43
AFM instrumentation Page 1 of 43 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy ). Subscriber: UC - Berkeley Library; date: 20 February 2015 University Press Scholarship Online Oxford Scholarship Online Atomic Force Microscopy Peter Eaton and Paul West Print publication date: 2010 Print ISBN-13: 9780199570454 Published to Oxford Scholarship Online: May 2010 DOI: 10.1093/acprof:oso/9780199570454.001.0001 AFM instrumentation Peter Eaton Paul West DOI:10.1093/acprof:oso/9780199570454.003.0002 Abstract and Keywords This chapter describes the design of modern AFM instruments in detail. It shows both how the instruments are built, and how they work. There are descriptions of the mechanical, electronic, and software design of the instrument, as well as a section on the design of AFM probes, one of the most important components in any AFM. For the instrument user, understanding how the instrument works can greatly improve the results obtained, and this chapter has all the information an AFM user could need about how AFMs work, and more importantly, why they work that way. Keywords: instrument, hardware, software, probes, cantilevers, design, electronics In theory an AFM is a relatively simple instrument. However, constructing an AFM with nanometre‐scale resolution requires a considerable amount of sophisticated engineering.

University Press Scholarship Online AFMfinstrumentation

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 1 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

UniversityPressScholarshipOnline

OxfordScholarshipOnline

AtomicForceMicroscopyPeterEatonandPaulWest

Printpublicationdate:2010PrintISBN-13:9780199570454PublishedtoOxfordScholarshipOnline:May2010DOI:10.1093/acprof:oso/9780199570454.001.0001

AFMinstrumentation

PeterEatonPaulWest

DOI:10.1093/acprof:oso/9780199570454.003.0002

AbstractandKeywords

ThischapterdescribesthedesignofmodernAFMinstrumentsindetail.Itshowsbothhowtheinstrumentsarebuilt,andhowtheywork.Therearedescriptionsofthemechanical,electronic,andsoftwaredesignoftheinstrument,aswellasasectiononthedesignofAFMprobes,oneofthemostimportantcomponentsinanyAFM.Fortheinstrumentuser,understandinghowtheinstrumentworkscangreatlyimprovetheresultsobtained,andthischapterhasalltheinformationanAFMusercouldneedabouthowAFMswork,andmoreimportantly,whytheyworkthatway.

Keywords:instrument,hardware,software,probes,cantilevers,design,electronics

IntheoryanAFMisarelativelysimpleinstrument.However,constructinganAFMwithnanometre‐scaleresolutionrequiresaconsiderableamountofsophisticatedengineering.

Page 2: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 2 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

ThemaincomponentsofanAFMarethemicroscopestageitself,controlelectronicsandacomputer.Themicroscopestagecontainsthescanner(themechanismformovingtheAFMtiprelativetothesample),sampleholderandaforcesensor,toholdandmonitortheAFMtip.Thestageusuallyalsoincludesanintegratedopticalmicroscopetoviewthesampleandtip.Often,thestageissupportedonavibrationisolationplatformwhichreducesnoiseandincreasestheresolutionobtainable.Thecontrolelectronicsusuallytakestheformofalargeboxinterfacedtoboththemicroscopestageandthecomputer.Theelectronicsareusedtogeneratethesignalsusedtodrivethescannerandanyothermotorizedcomponentsinthemicroscopestage.TheyalsodigitizethesignalscomingfromtheAFMsothattheycanbedisplayedandrecordedbythecomputer.ThefeedbackbetweenthesignalscomingoutandgoingbackintotheAFMstageishandledbythecontrolelectronics,accordingtoparameterssetviathecomputer.SoftwareinthecomputerisusedbytheoperatortoacquireanddisplayAFMimages.Theuseroperatesthesoftwareprogram,andtherelevantacquisitionparametersarepassedontothecontrolelectronicsbox.Thecomputerusuallyalsocontainsaseparateprogramtoprocessandanalysetheimagesobtained.AphotographofatypicalAFMillustratingthesecomponentsisshowninFigure2.1.

2.1BasicconceptsinAFMinstrumentationThethreebasicconceptsthatonemustbefamiliarwithinordertounderstandtheoperationofanAFMarepiezoelectrictransducers(inAFM,oftenknownaspiezoelectricscanners),forcetransducers(forcesensors),andfeedbackcontrol.Basically,thepiezoelectrictransducermovesthetipoverthesamplesurface,theforcetransducersensestheforcebetweenthetipandthesurface,andthefeedbackcontrolfeedsthesignalfromtheforcetransducerbackintothepiezoelectric,tomaintainafixedforcebetweenthetipandthesample.

2.1.1Piezoelectrictransducers

Piezoelectricmaterialsareelectromechanicaltransducersthatconvertelectricalpotentialintomechanicalmotion.Inotherapplications,theymayalsobeusedintheoppositesense,i.e.ifachangeiscausedinthematerial'sdimensionstheywillgenerateanelectricalpotential.Piezoelectricmaterialsarenaturallyoccurringandmaybecrystalline,amorphousorevenpolymeric,althoughthematerialsusedforAFMaregenerallysyntheticceramicmaterials.Whenapotentialisappliedacrosstwooppositesidesofthepiezoelectricdevice,itchangesgeometry.Themagnitudeofthedimensionalchangedependsonthe(p.10)

Page 3: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 3 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.1. PhotoofadesktopAFMillustratingthemajorcomponents.Theyarethemicroscopestage,computer,electroniccontroller,computermonitor,andopticalmicroscopemonitor.ThetrackballisusedformovingthesamplestageintheX‐Yaxis.Resolutioncanusuallybeimprovedbyplacingthemicroscopestageonavibrationisolationtable.

material,thegeometryofthedevice,andthemagnitudeoftheappliedvoltage.ThisisillustratedschematicallyinFigure2.2.

Typically,theexpansioncoefficientforasinglepiezoelectricdeviceisontheorderof0.1nmperappliedvolt.Thus,ifthevoltageusedtoexcitethepiezomaterialis2volts,thenthematerialwillexpandapproximately0.2nm,orapproximatelythediameterofasingleatom.ItistheabilitytoaccuratelycontrolsuchtinymovementthatmakespiezoelectricmaterialssousefulforAFM.Thus,piezoelectricmaterialsareusedforcontrollingthemotionoftheprobeasitisscannedacrossthesamplesurface.Piezoelectricsareavailableinavarietyofsizesandshapes,andaregenerallyusedinmorecomplexgeometriesthandepictedinFigure2.2,sothattheycanscanthetipinmultiple

Fig.2.2. Apiezoelectricdiskwillexpandradially(d2>d1)whenavoltagepotentialisappliedtothetopandbottomelectrodes.Thediskwillchangeshapesuchthatvolumeispreserved.

Page 4: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 4 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(p.11)

Fig.2.3. Schemeofforcetransduceroperation.ThefunctionofthetransduceristomeasuretheforcebetweentheAFMprobetipandthesamplesurface.

directionsacrossthesamplesurface.Section2.2.1describesingreaterdetailhowpiezoelectricmaterialsareconfiguredtoscanaprobeinthreedimensions.

2.1.2Forcetransducers

TheforcebetweenanAFMprobeandasurfaceismeasuredwithaforcetransducer.AsillustratedinFigure2.3,whentheprobecomesintocontactwiththesurface,thevoltageoutputfromthetransducerincreases.Itisimportantthattheoutputofthetransducerbemonotonicandincreasesasagreaterforceisappliedbetweentheprobeandsurface.Forcetransducersmaybeconstructedthatmeasureforcesaslowas10piconewtonsbetweenaprobeandasurface.Typically,theforcetransducerinanAFMisacantileverwithintegratedtip(theprobe),andanopticallever;however,thereareseveraltypesofforcesensorsthatmaybeusedinanAFM(thesearedescribedinSection2.2.2).

2.1.3Feedbackcontrol

ThereasonanAFMismoresensitivethanastylusprofilerthatsimplydragsatipoverthesamplesurface,isthatfeedbackcontrolisusedtomaintainasetforcebetweentheprobeandthesample.AsillustratedinFigure2.4,thecontrolelectronicstakethesignalfromtheforcetransducers,anduseittodrivethepiezoelectricssoastomaintaintheprobe–sampledistance,andthustheinteractionforceatasetlevel.Thus,iftheproberegistersanincreaseinforce(forinstance,whilescanningthetipencountersaparticleonthesurface),thefeedbackcontrolcausesthepiezoelectricstomovetheprobeawayfromthesurface.Conversely,iftheforcetransducerregistersadecreaseinforce,theprobeismovedtowardsthesurface.Section2.3.2hasamoredetaileddiscussionoffeedbackcontrolmethodologiesinAFM.

2.1.4AFMblockdiagramandrequirements

IngeneraltermsthedesignofanAFMisasshowninFigure2.5.Theforcetransducermeasurestheforcebetweentheprobeandsurface;thefeedbackcontrollerkeepstheforceconstantbycontrollingtheexpansionofthezpiezoelectrictransducer.Maintainingthetip–sampleforceatasetvalueeffectivelyalsomaintainsthetip–sampledistancefixed.Then,thex‐ypiezoelectricelementsareusedtoscantheprobeacrossthesurfaceinaraster‐likepattern.Theamountthezpiezoelectricmovesupanddowntomaintainthe(p.12)

Page 5: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 5 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.4. Schematicoffeedbackcontrol;whentheforcesensorsensesachangeinsampleheight,thepiezoelectricmovestomaintainthesametip–sampleforce.

tip–sampledistancefixedisassumedtobeequaltothesampletopography.Inthisway,bymonitoringthevoltageappliedtothezpiezo,amapofthesurfaceshape(aheightimage)ismeasured.

Thereareseveralengineeringchallengesthatmustbemettodesignandconstructasuccessfulatomicforcemicroscope.Theyare:

•Averysharpprobemustbeconstructedsothathigh‐resolutionimagesaremeasured.•Togettheprobewithinthescanningrangeofthesurface,amacroscopictranslationmechanismmustbeconstructed.•Theforcetransducermusthaveaforceresolutionof1nNorlesssothattheprobeisnotbrokenwhilescanning.•Afeedbackcontrollerthatpermitsrapidcontrolsothattheprobecanfollowthetopographyonthesurfacemustbecreated.•AnX‐Y‐Zpiezoelectricscannerthathaslinearandcalibratedmotionmustbeused.•Astructurethatisveryrigidmustbeconstructedsothattheprobedoesnotvibraterelativetothesurface.

Fig.2.5. BlockdiagramofAFMoperation.

(p.13)

Page 6: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 6 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.6. PhotoofanAFMstage,withcomponentshighlighted.

•Ahigh‐speedcomputerthatcandisplaytheimagesinrealtimeastheyarecollectedmustbeused.•Astagethatallowsrapidexchangeoftheprobeusedforscanningmustbecreated.

Thewaysinwhichthesechallengesareovercomearediscussedinthefollowingsectionsofthischapter.

