Update on Pervious Concrete Performance Eastern ?· - Pervious Concrete - Porous Asphalt - Permeable…

  • Published on
    14-Jul-2018

  • View
    212

  • Download
    0

Embed Size (px)

Transcript

<ul><li><p>Update on </p><p>Pervious Concrete</p><p>Performance Eastern </p><p>Washington</p><p>Liv Haselbach</p><p>Fulbright-ALCOA Distinguished Chair in the </p><p>Environmental Sciences and Engineering in Brazil</p><p>Professor, Civil &amp; Environmental Engineering</p><p>Washington State University</p><p>haselbach@wsu.edu</p><p>Associate Director: CESTiCC</p><p>Center for Environmentally Sustainable </p><p>Transportation in Cold Climates</p><p>And</p><p>Thanks to the Husseman Fund from the</p><p>Washington State Department of Ecology,</p><p>WSU Facility Services</p><p>City of Spokane1</p></li><li><p>2</p><p>Pervious concrete can be used for many applications including:</p><p>- Parking lots,</p><p>- sidewalks,</p><p>- low volume roads, and</p><p>- there is interest for roadway shoulders to control the roadway runoff.</p><p>Traditional Pavement as mainline Permeable Pavement Shoulder</p><p>Natural Soil</p><p>Open Graded Aggregate Bed</p><p>Source of photo: http://www.ephenryecocenter.com</p></li><li><p>Permeable Pavement Systems!</p><p>PERVIOUS CONCRETE IS A STRUCTURED SURFACE PLUS:</p><p>Surface Infiltration: Stormwater Flooding Mitigation</p><p>Underground Storage (no surface pooling/ponding)</p><p>Pollutant Removal: - on top - in ground - in reservoir - to air?</p><p>Heat Island Mitigation</p><p>Noise Reduction</p><p>Safety Benefits 3</p></li><li><p>Permeable Pavement Systems!</p><p>What is the surface?</p><p>- Pervious Concrete</p><p>- Porous Asphalt</p><p>- Permeable Pavers</p><p>What depth should the </p><p>aggregate bed be?</p><p>-For structure (loads)</p><p>-For water storage </p><p>(runon and storms)</p><p>- For frost depth </p><p>4</p></li><li><p>Permeable pavements on slopes?</p><p>Remember it is a System</p><p>Be careful that the water from surrounding areas (runon) does not flow too fast and overshoot!5</p></li><li><p>What is Pervious Concrete?</p><p>Mixture of :</p><p> Coarse aggregate,</p><p> Cementitious material,</p><p> Admixtures, and</p><p> Water.</p><p> Carefully controlled amounts of water &amp; </p><p>cementitious materials are used to create a </p><p>paste that forms a thick coating around </p><p>aggregate particles without flowing off during </p><p>mixing &amp; placing.</p><p>6</p></li><li><p>Unique Structure of Pervious </p><p>Concrete</p><p>Vertical Porosity Distribution</p><p> Top Transition Zone</p><p>Micro/Macro Pores</p><p>Connected/Disconnected Pores7</p></li><li><p>Porosity of Pervious Concrete</p><p>Total Porosity Ranges: ~13%-40%</p><p>Recommended: ~20-25% </p><p>Tortuous (vertical and horizontal flow)</p><p>Compressive Strength(not used for specifying): </p><p>Typically 1000-3000 psi. (7-20 Mpa)</p><p>8</p></li><li><p>How is pervious concrete placed?