荧光技术研究 Biginelli 反应机理并得到初步结

果,Biginelli 反应是一种三组分反应,在酸和手性有机催化剂(如金鸡纳生物

碱)催化下,通过苯甲醛,乙酰乙酸乙酯和尿素该三种衍生物的反应并得到 3,4-

dihydropyrimidin-2(1H)-ones(DHPM)产物。为了确定 3 种试剂反应的顺序,我

们设计了两种荧光探针,BODIPY-苯甲醛(2)和 PMI-乙酰乙酸乙酯(6),并应

用它们来追踪均相和非均相条件下的反应进程。然而,到目前为止,DHPM 产物

只能在 BODIPY-苯甲醛参与的反应下提取到,而在 PMI-乙酰乙酸乙酯参与的反

应中则无法得到。在后者参与的反应中,只有质谱可以检测到少许产物。因此我

们使用 BODIPY-苯甲醛进一步研究单分子水平的反应动力学,此次尿素衍生物则

固定在玻璃表面上。我们获得了 BODIPY-苯甲醛和固定在玻璃表面的脲之间结合

的时间常数为 140ms,由此估计该键断裂的活化能壁垒为 67kJ/ mol。结合的性质

可以是氢键或弱共价键。重要的是,该结合时间常数似乎不受添加乙酰乙酸乙酯

(3)的影响,表明结合的产物模型不是朝向 Biginelli 产物的反应性中间体。

Page 12: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

149

Acknowledgements

It’s the holy glory for me to obtain the Ph.D. degree of University of

Amsterdam. As the famous saying in our group (Molecular Photonics): The life

of Ph.D. is so hard as the bread in the cantine of UvA. I think without the help

from my friends, colleagues and supervisors, I would never have made it this

far. So in the acknowledgements, I would like to thank the people who used to

give me a hand on the academic career, and also the people who give me long

supports (mentally and physically) in my life. The memory of 38,161 hours in

Amsterdam is the most beautiful moment in my life forever!

Firstly, I would like to thank our godfather and supervisor, Fred Brouwer, who is

a good teacher and excellent scientist, and is also a cool guy and a good friend.

You are very experienced to work with students, especially Chinese students,

who don’t have “perfect” English. You are always patient to me, who is not so

clever. In the past 4+ years, I grew largely under your patient supervision. I not

only learnt lots of science knowledge, but also knew how to think

independently, which is more important for my future life. Also, I would like to

appreciate R.M. (Rene) Williams, my co-promotor, who is always so kind and

nice. You gave me many good suggestions and supervision when I felt

confused in my science research. You are always a good supervisor in students’

mind. I also express my thanks to other professors and supervisors in our group:

Prof. Wybren Jan Buma, Prof. Hong Zhang, Prof. Sander Woutersen.

Then, I have to thank all supporting staff members, colleagues and friends:

Michiel and Dina in spectroscopy and microscopy, Hans in organic chemistry,

Mina, Yadan and Hung-Cheng in basic experiments, Shan Zhu in Matlab

programming, I am unable to finish this Ph.D. project without their helps.

There are always some devils beside you and remind you how evil of the other

side of human being. Be carefully, they are: Tommy (King of bullshit), Ben

(English is not so good as my Chinese), Roberto (Queen of bullshit), Wim

(alcoholic), Rafael (hooligan), Olivier (cool brother), Bruno (also cool brother),

Roel, Tatu, Hernan (Chinese-Guatemalan brother), Steven (who always argued

with me about China political system), Chris. They also taught me a lot of

“special” English words and they really improved my English, which is very

useful in social event. I hate them, but sometimes they make my life more

meaningful. Well, there are devils, there can be found angles. The coming

people are nice and kind in Molecular Photonics, I am happy to work with them:

Mark, Yu, Jarich, Yansong, Sander, Lianjia, Neha, Jiayun, Zhen Qu, Aishwarya,

Ali, Maarten, Hans Smit, Mees, Charlotte, Martijin, Janita, Aylin, Rebecca, Lory,

Lotte, Aram, Jing, Yiyin, Pengtao, Sisi, Yorrick, Jeremy, Marije, Ruben, Unnati

and Wenqian, and Jian Yang.

Page 13: UvA-DARE (Digital Academic Repository) Single molecule ...139 Summary Single molecule fluorescence for organocatalysis Single-molecule fluorescence detection due to its potential to

150

Now, it’s turn to my friends I met outside of academia. Firstly, I have to

mention the friends, who are very successful in the business cycle. You guys

make me proud. They are Mika and Kenan couple (they are rich, so they are

also my family), Nancy couple, Lego, Yan Yan (Ayi), Liz couple and Wu couple.

Then, I have to thank the younger friends, who often invited me to social events

and made me feel FOREVER 21. They are Yizhen (thanks for your nice pictures,

lovely girl), Bangchi (Pig Trotter, thanks to introduce so many hot girls to me),

Lucy, Zitong, Wenzhe (sexy boy), Chuyun (queen of night club), Shihan,

Xuewen, Yueci and so on.

The moment I spent with the friends in the gym club is also unforgettable. We

worked out together and encouraged each other. After 4 years, I become

stronger and more fit, but they are still so weak or weaker. But anyway, thanks

for your nice company: Wei (little candy forever), Dechao (thanks for your

chicken soup), Anna (thanks for your Greek dinner), Yanni (thanks for your

long trust), Hui (lovely sister), Yansong (Dajiyuan), Muhe (lovely soulmate),

Joao (good at bad jokes), Guillermo, Zhenxing.

In the 4 years of Ph.D., we also had to undertake some teaching tasks. And this

experience is very valuable for me, I not only obtained knowledge and

confidence, but also friendship. It’s my pleasure to work with these smart

students: Tom, Ruben Kers, Rosa, Nicole, Bram, Koen, Robin, Tessa, Teun, Leo,

Celine, David, Max (thanks for your creative design of my thesis cover).

The most beautiful scenery in Amsterdam is “PEOPLE”, there are some other

friends I have to mention here, you made my life more colorful: Xiaolong,

Yongqiang, Yuan Gao, Wensi, Qiong Li, Chao Ding, Liang Zhou, Lydia, Xia

Fang, Xiaoning, Qianqian, Hongjie, Wei Du, Xiaowei, Wenyang, Luting, Yumei,

Nan Jiang, Songyu, Lili, Xing Ji, Chang Li, Zijian, Xinyi, Arjun, Sandra, Ineke,

Jean-Pierre, Chia-Ching, Carolyn, Evi, Patri, Shuo, Wen-Liang, Kaj, Nikoletta,

Shaotao, Bin Sun, Katyushka, Wei Zhang, Yiwen, Chong Wang, Yipeng, Linda,

Andrej, Ariana, Ambuj, Beibei, Emanuele, Mohsin, Andreea, Yang Li, Dan Li,

Ke Gao, Sara, Beatriz, Anh, Xiaowu, Rene Becker, Shuai Liao, Nik, Gergely.

Here, I have to thank my parents (Xiaorong Chen and Gangqing Zheng), my

dear uncle (Pengfei Zheng) and aunty (Lizhu Ruan), Yixuan, and my other

family, you raise me up to walk on stormy seas and to more than I can be.

UvA and CSC are also acknowledged for financial support.

Time flies! Again, the memory of 38,161 hours in Amsterdam would be the

most beautiful moment in my life forever, irreplaceable! I obtained not only the

doctoral degree, but also friendship, science knowledge, positive ideological

shift about life. The experiences in Amsterdam would be the most valuable

treasure of my life.