2.2TheAFMstageTheAFMstageistheheartoftheinstrument;Figure2.6showsanAFMstageandhighlightsthemajorcomponents.Theremustbeprobeandsampleholders.Thereisacoarseapproachmechanism,theZmotor,whichcanmovetheAFMscannertowardsthesample.ThereisalsoanX‐Ypositioningstagewhichisnotrequiredbutisusefulforpositioningthefeatureforimagingundertheprobe.Tohelpwiththis,thereisusuallyanopticalmicroscopeforviewingtheprobeandsurface.

AmechanicalstructureisrequiredtosupporttheAFMscannerandothercomponents.Intheconstructionofthestageitisimportantthatthemechanicalloop,whichcontainsallthemechanicalcomponentsbetweentheprobeandsurface,beveryrigid.Ifthemechanicalloopisnotrigid,thentheprobewillvibraterelativetothesampleandintroduceunwantednoiseintotheimages.

Ingeneral,ifthemicroscopestageissmaller,itwillbelesssusceptibletoexternalvibrations.Creatingarigidmechanicalloopbecomesmoredifficultthelargerthesamplesizeis.ThehighestresolutionAFMstendtobeverysmallsothatthemechanicalloopisrigid,andthemicroscopestageisnotsusceptibletoexternalenvironmentalvibrations(ornoise).

(p.14)

Page 7: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 7 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.7. Thedifferencebetweensample‐scanning(left)andprobe‐scanning(right)microscopes.InasamplescanningAFMthesampleismountedonanx‐y‐zscannerandtheforcesensorremainsfixed.IntheprobescanningAFMthesampleremainsfixedandtheprobeisscanned.TheadvantageofaprobescanningAFMisthatitcanscanlargersamples.

Inthisbook,themotioncontrolmechanismsoftheAFMstagecapableofmovingseveralmillimetresorgreater(thecoarsemovementcontrols)aredesignatedX,YandZ.Themotioncontrolmechanismsthatareusedformovingsmalldistances(thex,yandzscanners)aredesignatedx,yandz.

ThedesignofallAFMinstrumentscanbedividedintotwodifferentconfigurationsasillustratedinFigure2.7.Inthefirstconfiguration(left)thesampleisscannedandtheforcesensorisheldinoneplace.Inthesecondconfiguration,thesampleisheldfixedandtheprobeisscanned.IngeneralallAFMscanbedividedintosuchsample‐scanningorprobe‐scanningmicroscopes.Forsample‐scanningAFMs,themassofthesampleisincludedinthefeedbackloop,reducingthesizeofsamplethatmaybeprobed,aswellaspracticallimitsonthesample'sdimensions.Theadvantageoftheprobescanning(alsoknownastip‐scanning)microscopeisthatitcanbeusedonanysizeofsample.Inaddition,becausethereisnothingunderneaththescanningprobeexceptthesample,itissimpletoaddaccessoriestothistypeofmicroscope.Forexample,aliquidcelliseasiertousewithaprobescanningmicroscope,andtheyareeasiertointegratewithadditionalopticaloptions,forexampletoirradiatethesamplefromthesidewhilescanning,ortomounttheentireAFMinanopticalmicroscope.However,theconstructionofaprobescanningmicroscopeismuchmoredifficult,asthewholetip–optical‐leverassemblymustbemovedwhilescanning,andcaremustbetakennottointroducefurthervibrationsfromthescanningmechanismintotheprobe.AsamplescanningAFMdesignisrathersimpler,butsomewhatlimitssamplesize.

2.2.1x‐y‐zscannersTypically,thescannersusedformovingtheproberelativetothesampleinanAFMareconstructedfrompiezoelectricmaterials.Thisisbecausesuchpiezoelectricmaterialsarereadilyavailable,easilyfabricatedindesirableshapes,andcosteffective.However,(p.15) scannersforAFMmaybeconstructedfromothertypesofelectromechanicaldevicessuchasflexurestages[27,28],voicecoils[29],etc.Allthatisimportantisthattheelectromechanicaldevicemusthaveveryaccuratepositioning.

Page 8: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 8 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

2.2.1.1PiezoelectricscannersThemostcommontypesofpiezoelectricmaterialsinuseforAFMscannersareconstructedfromamorphousleadbariumtitanate,PdBaTiO3orleadzirconatetitanate,Pb[ZrxTi1–x]O3,0<x<1(usuallyabbreviatedasPZT).Theceramicsmaybe‘hard’or‘soft’,dependingontheformulation.Thisaffectshowmuchtheycanexpand,versustheappliedvoltage,aswellasthelinearityoftherelationshipbetweenappliedvoltageandexpansion.Hardceramicshavesmallercoefficientsofexpansion,butaremorelinear.Softceramicformulationshavemorenon‐linearitiesandhavegreaterexpansioncoefficients.Afterfabrication,piezoelectricceramicsarepolarized.Polarizationmaybelostbyelevatingthepiezostoatemperatureabovetheircriticaltemperatureorbyapplyingtoohighavoltage.

Electronically,piezosactascapacitorsandstorechargesontheirsurface.Capacitancesofceramicsmaybeaslargeas100microfarads.Onceachargeisplacedonthepiezoceramic,thepiezoceramicwillstaychargeduntilitisdissipated.ElectroniccircuitsusedfordrivingthepiezoceramicsinanAFMmustbedesignedtodrivelargecapacitiveloads.

Allpiezoceramicshaveanaturalresonancefrequencythatdependsonthesizeandshapeoftheceramic.Belowtheresonancefrequency,theceramicwillfollowanoscillatingfrequency,atresonancethereisa90°phasechange,andaboveresonancethereisa180°phasechange.Toagreatextent,theresonancefrequenciesofthepiezoelectricceramicslimitthescanratesofatomicforcemicroscopes.Asaruleofthumb,thehighertheresonantfrequencyofthescanner,thefasteryoucanscan.

Piezoelectricmaterialscanbefabricatedinseveralshapessuchthattheyhavemoreorlessmotion.Asanexample,adisk,asillustratedinFigure2.2,getslongerandnarrowerwhenavoltageisapplied.Thepiezoelectricceramicchangesgeometrysuchthatthevolumeispreservedduringextension.Anotherconfigurationforapiezoelectricceramicisatube,withelectrodesontheinsideandoutside.Thisconfigurationgivesalotofmotion,andisveryrigid.Anotherconfigurationisthebimorph,constructedfromtwothinslabsofpiezomaterialthatarepolarizedinoppositedirections.Whenavoltageisappliedtheceramicexpandsinaparabolicfashion.Themotionsofthesegeometries,alongwiththeequationsofmotionareillustratedinFigure2.8.

Ideally,thepiezoelectricceramicswouldexpandandcontractindirectproportiontothedrivingvoltage.Unfortunately,thisisnotthecase,andallpiezoelectricmaterialsshownon‐linearbehaviour.Theyshowtwoprimarynon‐idealbehaviours,hysteresisandcreep[30].Hysteresis,derivedfromthewordhistory,causestheceramictotendtomaintaintheshapethatitwasinpreviously.Astheceramicisexpanding,thereisanegativeshapednon‐linearity,andasthematerialiscontracting,thereisapositiveshapednon‐linearity.Hysteresiscausesa‘bending’distortionintheimagesobtained,unlesscorrected.Creepoccurswhentheceramicissubjectedtoasuddenimpulsesuchasavoltagestepfunction.Thismeansthatwhenthepiezoisusedtomovetoadifferentpartofthescanrangebyapplyinganoffsetvoltagetoit,itwilltendtocontinuemovinginthe

Page 9: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 9 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

samedirectionastheoffset,evenafterthevoltagehasstoppedchanging.BoththeseeffectsareillustratedinFigure2.9.Realexamplesoftheeffectsofthesenon‐linearitiesonAFMimagescanbefoundinChapter6.Thesenon‐idealbehavioursmustbecorrectedtoavoidsuchdistortionsintheAFMimages.

(p.16)

Fig.2.8. TypicalgeometriesforpiezoelectricelementsusedinAFM.Fromtop:piezoelectricdisk,tubeandbimorphscanners.

Correctingthenon‐idealbehavioursofpiezoelectricceramicsisessentialformakingaccuratemeasurementswithanAFM.Duetothedifferentwaystheaxesareoperated–xandyinarasterpattern,zmovedbythefeedbackcontrol–thecorrectionsrequiredaredifferentforthex‐yaxesandthezaxis.Also,hysteresisandcreepmakeitdifficulttoscantheAFMveryquickly,andmaintainaccuracy.Thenon‐idealmotionsofpiezoelectricceramicsmaybecorrectedusingopen‐looporclosed‐loopmethods[31].Thefollowingsectionsdescribethetypicalmethodsusedtocorrectfornon‐linearitiesinpiezoelectricscanners.

Fig.2.9. Examplesofnon‐linearbehaviourinpiezoelectricscanners.Top:hysteresis;whenavoltagerampisappliedtothepiezo,theresponseisnon‐linear.Bottom:creep;afteranimpulseappliedtothepiezo,themovementcontinuesinthesamedirection.

Page 10: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 10 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(p.17) 2.2.1.2x‐yaxiscorrectionOpen‐looptechniquesrequirecalibrationoftheAFMscannertomeasurethenon‐linearities.Thentheimageiscorrectedusingthemeasurednon‐linearities.Inpracticalterms,onemustmeasureaverywell‐knownsample,withrepetitivepatternstobeabletodeterminethenon‐linearitiesinthescanneraccurately.Calibrationspecimensmaybebought,oraresuppliedwithinstrumentsforthispurpose.SeeAppendixAforalistofusefulmaterialsthatmaybeusedincalibratinganAFM.Themostcommonlyusedcalibrationspecimenstaketheformofalithographicallyproducedsilicongrid.Suchsamplesareadequateforcalibrationinthehundredsofnmtomicrometerscale.However,asthenon‐linearitiesvarywithscansize,furthercalibrationisrequiredforatomic‐resolutionscanning.Typically,thismeansscanningasamplewithawell‐knownatomicstructure.Oncecalibrated,theAFMcontrolsoftwarewillalterthevoltageusedtoexcitetheceramicinrealtime,whilescanning,tocompensateforthenon‐idealbehaviour.Alternatively,afteranimageismeasureditmayalsobe‘corrected’byapplyingacorrectionfunctionthatwaspreviouslycreated.Again,asthecalibrationfactorsdependonthescanningconditions,caremustbetakentoreplicateallthescanningparametersexactly,ifoneistofollowthisroute.Inaddition,itisworthrememberingthatafterproduction,piezoelectricscanners‘relax’slightly,overalongperiodoftime.So,evenifanewscannerisperfectlycalibrated,afterayearorsothepersonresponsiblefortheinstrumentshouldrecheckthecalibrationtomaintainaccuracy.ProcedurestorecertifyAFMscannersaredescribedinAppendixB.Open‐looptechniquesareadequateforcorrectingnon‐linearitywhenmakingmeasurementwithpre‐determinedscanrangesandspeeds.However,open‐looptechniquescannotcorrectforproblemsassociatedwithcreep,andarenotreallysuitablewhereaccuracyisofmoreimportancethanhighresolution(i.e.metrologicalapplications).Inthesecases,itisnecessarytouseexternalcalibration.