</p><p>Concrete Traditional PC</p><p>Cement 1 1</p><p>Aggregate 3 4+</p><p>Water 1/2 ~1/3</p><p>Fines 2 ~0</p><p>Mixed</p><p>Compacted &amp; CoveredCured 7 days</p><p>9</p></li><li><p>Testing Methods</p><p> ASTM c1688-14a Standard Test Method for Density and </p><p>Void Content of Freshly Mixed Pervious Concrete</p><p> ASTM c1701-09 Standard Test Method for Infiltration Rate </p><p>of In Place Pervious Concrete: </p><p> ASTM c1747-13 Standard Test Method for Determining </p><p>Potential Resistance to Degradation of Pervious Concrete </p><p>by Impact and Abrasion (or ASTMc944 Rotating Abrasion </p><p>for traditional concrete)</p><p> ASTM c1754-12 Standard Test Method for Density and </p><p>Void Content of Hardened Pervious Concrete</p><p> ISO 17785-1 Testing methods for pervious concrete </p><p>infiltration rateJune 2016</p><p>10</p></li><li><p>ASTM C1701 in Field</p><p>11</p></li><li><p>Older </p><p>Placements </p><p>in Pullman</p><p>Valley Playfield Walks</p><p>Vetmed CircleSloan Sidewalk12</p></li><li><p>Site Information and </p><p>Runon Areas</p><p>Site Pervious Concrete Area </p><p>Paved Run-on Sources</p><p>Paved Approximate Area Producing Run-on</p><p>Total Area Ratio of Total Area to Pervious Concrete Area</p><p>Valley Playfield East</p><p>4277 ft2 Incline Standard Concrete</p><p>2500 ft2 6777 ft2 1.58</p><p>Valley Playfield Center</p><p>7262 ft2 None Negligible 7262 ft2 1.00</p><p>VetMed 2827 ft2 Incline Standard Concrete</p><p>4000 ft2 6827 ft2 2.41</p><p>Sloan Sidewalk 960 ft2 Incline Standard Concrete</p><p>2000 ft2 2960 ft2 3.08</p><p>Average 2</p><p>Haselbach, L. and Werner, B., Pervious Concrete Performance in Eastern Washington: Surface </p><p>Infiltration, Proceedings ASCE Low Impact Development Conference, Houston Texas, January 2015.</p></li><li><p>More Placements: PACCAR Parking Lot: </p><p>Pervious Concrete, WSU Pullman: </p><p>Summer 2015 </p><p>14</p></li><li><p>Summary of seven pervious </p><p>pavement sites at WSU Pullman </p><p>as of Summer 2016</p><p>Age (yr) Size (sq.ft.) Mix</p><p>VetMed Circle 5 2827 Concrete</p><p>Sloan Hall Sidewalk 4 960 Concrete</p><p>East Valley Playfields 6 4277 Concrete</p><p>Center Valley Playfields 5 7262 Concrete</p><p>Allen Center Walk and ADA </p><p>Parking5 5924 Asphalt</p><p>Community Hall 1 130 Concrete</p><p>PACCAR 1 9370 Concrete</p><p>15</p></li><li><p>Pullman Pervious Locations</p><p>Site 2014 Average (in/hr)</p><p>Winters Experienced by </p><p>2014 Testing</p><p>2015 Average (in/hr)</p><p>Winters Experienced by </p><p>2015 TestingValley Playfields East</p><p>498 4 178 5</p><p>Valley Playfields Center</p><p>594 3 no data 4</p><p>VetMed Circle 413 3 234 4</p><p>ADA Parking Lot (asphalt)</p><p>123 3 no data 4</p><p>Sloan Hall Sidewalk</p><p>513 2 233* 3</p><p>Community Hall Sidewalk</p><p>1820 0</p><p>PACCAR 977 0</p><p>16</p><p>Locations were not chosen randomly and therefore the numbers may be biased to clogged areas.</p><p>*This data point reflects a partial cleaning of the pervious installation. </p><p>Prior to cleaning, this value was likely closer to about 190 in/hr.</p><p>Haselbach, 2016. Low Impact Development Feasibility Project on the WSU Pullman Campus, </p><p>Final report to Washington State Department of Ecology.