Anexternalpositionsensorcanbeusedinanopen‐looporclosed‐loopdesign.Intheopen‐loopconfigurations,thepositionofthescannerismeasured;thentheimageiscorrectedafteritismeasured.Intheclosed‐loopconfiguration,themotionoftheprobeiscorrectedinrealtimewithafeedbackelectroniccircuit.Figure2.10showstheuseofexternalsensorsinaclosed‐loopdesign.Piezoelectricscannersoperatingwithpositionsensorsinaclosed‐loopscanningconfigurationareoftentermedlinearizedscanners,asitisonlyinthisconfigurationthattheirmovementislinear.

Fig.2.10. Blockdiagramforanx‐yclosed‐loopscannerconfiguration.

Page 11: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 11 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(p.18) 2.2.1.3PiezoelectricdisplacementsensorsManytypesofpositionsensorsmaybeusedforcorrectingtheunwantedcharacteristicsinpiezoelectricmaterials.Thepositionsensormustbesmallinsize,stableoverlongtimeperiods,easilycalibrated,haveverylownoiselevels,andbeeasilyintegratedintoascanner.Severaltypesofpositionsensorsareavailableincludinglight‐basedsensors[31],straingauges,inductionsensors,andcapacitancesensors.Opticalsensorsavailableincludeasimpledesignbasedonaknifeedgeattachedtothescanneroccludingalightbeam.[32]Thesignalfromaphotodetectorisreducedastheknifeedgecutsthebeam.Othertypesoflight‐basedmotionsensorsincludeusingapinholeaboveapositionsensitivedetectorandalightlever.Eachoftheselight‐baseddesignsrequiresahigh‐gainamplifier.Theprimaryadvantageofthelight‐basedpositionsensorsisthatthepartsrequiredforconstructionarerelativelyinexpensive.Therearemanydisadvantageshowever,includingthefactthatthesensorisnotinherentlycalibrated,misalignmentsofthelightsourcecauseproblems,highnoise,andtherequirementforahigh‐gainamplifier.ThelightsourcesalsocancausethermaldriftintheAFMscanhead.Interferometersmayalsobeusedforthisfunction[28,33],buttheytendtoberatherbulkyanddifficulttointegrateintotheAFMhead.Capacitance‐basedmotionsensorsaresimpledevicesthatmeasurethecapacitancebetweentwoplateswhichdependsonthedistance,d(Figure2.11)betweentheplates,andthuscanmakeahighlysensitivepositiondetector.Capacitancesensorsarecommonprimarilybecausetheelectronicsforcapacitancesensorsareverysensitive,and

Fig.2.11. DifferentapproachestoincludesensorsinAFMscanners.Top:acapacitivesensor,middle,aninterferometer‐basedsensor;bottom:aninductivesensor.

Page 12: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 12 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(p.19)

Fig.2.12. Zoomtofeatureexample.Inthiscase,withalinearizedx‐yscanner,selectingthesmallfeatureallowedanimmediatezoomtothecorrectregion.Non‐linearizedscannerscannotaccuratelyzoomtosmallregionsofthescanrange.

theyarealsocompact,andsosimpletointegrateintotheAFM.Temperature‐basedstraingaugesmaybeused.Straingaugescanbeattacheddirectlytothepiezoelectricmaterialortheymaybeattachedtoastructurewhichflexeswhenthepiezoceramicexpands.

InductionsensorsarefarmoresuitableformeasuringthedisplacementofthepiezoelectricsinSPMscannerscomparedtoopticalsensors.InductivescannersareconstructedfromacoilthroughwhichanACcurrentflowsgeneratingapulsatingelectromagneticfieldsurroundingthecoil.Placingthecoilanominaldistancefromanelectricallyconductive‘target’inducesacurrenttoflowonthetarget.Theinducedcurrentproducesasecondarymagneticfieldthatreducestheintensityoftheoriginalfield.Thestrengthoftheelectromagneticcouplingbetweenthesensorandtargetdependsuponthegapbetweenthem,sothatthesensorcanmeasurethemovementofthescanner.Incomparisontoopticalsensors,inductionsensorsaresmallandeasilyintegratedintotheAFMscanheadinallthreeaxes,havelownoise,arestable,andnotsubjecttodrift,andonlyrequirecalibrationonceatthefactory.OtherpositionsensorsforAFMpiezosbasedontheinteractionofmagneticfieldshavealsobeenused,andcangiveverylownoiselevels.Thesedifferfromtheinductionsensordescribedhereinthegeometryofthemagneticfield‐producingelements.Figure2.11illustratesthemodeofoperationofanumberofpositionsensorscommonlyusedformeasurementofpiezoelectricelementmovement.

Oneoftheadvantagesofclosed‐loopscancorrectionisthatthescannermovementcanbefullycalibrated.Suchcalibrationscangiveverypreciseandaccuratemotioncontrol.However,thecalibrationprocedurecanbeverytime‐consuming.Someofthemotionsensors,suchastheoptical‐basedsensor,arenon‐linearandrequireregularrecalibration.Othertypes,suchastheinductiveandcapacitativesensorsarereasonablylinearandrarelyrequirecalibration.

Zoomtofeature

OneoftheproblemswithAFMscannerswithopenloopornoscancorrectionisthatitcanbedifficulttozoomfromalargescanrangetoaspecificsmallerscanrange(zoomtofeature,Figure2.12).Withoutscanlinearization,zoomingfromalargescanrangetoa

Page 13: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 13 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

smallerrangerequiresseveralscans,ifoneistobesurenottolosethefeatureofinterest.(p.20) However,withthescancalibrationsensorsoperatinginaclosed‐loopconfiguration,zoomingtoaspecificscanlocationrequiresnointermediatescans.

zaxismeasurement

Correctionofhysteresisandcreepinthezaxisisdifferentfromthecorrectioninthexyaxis.Thisisbecausethexyaxismotionsarepredeterminedandthezaxismotionisnon‐deterministic,anddependsonthesurfacetopographyofthesamplebeingscanned.Itisnotpossibletopredictthesurfacetopography,soclosed‐loopmethodswillnotwork.Therefore,AFMswithzcalibrationsensorsuseanopen‐loopconfigurationformeasuringheights.Inaz‐sensoredAFM,whenaccurateheightdataisrequired,thez‐sensorsignalisusedinsteadofthezvoltagetodirectlymeasuretheheightsignal.Typically,theAFMsoftwarewillallowtheusertouseeitherthezvoltagesignal(whichhaslowernoise,andisthusmoreprecise),orthezsensorsignal(whichismoreaccurate).

2.2.1.4Three‐dimensionalx‐y‐zscannerconfigurationsPiezoelectricceramicsmustbeconfiguredsothattheycanmovetheprobe,orsample,intheX,YandZaxes.ThereareafewstandardconfigurationsthatareusedinAFMinstruments.Theyarethetripod,thetube,andflexures(seeFigure2.13).Eachofthesedesignsmaybeconfiguredformoreorlessmotion,dependingontheapplicationforwhichthescannerisbeingused.Itisalsopossibletocreatescannersthatuseacombinationofanyofthethreebasicdesigns.Currently,thetubescanneristhemostwidelyused,andisthescannerconfigurationpresentin>75%ofAFMsinuse.Thistypeofscannerissowidelyusedbecauseitisverycompact,allowsveryprecisemovementsespeciallyatsmallscanranges,butmainlybecauseitissimpletofabricate.Itisalsoparticularlyconvenienttoengineeraprobe‐scanningAFMwithatubescanner,becausethereisaclearopticalpathdownthecentreofthetube.However,ithassomedisadvantages;tubescanners,duetotheirgeometryaresubjecttoalotofnon‐linearity,particularlybow(anexampleoftheeffectofscannerbowisshowninSection6.2),whenusingthefullrangeofthescanner.

2.2.1.5ScannersforfastAFMInordertodevelopanAFMthatisabletoscanmuchfasterthannormal,thescannermustbeabletoovercomethelimitationofthetraditionalscanners,whichistheirlowfirstresonantfrequency.Ascannerwithahigherresonantfrequencywillallowfasterscanningwithoutthescannergoingintoresonance.Andoetal.havemadesignificantprogressinthisdirection[3,4,34].Forexample,afastscannerhasbeenconstructedfrompiezoelectricstacks,toachieveahighresonantfrequencyof240kHzversus15kHzforatypicaltubescanner[34].Analternativetechniqueistouseresonantscanners[35,36].Thismeansaveryhighscanratecanbeused,butthescanrateisfixed.Typicallytheseareconstructedfromhighresonantfrequencyflexurescanners,orcanalsobeconstructedwithtuningforkarrangements,althoughthesearesomewhatimpracticalforlargesamples[35].

FastscanningAFMsystemshavebeenshowntoachievescanningasfastas80msper

Page 14: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 14 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

frameinintermittentcontactmodeinliquid[4],orevenasfastas1msincontactmode(albeitwithoutfullfeedback)[35],comparedtoca.100secondsforanormalAFM.However,inordertoscansampleswithsignificanttopography,thegreatestchallengeistocreateaz‐axispositionerwhoseresponseisfastenoughtoreacttorapidchangesinthesampleheight,duetoextremelyfastx‐yscanningoverthesample.

(p.21)

Fig.2.13. ConfigurationsofcommonAFMscanners.Top:atubescannerisconfiguredsothatitmovesinthex‐y‐zaxes.Fourelectrodesontheoutsideareusedforthex‐yaxismotion,andtheinnerelectrodeisusedforthezaxismotion.Middle:aflexurescanneroperatesbypushingonaflexurewithapiezoelectricwhichthencausesthestagetomove.ThereisagaininthemotiongivenbytheratioofL2/L1.Aone‐dimensionalflexureisshownforclarity,typicallyflexurescannersareset‐uptoscaninthex‐yaxes.Bottom:thesimplestthree‐dimensionalscanner,thetripodscanner.

2.2.2Forcesensors

TheforcesensorinanAFMmustbeabletomeasureverylowforces.Thisisbecause,foraverysharpprobetobeused,alowappliedforceisrequiredsothatthepressure(force/area)canbelowenoughsothattheprobeisnotbroken.

AnumberofdifferentforcesensorshavebeentestedanddemonstratedtoworkwithanAFM.SomeoftheseforcesensordesignsareillustratedinFigure2.14.Theuseofanopticallever(sometimesknownasalightlever),usedroutinelyformeasuringminutemotionsinscientificinstrumentation,wasfirstdemonstratedinanAFMin1988[23].WiththeadventofmicrofabricatedcantileverstheopticalleverAFMbecamethemostwidelyuseddesignfortheforcesensorinanAFM,andtoday,nearlyallAFMsemployopticalleverforcesensors.

(p.22)

Page 15: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 15 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.14. DifferentforcesensorsemployedinAFMdesigns.

TheprincipleoftheopticalleverisshowninFigure2.15.Theleverconsistsofalaserfocusedtoaspotonthebackofareflectivecantilever;thebeamisthenreflectedontoasplitphotodetector,whichmeasuresthepositionofthelaserspot.Inananalogouswaytoamechanicallever,theopticallevermagnifiesasmallmovementofthecantilever,tocreatealargemovementatthephotodiode.Thechiefadvantageofthissystemisthatitishighlysensitivetoverysmallmovementsofthecantilever,anditisquitesimpletobuild[23,24,41].

2.2.2.1OpticalleversensorsThedesignforanopticalleverAFMsensorisillustratedinFigure2.15.Alaserbeamisreflectedbythebacksideofareflectivecantileverontoafour‐segmentphotodetector.If

Page 16: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 16 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

aprobe,mountedonthefrontsideofthecantilever,interactswiththesurfacethereflectedlightpathwillchange.Theforceisthenmeasuredbymonitoringthechangeinlightdetectedbythefourquadrantsofthephotodetector.

(p.23)

Fig.2.15. Schematicdiagramoftheopticalleversensor.Inanopticallever,astheendofthecantileverbendsthepositionofthelaserspotonthedetectorchanges.Asthecantilever–detectordistanceDcdislarge,asmallmovementofthecantilevercausesalargechangeinthelaserspotpositionatthedetector.

ThecantileverintheopticalleverAFMistypicallyfabricatedwithaMEMSprocess.Thecantileversaresmall,generallybetween50and300micronslong,20–60micronswide,andbetween0.2and1micronthick.Section2.5hasamoredetaileddiscussionofthecantileversandprobesusedinanAFM.TheopticalleverAFMforcesensorrequiresalignmenteachtimetheprobeischanged.Typically,alignmentisaccomplishedbyfirstpositioningthelaserbeamontothecantilever,andthenconfirmingthatthelightisreflectedontothecentreofthephotodetectorbylookingatthephotodetectorsignal.Thisalignmentprocedureisrathertime‐consuming,andisnotalwaysfullyreproducible;smallchangesinthelaseralignmentcanaffecttheforce‐sensitivityofthesystem.Thealignmentprocedureisoneofthedisadvantagesoftheopticalleversystem.AprocedureforopticalalignmentisgiveninSection4.2.ThelasercanalsogiverisetoimageartefactsasshowninSection6.6.IntheidealopticalAFMdesign,theprobewouldhavea90°anglewithrespecttothesurface.Practically,however,thisisnotpossiblebecauseoftheconstraintofthemechanismthatholdstheprobeinplace.Thisrequiresthattherebeananglebetweentheprobe/cantileverandthesurface,toensurethatonlythetipoftheprobetouchesthesample.Thisangleisusuallybetween5°and15°.Suchanglescanalsocauseartefactsintheimages.Someprobesareavailablewithacounter‐anglebuiltintothegeometry,i.e.thetipismountedontothecantileveratca.12°sothatitcanapproachthesampleatanangleclosetotheperpendicular.TheopticalleversensorisbyfarthemostwidelyusedforcesensorforAFMs.Thefollowingsectionscoverthedesignand

Page 17: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 17 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

implementationofopticalleverforcesensors.

2.2.2.2IntegratingopticalleverforcesensorsandscannersThefirstAFMdesignsscannedthesampleandkepttheprobestationary.Thissample‐scanningdesignisoptimalforonlylimitedtypesofsample.Tocreatetip‐scanningAFMsitisnecessarytodesignAFMscannerswherethex‐y‐zscannerisintegratedwiththe(p.24)

Fig.2.16. Designsfortip‐scanningAFMSwithopticalleversensors.Left:thelaserisscannedwiththecantilever.Right:thelaserisfixedandthecantileverisscanned,alenskeepsthelaserlightfocusedonthecantilever.

opticalleverAFMforcesensor.Thesimplestapproachtointegratingthex‐y‐zscannerwouldbetomounttheopticalleversensorattheendofthescanner.Thisisnotfeasiblebecausethezpiezoisnotresponsiveenoughtomovetheentirelightleverupanddownastheprobeisscannedacrossthesurface.SuchanAFMwouldbetooslowtobepractical.TwomethodsareemployedforcreatingacombinedopticalleverAFMscannerwithanx‐y‐zscanner.

Inthefirstconfiguration,illustratedschematicallyontheleftofFigure2.16,thelaserandphotodetectorarescannedintheX‐Yaxis,andtheprobeismountedattheendoftheZpiezoelectric.Inthisdesignthezpiezoispartoftheopticalleveroptics.ThismeansthatastheprobeismovedupanddownintheZdirectionthelightpathchanges.However,itcanbeshowngeometricallythattheZmotionofthecantileverhasaminimaleffectontheoperationoftheAFMopticalleverAFMsensor.Inthisdesign,commonlythex‐yscannerwouldbeaflexurescanner,andthezscannerasimplepiezostack.AlsoillustratedinFigure2.16istheotherapproachthatiscommonlyused.Thelaserisheldfixedandalensisusedtofocusthelaserlightontothescanningcantilever.AsthelensmovesbackandforthintheX‐Yplane,thelaserlightstaysfocusedonthecantilever.Thephotodetectormustbethenmountedonthex‐ytranslator.

2.2.3CoarseZmovement–probe–sampleapproach

OneofthemajorchallengesinAFMdesignismakingamotioncontrolsystemthatpermitstheapproachoftheprobetothesurfacebeforescanning.Thismustbedonesuchthattheprobedoesnotcrashintothesurfaceandbreak.Ananalogousengineeringchallengewouldbetoflyfromtheearthtothemoonin60secondsandstop38meters

Page 18: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 18 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

fromthesurfacewithoutovershootingorcrashing.

(p.25)

Fig.2.17. ‘Woodpecker’probeapproachmethod.Thesurfaceisapproachedbyalternatelyexpandingthepiezoelectricelement,andsteppingthezmotor.Thisavoidsuncontrolledcontactbetweentheprobeandthesample.Assoonasthesurfaceisencountered,thefeedbacksystemisturnedon.

IntheAFMstagetherearetwoseparatemotiongenerationmechanismsintheZaxis.Thefirstisastepper‐motor‐drivenmechanismwithadynamicrangeofacentimetreandaresolutionofafewmicrons.Thesteppermotorisdriveneitherbyalinearbearingoran80turnperinchscrew.ThesecondmotiongenerationmechanismintheZaxisisthezpiezoelectricelementintheAFMscanner.Thezpiezotypicallyhasadynamicrangeofabout10micronsorlessandaresolutionoflessthan0.5nm.Whilesteppermotorshavetherangeandspeedtoapproachthesurfacefromagreatdistanceinashorttime,theyhaveneithertheresolutionnorfastresponsetimetoputthetipintofeedbacksafely.Ontheotherhand,thepiezodriverissensitiveenoughtosafelygointofeedback,butcanonlymoveshortdistances.

Typically,probeapproachisachievedwitha‘woodpecker’method,(showninFigure2.17).Inthismethod,thesteppermotorissteppedasmallincrement,say1micron.Thenthezpiezoelectricceramicisextended5micronstoseeifthesurfaceisdetected.Thezpiezoisthenretracted,thesteppermotorextendsonemoremicron,soonandsoon.Akeycomponenthereisthatwhentheprobeencountersthesurface,thefeedbackisturnedonimmediately.Inthisway,theAFMcanapproachthesurfacefromseveralhundredsofmicrons,withoutriskofcrashingthetip.

TherearetwoprimarymechanismsthatmaybeusedfortheZmotioncontrol,asshowninFigure2.18.Inthefirst,threeleadscrewsareusedtogetherwithakinematicmount.Allthreescrewscanbeturnedsimultaneouslyorasinglescrewmaybeturned.Ifonlyoneofthescrewsisturned,thereisareductionofmotionatthecentreofthethreescrews.Thisgeometricreductioninmotioncanbeusedtogetveryprecisemotion.Forautomatedtipapproach,oneoralloftheleadscrewsisattachedtoamotor.Inthe

Administrator
Highlight
Page 19: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 19 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

secondmethod,alinearbearingisusedtodrivetheAFMscannertowardsthesample.Thelinearbearingmustbeveryrigidtoavoidunwantedvibrations.

2.2.4CoarseX‐YmovementMostAFMsincludeanX‐Ypositionstageformovingthesamplerelativetotheprobe.Thestagemaybemanualorautomatedwithmotors.TheprimaryfunctionoftheX‐Ystageis(p.26)

Fig.2.18. ConfigurationsusedforcoarseZapproachmechanism.Left:onAFMsdesignedforsmallsamples,akinematicmountistypicallyused.Oneorallofthethreadedscrewsareusuallymotorizedforanautomatedprobeapproach.Right:alinearbearingcouldalsobeemployedtomovetheAFMheadintheZaxis.

forlocatingfeaturesonasurfaceforscanningwiththeAFM.TheresolutionoftheX‐Ystageisusuallylessthan1/10therangeofthex‐yscannerthatmovestheprobe.TherearetwopossibleconfigurationsfortheX‐Ystage.Inthefirst,thesamplesitsontopofanxandycrossedrollerbearing.Inthesecond,thesampleismountedtoablockthatisdirectlyonthebaseofthemicroscope.Typicallythebaseismadefromgranite.ThemetalblockisthenpushedaroundwiththeX‐Ymotors.TheadvantageoftheseconddesignisthatthereislesschanceoftheX‐YstageintroducingnoiseintotheAFMmechanicalloop.Inbothcases,themechanismsmustbehighlywear‐resistant,asanyvibrationswillcompromisethemechanicalloopoftheAFMhead.

2.2.5Opticalorinspectionmicroscope

LiketheX‐Ystage,themicroscopeopticisnotanessentialfeatureforanAFMstage.Theopticisgenerallyusedforfindingtheregionforscanning.Also,theopticalscopecanbehelpfulinpositioningthelaserlightonthecantileverintheopticalleverAFMforcesensor.TheopticalmicroscopeinanAFMcanalsobehelpfulforprobeapproach.

TherearethreeopticalmicroscopeviewingdesignsthatmaybeusedinanAFMstage,illustratedinFigure2.19.The90°topdowndesignisoptimalforapplicationswhenhigh‐resolutionopticalmicroscopeimagingismandatory.The45°designisparticularlyhelpfulforprobeapproachandisusedwhenhigh‐resolutionopticalimagingisnotrequired.The90°bottomviewdesignistypicallyusedwithaninvertedopticalmicroscopeforbiologicalapplications.Inthiscase,itisparticularlyusefultouseaprobe‐scanningdesign,usuallywithatubepiezoorotherscannerthatcanhaveaholeinthecentre.Opticalaccessisthenunimpeded,andthelackofanyAFMcomponentsbelowthesamplereducesthechanceofinstrumentdamagefrombuffersolutionleaksortemperatureeffects;AFM

Page 20: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 20 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

scannersaregenerallyincompatiblewithwater,orgreattemperaturevariations.Theintegrationofhighqualityinvertedoptical/fluorescence/confocalmicroscopeswithAFMisveryusefulinarangeofbiologicalapplications,seeSection7.3,andAFMshavebeendesignedforintegrationwithsuchmicroscopessincethe1990s[42,43].