</p></li><li><p>Cleaned Sloan! Woohoo!</p><p> September 2015</p><p>Hose and Nozzle</p><p>Upper ~15 feet</p><p> Lower ~20 feet</p><p> Just as fast now as center portion which has </p><p>not been cleaned after 3 winters, but still </p><p>functioning well.</p><p>17</p></li><li><p>Sloan Infiltration Testing 2014</p><p>Time (Seconds)</p><p>Test </p><p>location </p><p>number</p><p>Pre-</p><p>wetTest</p><p>5 gal</p><p>Infiltration Rate </p><p>(in/hr)1 gal</p><p>1 604 620 12</p><p>2 21.6 185.5 198</p><p>3 13.33 82.9 444</p><p>4 9.43 51.8 710</p><p>5 8.96 51.87 709</p><p>6 10.61 52.85 696</p><p>7 10.61 69.45 530</p><p>Haselbach, L. and Werner, B., </p><p>Pervious Concrete Performance in </p><p>Eastern Washington: Surface </p><p>Infiltration, Proceedings ASCE Low </p><p>Impact Development Conference, </p><p>Houston Texas, January 2015.</p></li><li><p>Sloan Temperature Impacts? </p><p>19</p><p>Werner, B. and Haselbach, L. Temperature and testing impacts on surface infiltration rates </p><p>of pervious concrete, under development. J Cold Regions Engr.</p></li><li><p>Clogging with Time at Sloan</p><p>20</p><p>Werner, B. and Haselbach, L.(2016) Temperature and testing impacts on surface infiltration rates of </p><p>pervious concrete, submitted Special Issue on Environmental Sustainability of Transportation Infrastructure in </p><p>Cold Climates, ASCE J of Cold Regions Engineering</p></li><li><p>ASTM C1701 Alpha and Beta Tests</p><p>21</p><p>Werner, B. and Haselbach, L. Temperature and testing impacts on surface infiltration rates </p><p>of pervious concrete, under development. J Cold Regions Engr.</p><p>Slope is 1.05 and R2 is 0.97</p></li><li><p>Community Placement</p><p>22</p></li><li><p>Placement</p><p>Wet the rock before you place the concrete.</p><p>23</p></li><li><p>Placement</p><p> .</p><p>24</p></li><li><p>Placement</p><p> .</p><p>Done in seven days!</p><p>25</p></li><li><p>Soil Moisture and Temperature </p><p>Sensoring at Community Hall</p><p>WSU Case Study Retention</p><p>Why? If we used permeable pavement systems </p><p>next to mainlines, what impacts are there on the </p><p>soils under the mainlines?</p><p> Frost depth? Soil migration?</p><p> Typical Palouse Clay soils</p><p> Sensors in the neighboring soils</p><p> Pervious concrete sidewalk</p><p>Weather station on top of Sloan</p><p>Opportunity for controlled flooding events26</p></li><li><p>Community Sidewalk</p><p>27</p><p>Method: Several soil moisture and temperature sensors are installed in slow draining soils next to a</p><p>retention system located in a pervious concrete sidewalk on the Pullman Campus of Washington State</p><p>University (with clayey soil) with no underdrains. This portion is for the warm/dry season. The</p><p>observation wells can be used for draindown studies.</p><p>Existing</p><p>Traditional </p><p>Concrete</p><p>Existing </p><p>Traditional </p><p>Concrete</p><p>New Pervious Concrete</p><p>Dam</p><p>OW 1</p><p>OW: Observation Well</p><p>MS: Moisture Sensor Array </p><p>Zone A</p><p>Zone BZone C</p><p>OW 2</p><p>Data logger</p><p>M.S.A2</p><p>M.S.A1</p><p>M.S.B2</p><p>M.S.B1</p><p>M.S.C2</p><p>M.S.C1</p><p>N</p><p>Yekkalar, M. and Haselbach, L. (2016) under review</p><p>Impacts of a Pervious Concrete System on Neighboring Clay Soils in Warm-Dry Months.