(p.27)

Fig.2.19. Left:videocameraimageofthecantileverandsampleinanAFM(90°topview).Thered‘spot’isfromthelaserthatisusedintheopticalleverforcesensor.Withscanningrangesgreaterthan1μm,itispossibletoseetheAFMcantilevermoveinthevideomicroscopeimage.Middle:thethreepossibleviewingpositionsofanopticalmicroscopeinanAFM.Right:imageinanAFMwith90°bottomview;notethelaserlight(purpleinthiscase)canbeseenthroughthecantilever,whichisseenthroughthesample(cellsonaglassslide).(Acolourversionofthisillustrationcanbefoundintheplatesection.)

2.2.6Mechanicalloop

ThegreatestfactorthataffectstheverticalresolutionornoisefloorofanAFMistherigidityofthemechanicalloop.Themechanicalloopiscomprisedofallthemechanicalelementsbetweenthesamplesurfaceandtheprobe,asillustratedinFigure2.20.Ifthisloopisnotrigid,thentheprobecanvibrateinanuncontrolledmannerrelativetothesample,andnoiseisintroducedintoimages.Itistypicallyeasiertomakethemechanicalloopveryrigidbymakingthemicroscopeverysmall.Becauseofthis,inpracticethehighestresolutionAFMinstrumentsareverysmall.ItalsomeansthatitisverydifficulttomakeAFMstagesforlargersamplessuchassiliconwafersoropticaldisksthathaveveryhighverticalresolutions.

Page 21: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 21 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.20. ThemechanicalloopinanAFMincludesallofthestructuralelementsthatarerequiredtoholdtheprobeatafixeddistancefromthesample.Thisincludesthex‐y‐zscanner,X‐Ysamplestage,Zmotorandtheprobe.

2.3AFMelectronicsMostoftheelectronicsinanAFMareresidentinaseparatecabinetfromthestageandthecomputer.Thefunctionsintheelectroniccontrollermaybeconstructedwithdigitalsignal(p.28) processing(DSP)chipsoranalogueelectronics.Thissectiondoesnotdiscusstheimplementation,butdescribestheblockfunctionsinthecontroller.TheprimaryfunctionoftheelectronicsinanAFMisto:

(a)Generatescanningsignalsforthex‐ypiezoelectrics.(b)TakeaninputsignalfromtheforcesensorandthengeneratethecontrolsignalfortheZpiezo.(c)OutputcontrolsignalsforX‐Y‐Zsteppermotors.(d)Generatesignalsforoscillatingtheprobeandmeasuringphaseoramplitudewhenanoscillatingmodeisusedforscanning.(e)Collectsignalsfordisplaybythecomputer.

Asmentionedabove,thesefunctionsmaybeimplementedwitheitherdigitaloranalogueelectronics.Inthedigitalapproach,seeFigure2.21,allsignalsfromthestagearedigitized,andaDSPchiptakescareofallofthefeedbackcontrolcalculations.Also,theDSPchipgeneratesthex‐yrasterscanfunctions.Theadvantageofanalogueelectronicsisthattheyaretypicallylessnoisy.Thiswillgenerallyleadtoalowernoiseflooroftheinstrument,andthusmayenableacquisitionofhigherresolutionimages.BecausethefunctionalityofaDSPchipiscreatedbyasoftwareprogram,theDSPapproachgivesmoreflexibilityandcanbechangedveryrapidly.Instrumentswithdigitalelectronicsmight,forexample,allowsimplesoftware‘upgrades’toenablenewfeaturesoracquisitionofmoredatachannelssimultaneously.ThefollowingsectionsareadetaileddescriptionofthefunctionsshowninFigure2.21.

2.3.1x‐ysignalgenerationThex‐ysignalgeneratorcreateaseriesofvoltagerampsthatdrivethexandypiezoelectricelementsintheAFM,asillustratedinFigure2.22.Thescanrangeisestablishedbyadjustingtheminimumandmaximumvoltage.Thepositionofthescanis

Page 22: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 22 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

establishedbyoffsettingthevoltagestotheceramic.Finally,thescanorientationisrotatedbychangingthephasebetweenthesignals.ItcanbeseenfromFigure2.22,thattheforwardandreversescanlinesdonotcoverexactlythesametopography.However,itisusuallyassumedthattheyareequivalent,andgenerally,thereisnoappreciabledifferencebetweenthetwo.Ingeneralitisbestifthedrivesignalsdonothavesharpedgesattheturningpoint.Sharpedgescanexciteresonancesinthepiezoelectricceramics,andcausethemtovibrate.Suchvibrationscreateunwantedartefactsand‘ringing’intheimages.HigherspeedscanningwithanAFMinparticularisalmostalwaysdoneusingroundedsignalssuchassincwavestodrivethepiezoelectricceramics.Furthermore,evenwithslowspeedAFMwhenusingstraight‐edgedsignalssuchasshowninFigure2.22,theresponseofthescannerisnotlinearattheturnaroundpoints.Toovercomethissome‘overscan’istypicallyincludedinthescanning,suchthatonlythelinearresponsepartofthedataisrecorded.Forexample,toscana10μmarea,theinstrumentmightreallymove12μmintheslowscandirection,anddiscard1μmofthedatafromeitherend.Inthisway,therecordeddatadoesnotsufferfromedgeartefacts.

ThemaximumscanrangeoftheAFMscannerisestablishedbythemechanical–electricalgainofthepiezoceramicsandthemaximumvoltagetheycantoleratebeforedepolarizing.Asanexample,thepiezoceramicsmayhaveagainof1μmpervolt.If(p.29)

Fig.2.21. BlockdiagramofAFMelectronicsfunctions.Top:electronicsasimplementedwithanalogueelectronics;Bottom:asimplementedwithahigh‐speedDSPchip.

themaximumpotentialis100volts,thenthescanrangeis100microns.Themaximumachievableresolutionissetbythenoisefloorofthedrivingvoltage.Anoisefloorof1millivoltwouldgiveanX‐Yresolutionof1nanometreinthiscase.

ItisimportantthatthebitnoiseassociatedwiththeX‐Yscangeneratorsbelessthantheanaloguenoiseflooroftheelectroniccontroller.Forexample,ifthescanrangeis100μm

Page 23: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 23 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

andtheanaloguenoisefloorislessthan1nm,thenthenumberofbitsrequiredisatleast100,000,whichisgreaterthan2[16]bits.ThisissignificantbecausemostDACsstoresuchdataas16bitnumbers(i.e.theycanhavenomorethan65,536possiblevalues).Thus,ifthisisthecase,someresolutionwouldbelostwhenthedatawasdigitized.Toovercomethis,oneoptionistouseascaleandoffsetDACandamplifierifthescanningDACdoesnotgiveenoughbitresolution.Thisovercomestheresolutionproblembecausealthough(p.30)

Fig.2.22. Thewaythexandypiezoelectricelementsaredrivenbyvaryingpotentials.Left:illustrationofthesignalsoutputfordrivingthexandypiezoelectricsintheAFMscanner.Right:themotionoftheprobeinthexandyaxiswhenthepiezoelectricceramicsareactivated.

witha100μmscanrangewewouldliketohave1nmresolution,wedonotrequirethatresolutionoverthewholerange,butratherit'srequiredinsmallsectionofthepossiblerange(forexamplea512×512pixelregioncoveringonly1μmoftherange).Asanalternative,aDACwithamuchhighernumberofbitsmaybeused.NotetheinclusionofcircuitsforscaleandoffsetintheAFMelectronicsinFigure2.21.

2.3.2Feedbackcontrolcircuit

IntheAFM,thefeedbackcontrolelectronicstakeaninputfromtheforcesensorandcomparethesignaltoaset‐pointvalue;theerrorsignalisthensentthroughafeedbackcontroller.TheoutputofthefeedbackcontrollerthendrivestheZpiezoelectricceramic.ThetypeoffeedbackcontrolusedinAFMsiscalledaproportional‐integral‐derivativecontroller(PID).TheequationgoverningthewasthisoperatesisshowninFigure2.23.

Theproportional‐integral‐derivativecontrollertakestheerrorsignalandprocessesitasfollows:ByselectingtheappropriateP,IandDtermsinEquation2.6,theprobewill‘track’thesurfaceasitisscanned,keepingZerrminimal.TheintegraltermfacilitatestheprobemovingoverlargesurfacefeaturesandthePandDtermsallowtheprobetofollowthesmaller,high‐frequencyfeaturesonasurface.ManyAFMinstrumentsactuallyuseaPIcontroller,asthederivativetermisnotused,althoughbyconventionthecontrollerisstillreferredtoasaPIDcontroller.Here,wefollowthisconvention.ThetwosignalsfromthefeedbackloopthataretypicallydigitizedtocreateAFMimagesaretheerrorsignalandthezvoltage.Thezvoltage(convertedusingtheinstrumentcalibrationtodistance)formsthe‘height’or‘topography’image.TheuseoftheerrorsignalisdescribedmorethoroughlyinChapters3and4butmostimportantly,itisusedbytheinstrumentoperatortooptimizescanningtheparameters,includingP,IandDvalues.WhenthePIDparametersareoptimized,theerrorsignalimagewillbeminimal.Section4.2describestheprocessforoptimizingthePIDparametersinanAFM.Implementation

Page 24: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 24 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

ofthezfeedbackloopinanAFMcanbemadewitheitheranalogueordigitalelectronics.Theadvantageofdigital

Fig.2.23. Proportional‐Integral‐Derivative(PID)controlleroperationandequation.

(p.31) electronicsisthattheyareveryflexibleandcanbeconfiguredtodomanytypesoffunctions.Analogueelectronicstypicallyhavelessnoiseandhavealargerdynamicrange.Eitherapproachwilltypicallyprovideadequateresults.

2.3.3Outputofsignalsforsteppermotors

UsuallyAFMstageshaveseveralsteppermotorsthatmustbeelectronicallycontrolled.Thesteppermotorsaretypicallydrivenwithaseriesofvoltagepulsesthatareinaspecificphasesequence.Thefunctionsinthestagethatmaybecontrolledwithsteppermotorsinclude:

•X‐Ysampletranslation.•Zmotioncontrol(1to3motors).ThesearefortheZ‐approachmechanism,whichmustbecoordinatedwithmovementsofthezpiezoscanner(seeSection2.2.3)•Zoom/focusonvideomicroscope.•Someinstrumentsallowtheusertomanually‘step’thez‐motoralittleinordertorepositionthescanningpositionalongthezpiezo.•Someinstrumentshavefocussing/alignmentcontrolsforthelaserintheopticallever.

Typically,anAFMwillhavesubsetofthesemotorizedmechanisms.SimplerAFMswillhavefewerofthemimplemented,astheysimplymaketheAFMmoreconvenienttouse.TheexceptionistheZ‐approachmechanismwhichisrequiredforallAFMinstruments.

2.3.4Oscillatingsignals

ForoperationofcertainAFMmodes,itisnecessarytomechanicallyoscillateorvibratethecantileverandtocomparethemodulatedsignalphaseoramplitudetothedriveoscillation.Section3.1.2providesadetailedexplanationofthewaythesemodesoperate.Feedbackcontrolmaybeimplementedsuchthatthephaseoramplitudedifferencetotheinputsignaliskeptconstantduringscanning.Figure2.24illustratesthecircuitusedformechanicalmodulationandphase/amplitudedetectionintheAFM.Ifthefeedbackcontrolmaintainsaconstantphasechange,thentheamplitudemayvarywhilescanning.Viceversa,iftheamplitudeismaintainedconstant,thenthephasemayvarywhilescanning.Forthisreason,theAFMtypicallyincludesA/Dconverterstocaptureanddisplaytheamplitudeandphasesignal.

2.3.5Collectingsignals

ManyelectronicsignalsassociatedwiththeZaxisintheAFMaredigitizedandmaybe

Page 25: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 25 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

displayedbythecomputer.Thesesignalsinclude:

•zvoltage–Thevoltagethatgoestothezpiezoelectricceramic,afterthePIDcontroller.•zerrorsignal–Thissignalisproportionaltotheoutputofthelightleverphotodetector,alsoknownasthedeflectionsignal.•Zsensor–Thesignalfromthemotionsensor,ifpresent,measuresthedisplacementofthezpiezoelectricintheAFMscanner.•Amplitude–Thesignalfromtheamplitudedemodulator.•Phase–Thesignalfromthephasedemodulator.

(p.32)

Fig.2.24. BlockdiagramoftheelectronicsemployedforoscillatingmodeAFMscanning.Thesignalusedforfeedbackcanbeselectedbyswitcha,borc.SwitchaisforDCfeedback,bforphasefeedback,andcforamplitudefeedback.

InanAFMthereistypicallyoneormorehigh‐speedanaloguetodigitalconverters(ADC).IfthereisasingleADC,themanyanaloguesignalsarepassedthroughamultiplexerintotheADCinput(seeFigure2.21).ThespeedoftheA/Dconvertermustbehighenoughsuchthatatleastonedatapointisconvertedperpixel.

Notethatbitnoise,asdescribedinthesectionaboutx‐yscanning,isalsoimportantinthecontextoftheacquisitionofthezaxisdatai.e.thezvoltagesignal.Althoughthezpiezorangeistypicallymuchlowerthanthex‐yrange(typically,alargesampleAFMscannermighthaveazrangeof10μmandanx‐yrangeof100μm),theachievableresolutioninzisalsomuchgreaterthaninthex‐yplane.Ifweimaginethecaseabove,thenwith10μmzrangea16bitADCwouldlimitusto10,000angstroms/65,356bits=1.4angstromsperbit.ThisismuchgreaterthantheresolutionofamodernAFM,whichmightbeexpectedtoshow<0.5angstromroot‐mean‐squared(rms)noiseinzundertypicalconditions.Thisbitnoisecansignificantlydegraderesultswhenscanningsmallfeaturesonaveryflatsurface,orcarryingoutsensitiveforcespectroscopyexperiments.Typically,toovercomethis,theAFMallowsasimilar‘scaleandzoom’solution;thezbitresolutionisincreasedtemporarilybyonlyusingapartofthezpiezorange.ThissettingistypicallyappliedbytheAFMoperator,ratherthanautomatically.Thisisbecauseitshouldonlybe

Page 26: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 26 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

usedwithflatsamplesandsmallscans,asitisnotadvantageoustoreducethezrangewhilescanningroughsamples.

(p.33) 2.4AcquisitionsoftwareTypically,asoftwareinterfaceisusedforcontrollingtheAFMstage.FunctionscontrolledbysoftwareincludesettingallmovementoftheX‐Ystagetolocatethefeatureforscanning,probeapproachtogettheprobenear/onthesurface,selectionofscanmode,settingandcontrollingscanparameters,displayofimageswhilescanning,andacapabilityformeasuringforce–distance(F/D)curves.Sometimesimageprocessingandanalysisarealsohandledwithinthesameapplication,butthesefunctionsarecoveredinChapter5.Figure2.25isascreenshotofatypicalAFMscancontrolwindow.Thefollowingsectiondescribesthefunctionsfoundinthecontrolsoftware.

2.4.1Display

VisualizingtheAFMdatainrealtimeiscriticaltotheefficientoperationoftheAFM.Thisallowsanoperatortoensurethattheyarescanningthecorrectregionofasample,andfacilitatesoptimizingthescanparameterssuchasscanrateandPIDsettings.Typicallythereareatleasttwotypesofdisplay.

Fig.2.25. AwindowsuchisthisistypicallyusedforacquiringAFMimages.TherearesectionsforA:displayingimages;B:displaying2‐Dprofiles,C:enteringscanparameters;andD:enteringfeedbackparameters.

(p.34)(a)Atwo‐dimensionalrepresentationoftheimageshowsthetopographyofthespecimenbeingscanned.Tocorrectfortiltbetweentheprobeandsample,theheightimageistypicallylinelevelledinrealtime(seeSection5.1.1foranexplanationoflevelling).Withoutrealtimelinelevelling,theimagewillonlyshowthetiltbetweentheprobeandsample.Usuallymultiplechannelscanbeshownsimultaneously.(b)An‘oscilloscopewindow’displaysatwo‐dimensionalscanlinesuchastheZsignalversusthexaxismotion.Anoscilloscopewindowisveryhelpfulforoptimizingthescanparametersandensuringthattheprobeistrackingthe

Page 27: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 27 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

sample'ssurface.Typically,datacollectedintheforwardandbackwardsdirectionsdatacanbeoverlaid.(c)AsdiscussedinSection2.3,thereareanumberofdatachannelsthatmaybemonitoredintheAFMinstrument.TheyincludetheZpiezovoltage,Zerrorsignal,Zmotionsensor,andphaseandamplitudesignals.TheAFMcontrolsoftwarewillallowoneormoreofthesesignalstobedisplayedonthescreen.Theymaybeavailableaseitherimages,orscanlinedataorboth.Inadditiontotheheightdata,viewingthezerrorsignalwhileoptimizingacquisitionparameterscanbeparticularlyhelpful.

2.4.2Stagecontrol

MakinganAFMpracticaltouserequiresmotioncontrolincludingatleastonesteppermotortomovetheproberelativetothesampleintheZaxis.AdditionalmotioncontrolisusedformovingthesampleintheX‐Yaxisrelativetotheprobeaswellascontrollingthezoomandfocusofanopticalmicroscope.

(a)Zmotioncontrol:ProbeapproachisaveryimportantfunctionintheAFM(seeSection2.2.3forthehardwareimplementationofthisandSection4.2forprecautionsfortheuseronapplyingzapproach).TheZ‐approachsoftwareshouldberapid,butitshouldnotallowtheprobetotouchthesurfaceinanuncontrolledmanner.Properlyoptimized,probeapproachtakeslessthanaminute.

Theapproachsoftwaretypicallyhasseveraloptionsforcontrollingtherateatwhichtheprobemovestowardthesample'ssurface.Softwarealgorithmsarealsocriticalforsettingthethresholdsignallevelsassociatedwiththeprobeinteractingwiththesurface.Oncethethresholdismet,theapproachisstoppedandtheAFMisputintofeedback.Properlyimplemented,afullyautomaticapproachsystempreventstheuseraccidentallyinputtingathresholdvaluethatwouldcrashthetipintothesurface.Ifthereisanautomatedvideomicroscope,thesoftwarealgorithmfortipapproachcanbeaugmentedtoshortenthetimerequiredforprobeapproach.Thisisachievedbyfocusingthemicroscopeontheprobe,thenthesample.Therelativepositionsoftheprobeandsamplearecompared.ThentheZmotorsaredrivenrapidlyuntiltheprobeislessthan100micronsfromthesurface.

(b)X‐Ymotioncontrol:Becausethex‐ymotionusingthescannerintheAFMusuallyhasarangeoflessthan100microns,anX‐Ymotioncontrolsystemisrequiredthatisabletomovetheprobetowithinafewmicronsofthefeaturesthataretobescanned.AnX‐Ypositioningtabledrivenwithsteppermotorsisoftenused.Softwareisthenusedtomovethetranslationstage.Thesoftwaretypicallyisactivatedbymousecontrolwithinthesoftwareorbyatrackball.

AdvancedsoftwarefunctionsmaybeaddedtomicroscopeswithautomatedX‐Ystages.Functionsincludeanabilitytomeasuremanyimagesadjacenttoeachother,andto(p.35) measureseveralimagesonpre‐setlocationsonthesample.Itispossibletodrivethestagetopre‐establishedlocationsforinspectionapplicationswithregistrationsoftware.

Page 28: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 28 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

2.4.3x‐yscancontrolTheexactscancontrolparametersthatareusedforscanningasampledependontheparticularapplication.Thereareafewvariablesthatmustbeselectedtoscanasample.Theyare:

(a)Imagesize:Thisisthewindowthatisselectedforviewingthefeaturesonasurface.Theimagesizeshouldbeatleastaslargeasthefeaturesthataretobevisualized.Oftenalargescanismeasuredandthentheoperator‘zooms’inonafeatureofinterest.(b)Numberoflinesintheimage:Thedigitalresolutionoftheimageisestablishedwiththenumberoflinesselectedfortheimage.Forexample,ifthescansizeis10×10micronsandthenumberoflinesselectedis256thenthedigitalresolutionis39nanometres.Thenumberoflinesintheimagemayrangefromlessthanonehundredtoseveralthousand.MostAFMsoftwarelimitstheimagestosquareorrectangulardimensions.(c)Imagerotationangle:Theimagescananglemaybechangedwithsoftware.Rotationanglesbetween0°and360°canusuallybeselected.Rotatingtheimagescanaxisusuallymeansthatthelargestscanrangecannotbeachieved.(d)Scanningspeed:Thisistypicallyspecifiedinhertz(i.e.linesscannedpersecond),andinnormalcircumstancesvariesfromaround0.5Hzto4Hz.Combiningthisparameterwiththenumberoflinesintheimage,givesthetimerequiredtocollectanimage.Alongwiththefeedbackparametersdiscussedinthenextsection,scanningspeedcanaffectimagequality.ThisisdiscussedfurtherinChapter4.Realistically,theimportantparameterintermsofimagingqualityisdistancecoveredovertimeratherthanfrequencyoflinecollection,soscanningspeedcanalsobeexpressedinmicrometres/nanometrespersecond.