</p></li><li><p>Community Sidewalk</p><p>28</p><p>First set of GPR targets Second set of GPR targets</p><p>6 in </p><p>6 in</p><p>2 ft</p><p>6 in 3 ft 3 ft 8 ft 5 ft 6 in 3 ft 3 ft</p><p>N</p><p>Yekkalar, M. and Haselbach, L. (2016) under review</p><p>Impacts of a Pervious Concrete System on Neighboring Clay Soils in Warm-Dry Months.</p></li><li><p>Draindown Test Results from Test 1 on October 17, 2015: </p><p>Zone C Observation Well</p><p>Time </p><p>(minute)</p><p>Water </p><p>Depth </p><p>(in)</p><p>Time </p><p>(minute)</p><p>Water </p><p>Depth </p><p>(in)</p><p>Time </p><p>(minute)</p><p>Water </p><p>Depth </p><p>(in)</p><p>0 20.25 16.57 16.25 39.42 12.25</p><p>0.75 19.75 17.93 15.75 41.67 11.75</p><p>1.20 19.25 20.63 15.25 43.32 11.25</p><p>3.32 18.75 23.15 14.75 45.40 10.75</p><p>5.20 18.25 25.13 14.25 47.03 10.25</p><p>10.40 17.75 29.15 13.75 48.33 9.75</p><p>13.23 17.25 33.72 13.25 50.73 9.25</p><p>15.02 16.75 36.22 12.75 52.03 8.75</p><p>29</p><p>Haselbach, 2016. Low Impact Development Feasibility Project on the WSU Pullman Campus, Final report</p><p>To Washington State Department of Ecology.</p></li><li><p>Draindown Results 28 April 2016</p><p>30</p></li><li><p>Summer Neighboring Impacts</p><p>Temperature</p><p>31</p><p>Yekkalar, M. and Haselbach, L. (2016) under review</p><p>Impacts of a Pervious Concrete System on Neighboring Clay Soils in Warm-Dry Months.</p><p>The pavement can get hot and it can warm slightly the top layer of the near soil.</p></li><li><p>Summer Neighboring Impacts:</p><p>Temperature</p><p>32</p><p>Yekkalar, M. and Haselbach, L. (2016) under review</p><p>Impacts of a Pervious Concrete System on Neighboring Clay Soils in Warm-Dry Months.</p><p>Tends to be a little warmer near the bed in the early summer but cooler later in summer.</p><p>Note the impact of the artificial flooding event.</p><p>Middle</p><p>Deep</p></li><li><p>Summer Neighboring Impacts:</p><p>Volumetric Water Content</p><p>33</p><p>Yekkalar, M. and Haselbach, L. (2016) under review</p><p>Impacts of a Pervious Concrete System on Neighboring Clay Soils in Warm-Dry Months.</p><p>WSU Facilities Services keeps a fairly constant soil moisture near the top with irrigation. </p><p>The A zone is near a stairwell and may lose moisture.</p><p>Shallow</p></li><li><p>Summer Neighboring Impacts:</p><p>Volumetric Water Content</p><p>34</p><p>Note how the irrigation and flooding increase soil moisture, but it drains rapidly near the bed.</p><p>Yekkalar, M. and Haselbach, L. (2016) under review</p><p>Impacts of a Pervious Concrete System on Neighboring Clay Soils in Warm-Dry Months.