2.4.4zcontrolSoftwareisrequiredforcontrollingthefeedbackcontrolelectronics,seeSection2.3.Therearetwofunctionsthatarecontrolled;theset‐pointvoltageandthePIDparameters.

(a)Set‐pointvoltage:Thisisthevoltagethatgoesintothedifferentialamplifier,sothisvoltageiscomparedwiththeforcesensoroutputvoltageandanerrorsignalisgenerated.Theset‐pointvoltagecontrolsthe‘relative’force.Acalibrationofthespecificcantileverisrequiredtoconverttheset‐pointvoltagetoaforce(seeSection2.5).(b)PIDparameters:Theseparameterscontrolthe‘responsiveness’ofthefeedbackcontrolelectronics.Theseparametersmustbeadjustedsuchthattheprobetracksthesurfacewhilescanning.Sections4.2–4.3provideadescriptionofoptimizationofthefeedbackcontrolparameters.

2.4.5Force–distancecurves

Force–distance(F‐D)curvesareusedtomeasuretheforcesexperiencedbytheprobe

Page 29: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 29 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

asafunctionofdistancefromthesurface.InF‐Dmeasurements,theprobeismovedtowardthesamplesurfacetoapre‐selectedposition,andthenretracted.TheextentofcantileverdeflectionoverthecourseofthismovementisexpressedbytheZ(deflection)signalwhich(p.36)

Fig.2.26. Softwarewindowsusedformeasuringforce/distancecurveswiththeAFM.Themainwindowshowsthecurvesacquired(A),thewindowbelowitallowstheentryofacquisitionparameters(B),andtotherightofthiswindowaresettingsforextractingdatafromthecurves(C).

isusedtogenerateaforce–distancecurve.Theendpointoftheforcecurvemightbedefinedbytheuserasacertaindistancefromthestartpoint,orasacertainvalueofcantileverdeflection.Thelatteroptionallowstheusertoeffectivelydefinethemaximumforceapplied.SoftwareformakingF‐Dcurves,illustratedinFigure2.26,hasseveralvariableparametersincluding:

(a)startandendpositionforprobe;(b)rateofprobeapproachmotion;(c)numberofF/Dcurvestosignalaverage;(d)locationonimageforF/Dcurve.

Typically,theAFMsoftwarewillalsoallowtheusertocollectaseriesofF/Dcurvesinagridpatternoverauserdefinedareaofthesamplesurface,thusenablingmeasurementofthetip–sampleinteractionacrossthesamplesurface.Thisfacilitymaybetermedlayeredimaging,volumespectroscopyorforcevolumeimaging.

2.5AFMcantileversandprobesAnopticallever‐basedAFMforcesensorrequiresacantileverwithaprobeatitsendforoperation.TypicallythesearefabricatedusingMEMStechnologyandareconsidereda(p.37)

Page 30: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 30 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.27. IllustrationofanAFMcantilever/probe/substratecreatedbymicromachiningofSiorSi3N4.Allcommerciallyavailableprobeshavesubstrateswiththesamedimension,foreaseofuseindifferentinstruments.Theprobeissometimesreferredtoasthetip,andthesubstrateasthechip.Nottoscale.

disposablecomponentoftheAFM.Inprinciple,anAFMprobeshouldlastforever;however,inpracticetheprobetipisoftenbluntedwhenittouchesasurface.Changingtheprobetypicallytakesonlyafewminutes.Inordertomakehandlingsimple,thecantileversareattachedtoacantileversubstrateorchip.Byindustryconvention,thesearenormallyca.3.5×1.6mminsize,andabout0.5mmthink,sothatprobesfromdifferentmanufacturerscanbeusedinmostprobeholdersbuiltintoAFMs.Figure2.27showsacartoonofthedesignofatypicalprobe/cantilever/substrate.

ThegeometryoftheprobeiscriticaltothequalityofimagesmeasuredwithanAFM.AllAFMimagesareaconvolutionofprobegeometryandsurface.Asanexample,inFigure2.28,iftheprobecannotreachthebottomofasurfacepit,ortrackthesidesofaparticle,theimagewillnotindicatethecorrectgeometryofthesample.FurtherdetailsontheproblemsassociatedwithblunttipsareshowninSection6.1.

2.5.1Probematerials

Inprinciple,AFMcantileverscanbefabricatedfromanymaterialthatcanbefabricatedintoaspring‐likecantilever.ThefirstAFMcantileverswerefabricatedfromtungstenwireand

Fig.2.28. Comparisonofimageprofilesobtainedwithadull(left)orasharp(right)probeonaconcavefeature(apit,top)oraconvexfeature(astepfeature,bottom).

(p.38)

Page 31: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 31 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.29. Examplesofcontactandnon‐contactprobes.Left:atypicalv‐shapedcontact‐modecantilever.Thewholeprobeismadefromsiliconnitride(Si3N4),andhasanintegratedsquarepyramidalprobetip.Right:aprobedesignedforoscillatingmodessuchasnon‐contactAFM.Thecantileverisusuallyrectangular(oramodifiedrectangleshapelikethisone).Thewholeprobeismadefromsilicon,andismuchstifferandmorepronetobreakingthanthecontactprobe;howeverithasasharpertip.

hadaprobeetchedinthesiliconattheend.EarlyintheevolutionofAFMitwasdiscoveredthatthebestAFMprobescouldbeconstructedfromMEMstechnology.TherearetwomaterialscommonlyusedforAFMcantilevers:siliconnitride(Si3N4)andsilicon(Si).

Si3N4isusedforcreatingprobesthathaveverylowforceconstants.ThethinfilmsusedforcreatingSi3N4probesmusthaveverylowstresssothecantileversdon'tbendnaturallyfromthestress.Practically,mostSi3N4filmshavesomeresidualstressandinfact,cantileversmadewithSi3N4tendtohavecurvaturealongtheirprimaryaxis.

CantileversfabricatedfromsilicontendtohavelessresidualstressthanSi3N4andsotendnottosufferfrombending.However,theSiprobesthatarefabricatedattheendofthecantilevercanbebrittleandcanbemorelikelytochipwhentheycontactasurface.Mostoftheprobesusedinopticallever‐basedAFMforcesensorsareconstructedfromSi.

2.5.2Contactversusoscillatingmodeprobes

Cantileversforopticallever‐basedAFMcanbeoperatedintwobasictopographymodes;contact(static)modeandoscillatingmodes,seeSection3.1.Thecantileversusedforcontactmodehaveforceconstantsthataretypicallymuchlessthan1N/mandarefabricatedfromeithersiliconorsiliconnitride.Ontheotherhand,oscillatingmodecantileversareusuallyfabricatedfromsiliconandhaveforceconstantsthataregreaterthan10N/m.ExamplesaregiveninFigure2.29.Therearealsoalargenumberofotherprobesavailabledifferentiatedbydifferingtipgeometries(forexamplemanyexamplesofprobeswith‘sharpened’andhigh‐aspect‐ratiotipsareavailable),cantileverforceconstants,andcoatings.Non‐topographicmodesarecommonlycarriedoutwiththesespecialitycantilevers,seebelowformoreaboutsuchcantileversandSection3.2fordetailsoftheirapplications.

TherectangularcantileversusedasAFMforcesensorshavethesamemechanicalpropertiesasallcantileveredbeams.Theyhaveaverticalforceconstantandresonant

Page 32: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 32 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

frequencygivenbyEquation2.5.AdditionallyacantileverhastorsionalandlateralbendingforceconstantsgivenbyEquations2.6and2.7.Thecalculationsofthecorrespondingequationsforv–shapedleversisconsiderablymorecomplex,see[44].

(p.39)

(2.7)

(2.8)

(2.9)

where:Kver=verticalforceconstant

Ktor=torsionalforceconstant

Klat=lateralforceconstant

E=Young'smodulus

G=modulusofrigidity

w=cantileverwidth

l=cantileverlength

t=cantileverthickness

2.5.3Controloftipshape

HorizontalresolutionwithanAFMcanoftenbeimprovedwithsharperprobes.TherearemanytechniquesavailableforsharpeningAFMprobes.BecausethesharpnessandreproducibilityofmanufacturedprobesisoneofthelimitingfactorsonthequalityofAFMresults,newtypesofprobesareunderconstantdevelopment.Examplesofthisincludecompositeprobessuchasmixedsilicon/siliconnitrideprobes,andprobesterminatingincarbonnanotubes.However,itremainsamajorchallengetoproduceprobeswithareproducibletipradiusbelow10nmatareasonablecost.

•Si3N4probesaresharpenedbyaddinganextraprocessstepthatchangestheshapeofthepitthattheSi3N4filmisdepositedon.However,this

= w × ×kver

E

4( )t

l

3

= t × ×klat

E

4( )w

l

3

= w × × ×ktor

G

3t3

l

1

(H + t

2)2

Page 33: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 33 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

techniqueoftengivesdoubletipswhichcancausesubstantialartefactsinimages.Anotheroptionisanadditionaloxidation/etchingprocessaftertheprobeismanufactured.•Siprobescanbesharpenedbychemicaletching,ionmillingorbyaddingacarbonnanotube(seeFigure2.30).Eachofthesetechniquescancreateasharperprobe,butalsoaddtothepriceoffabricatingtheprobe.

OnemethodforcontrollingthegeometryoftheprobeonanAFMcantileveristomountasphereattheendofthecantilever.Thespherecanbemounteddirectlyonacantileverthatdoesnothaveaprobe.Thespheremayalsobemountedattheendofa‘plateauprobe’,oraprobethatdoesnothavesharptip,butinsteadhasaflatplateauattheendofthetip.

Probedamage

ThequalityofanAFMimageiscriticallydependentontheshapeoftheprobeusedformeasuringanimage.TheAFMprobecanbeseverelydamagedbytipapproach.Handling

Fig.2.30. SEMimagesofdifferenttypesofsharpenedsiliconprobes.A:astandardsiliconoscillatingmodeprobe.B:‘super‐sharpsilicon’probesharpenedwithanelectrochemicaletch.C:‘high‐aspect‐ratio’probesharpenedwithionmilling.Right:probemodifiedwithcarbonnanotube.ImagesA–CreproducedwithkindpermissionfromNanoWorldAG.

(p.40)

Fig.2.31. Simplifiedviewofprobedeconvolution.Ifthecross‐sectionoftheprobegeometryisdescribedasanupsidedowntriangle,itissimpletoremovetheeffectoftheprobefromanimageofananoparticle.Theactualdiameterofthenanoparticleiscalculatedusingtheequationattheright.However,realprobesdonothavetheshapeofanupsidedowntriangle.

theprobeincorrectlybeforeitisplacedinthemicroscopecanalsocauseprobedamage.Forexample,iftheprobeisexposedtohighelectricfields,theprobetipcanbeblownoffbyelectrostaticdischarge.Finally,theprobetipcangetdirtyfromthepackingmaterialsusedtoholdtheprobewhileshipping.