</p><p>Middle</p><p>Deep</p></li><li><p>Soil Moisture and Temperature </p><p>Sensoring at Finch Arboretum</p><p>Spokane Case Study Detention</p><p> Porous asphalt parking lot</p><p>35</p></li><li><p>Soil Moisture and Temperature </p><p>Sensoring at Finch Arboretum</p><p>Spokane Case Study Detention</p><p>Mix of soil layers</p><p>Weather station at GEG</p><p>36</p></li><li><p>Finch Results: </p><p>Mid Winter: Middle Sensors: VWC</p><p>37</p><p>Yekkalar, M. and Haselbach, L. (2017) Impacts of a Detention-Based Permeable Pavement System on </p><p>Neighboring Clay Soils under Cold-Wet Weather Conditions, submitted July 6 2016 to TRB</p><p>0.00</p><p>0.02</p><p>0.04</p><p>0.06</p><p>0.08</p><p>0.10</p><p>0.12</p><p>0</p><p>0.1</p><p>0.2</p><p>0.3</p><p>0.4</p><p>12</p><p>/30/1</p><p>5</p><p>1/3</p><p>/16</p><p>1/7</p><p>/16</p><p>1/1</p><p>1/1</p><p>6</p><p>1/1</p><p>5/1</p><p>6</p><p>1/1</p><p>9/1</p><p>6</p><p>1/2</p><p>3/1</p><p>6</p><p>1/2</p><p>7/1</p><p>6</p><p>1/3</p><p>1/1</p><p>6</p><p>2/4</p><p>/16</p><p>2/8</p><p>/16</p><p>2/1</p><p>2/1</p><p>6</p><p>2/1</p><p>6/1</p><p>6</p><p>2/2</p><p>0/1</p><p>6</p><p>2/2</p><p>4/1</p><p>6</p><p>2/2</p><p>8/1</p><p>6</p><p>Pre</p><p>cip</p><p>itat</p><p>ion (</p><p>mm</p><p>)</p><p>Ab</p><p>solu</p><p>te V</p><p>WC</p><p> (m</p><p>3/m</p><p>3) A12 A22 B12 B22 Rain Snow</p><p>VWC never got very high. Sometimes VWC lagged snow events. More moisture farther away than nearer aggregate storage bed.None of the sensors registered below freezing temperatures..</p></li><li><p>Community Retention: </p><p>Winter Temperature</p><p>38</p><p>Yekkalar, M. and Haselbach, L. Impacts of a Pervious Concrete Retention System on Neighboring Clay Soils,</p><p>submitted to ASCE , Journal of Cold Regions Engineering 29 August 2016</p></li><li><p>Community Retention: </p><p>Winter Temperature</p><p>39</p><p>Yekkalar, M. and Haselbach, L. Impacts of a Pervious Concrete Retention System on Neighboring Clay Soils,</p><p>submitted to ASCE , Journal of Cold Regions Engineering 29 August 2016</p></li><li><p>Community Retention: </p><p>Winter VWC</p><p>40</p><p>Yekkalar, M. and Haselbach, L. Impacts of a Pervious Concrete Retention System on Neighboring Clay Soils,</p><p>submitted to ASCE , Journal of Cold Regions Engineering 29 August 2016</p></li><li><p>Community Retention: </p><p>Winter VWC</p><p>41</p><p>Yekkalar, M. and Haselbach, L. Impacts of a Pervious Concrete Retention System on Neighboring Clay Soils,</p><p>submitted to ASCE , Journal of Cold Regions Engineering 29 August 2016</p><p>In the deep part of the winter.</p><p>Middle:</p><p>Near may wet but </p><p>drains quickly.</p><p>Below:</p><p>Near may wet </p><p>Some ut drains.</p></li><li><p>Cleaning Paccar July 7 2016</p><p>Performed by Washington State University Facility Services</p><p>Photos by Liv Haselbach</p></li><li><p>Vacuum Truck</p><p>For loose gravel and dirt.</p></li><li><p>Deep Cleaning only for Clogged Areas</p><p> Pre-wetting</p></li><li><p> Powerwashing with Wet Vacuum</p><p>Deep Cleaning only for Clogged Areas</p></li><li><p>Dislodged Dirt</p><p>Deep Cleaning only for Clogged Areas</p></li><li><p> Function Restored</p><p>Deep Cleaning only for Clogged </p><p>Areas</p></li><li><p>Thank you!</p><p>?</p><p>48</p></li></ul>

Recommended

View more >