2.5.4Probeshapedeconvolution

Iftheprobegeometryisanalyticallyknown,itispossibletoremovetheprobegeometry'seffectonanAFMimagebyaprocesscalleddeconvolution(seeFigure2.31

Page 34: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 34 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

foratwo‐dimensionalrepresentationoftheproblem).UnfortunatelythegeometryofAFMprobesisnotwellknownfromfirstprinciples,astheydonotnormallyhavesimplegeometricalshapes.Furthermore,becausethemethodofmanufacturingsuchprobesisnotperfectlyreproducible,therewillbevariabilityfrombatchtobatchandevenconsiderablevariationinprobecharacteristicsproducedonthesamesiliconwafer.Thus,inordertocorrectlydeconvolvethetipcontributionsfromanimage,itisnecessarytocharacterizeeachtiponacasebycasebasis.

Unfortunately,itisdifficulttofindatechniquetoaccuratelyandnon‐destructivelymeasurethetipgeometry.BothTEMandSEMhavebeentried[45–47],butalthougheithertechniquecouldhaveinprinciplesufficientresolutionforthetask,thereareanumberofdifficulties.Neithertechniquegivesrealthree‐dimensionalinformation,sosuperpositionofvariousrotatedimagesisnecessarytofullycharacterizetheprobe.Theresolutionrequiredmustbesimilartothatofthedetailsintheimage,i.e.thesameastheresolutionofAFM.Toachievesuchresolutions,electronmicroscopesmustbeoperatedathighdrivingvoltages,andwithsuchhighvoltagessharpfeaturessuchastheprobeareeasilydamagedbyover‐charging,especiallywithoutmetalcoating,whichcanaltertheprofileofthetip.Suchdifficultiesmeanthatthesetechniquesarequiteimpractical.Theidealinstrumenttogetthree‐dimensional,high‐resolutionmeasurementsoftheprobeistheAFMitself.Thiscanbeusedbytipself‐imagingwhichisdonebyusingtheAFMtoimageaspike‐likefeature(seeforexamplethetip‐characterizationsamplesdescribedinAppendixA).Thisresultsinthespikeimagingthetip,i.e.theresultingimageisanimageofthetip,onlysomewhatdilatedbythesample,assumingthattheradiusofthespikeismuchlessthanthatofthetip.Arelatedtechniqueistoimageaverywell‐knownsamplesuchaswell‐characterizednanoparticles[48,49].Knowingthecorrectsamplegeometrythedilationbythetipiseasytoextract.Thesetechniquesaresomewhatmoreconvenient(p.41)

Fig.2.32. Exampleofblindreconstructionandsubsequentdeconvolutionofprobegeometry.Byusingtheblindreconstructiontechnique,itispossibletocalculatetheprobegeometryfromtheimageofthenanoparticles(top).Thentheprobegeometrycanberemovedfromtheentireimage,givingthesharperimageshownbelow.

thanelectronmicroscopy,butbothinvolveimaginganexternalsample,andcouldalterthenatureofthetopbycontamination(e.g.bythenanospheres)orwearing(bythespike),andthestabilityofaverysharpfeaturetorepeatedimagingbytheAFMisuncertain[50].

Page 35: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 35 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

However,usingatechniquecalledblindreconstruction,thegeometryofaprobecanbecalculatedbycarefullyanalysinganimageofthesampleofinterest[50–53].BlindreconstructionworksbyassumingthattheAFMimageisformedbyadilationprocess[54].Thismeansthatnotonlydoesthetipprobethesample,butthesamplealsoprobesthetip.Inprinciple,eachpixelintheimageobtainedcontainsinformationabouttheshapeoftheAFMprobetip,aswellastheinformationabouttherealsampletopography.Theideaofblindreconstructionistoextracttheinformationaboutthetipfromeachpixel.Inordertobuildupapictureofthetipfromtheinformationintheimage,thecorrelationbetweentheneighbourhoodofeachpixeliscomparedtotheneighbourhoodofeachotherpixelintheimage.Essentially,theroutinelooksforanyrepeatingpatternsintheimage,andassumesthatanysuchpatternsderivefromtheshapeofthetip.Suchmethodsareverycomputerintensiveanditcantakealongtimetoanalyseasingleimage.Forexample,todotheblindreconstructiononasingle512×512pixelimagewithaCore2processorcantake5minutes.Havingobtainedthegeometryofthetipfromtheimage,itisthenpossibletomathematicallyremovetheprobebroadeningartefactsfromtheimage.Asanexample,Figure2.32showsanAFMimageof100nmdiameternanospheres,andtheeffectsofblindtip‐shapereconstructionandsubsequentimagedeconvolutionontheimage.

Thistechniquehasbeenshowntobehighlyeffectiveundercertaincircumstances[45,55],butitdoeshavesomelimitations[54].Thetipprofileextractedisnottherealprofile,butanestimateoftheprofileofthebluntesttipthatcouldhavemadetheimage.Inaddition,imagingsomesampleswillgiveatipprofileestimatethatisclosertotherealshapethanothers.Specifically,sampleswithhighroughnessandsteepfeatureswillleadtoatipprofileclosetotherealone.Ifthesamplemeasureddoesnothavethese,itmaybenecessarytoimageanexternalsampleafterimagingthesampleofinteresttogetadequate(p.42) dataforblindreconstruction.Also,theaccuracyoftheestimatewasshowntodependstronglyontheimagesizeused.Specifically,smallimageswilltendtooverestimatethesharpnessofthetip,duetolowersignal‐to‐noiseratioatsmallscansizesandthisnoiseathighresolutionscanalsointroducedistortionsintheestimatedtipshapeversustherealshape[56].Ontheotherhand,largeimagesorimageswithalowpixeldensitywilltendtogiveresultssuggestingamuch‘blunter’profileofthetipduetoundersamplingofthesurfacetopography[57].Overall,blindreconstructionisatechniquewhichisrelativelysimpletoapply,andcanconsiderablyimprovethequalityofAFMdata,byremovinglargepartofthedilationeffectofthetip,aslongascareistakenintheapplicationofthetechnique.Itisalwaysworthremembering,however,thatinthecaseofablunttiporsharpsamplefeatures,therewillexistsomepartsofthesamplethatareneverprobedbythetip[58](seeforexample,Figure2.28,wherethecornersofthedepressions,orcornersoftheprotrusionscouldnotbeimaged),anddeconvolutioncannothelphere.

2.5.5Cantileverforceconstants

CantileveredAFMprobesfabricatedwithMEMSprocessingtechnologiesaresubjecttofairlydramaticdistributionsofspecifications.Forexample,awaferofprobescouldhaveonly85%oftheprobeslessthan10nmindiameter.Theother15%couldhaveany

Page 36: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 36 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

diameter.ThisdistributioncandramaticallyaffectthequalityandresolutionofAFMimages.Besidestheprobegeometry,thecantileverscanhaveasubstantialvariationinspecifications,especiallythethicknessofthecantilevers.Becausetheforceconstantofthecantilevervariesastheinversecubeofthethickness,theforceconstantsofMEMSfabricatedcantileverscanvarydramatically.Table2.1showsanexampleofthevariabilityofcantilevergeometriesandthecalculatedimpactoncriticalspecifications.Itcanbeseenthatinrelativeterms,thethicknesshasaveryhighvariabilitycomparedtothewidthorlength,andthatthisgreatlyaffectstheforceconstantvariability.

Calibrationofcantileverforceconstants

AsillustratedinTable2.1,thereisconsiderablevariabilityintheforceconstantofanAFMcantilever,mainlybecauseofvariationsinthethicknessofthecantilevers.Thus,whenknowledgeoftheexactforceappliedisrequired,theforceconstantofthecantileverusedforthetestsmustbecalculated[59].Thisisparticularlyimportantforforcespectroscopyapplications(discussedfurtherinChapter3),butknowledgeoftheappliedforceisalsoveryimportantforreproducibilityinimagingstudies.AlargeamountofworkhasbeendonetodetermineoptimumtechniquestomeasuretheforceconstantsofAFM

Table2.1.ExampleofthevariabilityinmanufacturedAFMcantileverproperties.CantileverData Value RangeThickness 2μm 1.5–2.5Meanwidth 50μm 45–55Length 450μm 445–455Forceconstant 0.2N/m 0.07–0.4Resonancefrequency 13kHz 9–17

(p.43)

Page 37: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 37 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.33. EquationsforcalculatingforceconstantsofrectangularandtriangularcantileverswiththeSadermethod[66].

cantilevers(see,forexamplereferences[60–65]).ThemostcommonlyusedmethodusedfortocalculatethenormalforceconstantistheknownastheSadermethod[66–68].Inthismethod,thephysicalgeometryofthecantileverismeasured,typicallywithanopticalmicroscopeandthequalityfactor,Q,ismeasured.Thequalityfactorisofthecantileverisessentiallyameasureofthebandwidthoftheoscillationcomparedtotheexcitingfrequency),andissimpletomeasurewiththeAFM.Withthephysicalmeasurements,andtheQofthecantilever,Equations2.11and2.12canbeusedtocalculatethespringconstant,seeFigure2.33.Thismethodhasbeenlaterextendedtothecalculationofktor,thetorsionalconstant[61],aswellastocantileversofarbitrarygeometry[69].

Severalothermethodsforcantilevercalibrationarealsowidelyused.Theaddedmassmethod,firstdescribedbyCleveland[70],takesadvantageofthechangeinfrequencyofaleverwhenamassisaddedtotheend.Essentially,themethodconsistsofphysicallyaddingasmallwellcharacterizedparticletoaprobetip,forexampleatungstenorpolymermicrosphere.ThismethodisatleastasaccurateastheSadermethod[63,71],anddoesnotrequiremeasurementofcantileverdimensions,butalthoughdescribedasnon‐destructive,(p.44) ishardtoperformwithoutthedangerofdamagingthetip,andreliesonhavingwell‐characterizedmassesreadilyavailable.

Thethirdmethodcommonlyappliedtoobtainthenormalspringconstantisknownasthethermalnoisemethod,firstpresentedbyHutteretal.[72,73].Thismethodrequiresmeasuringthethermalnoisespectrumwhenthecantileverisincontactwithasurface.Thethermalnoisespectrumcanbeveryweak,anditisnecessarytouseahighperformancespectrumanalysertocollectthedata,pressingthecantileveragainstthesurfacemeansitcanpotentiallychangethetipshape.However,thetechniquehasbeenshowntobebothpreciseandaccurate[62].

Page 38: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 38 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Finally,thereferencecantilevermethod[74,75]consistsofpressingthecantileveragainstapre‐calibratedspring,orreferencecantilever.Thisisrelativelyeasytoperform,butreliesontheavailabilityofawell‐characterizedcantilever,andagain,couldbeconsideredtoalterthetipshape.

Allthemethodsmentionedabovehavefocussedonthenormalforceconstantsofcantilevers.However,forcertainapplicationstorsionalorlateralforceconstantsmustbecalibrated[76,77].ThisisdiscussedfurtherinChapter3,inthesectionsonlateral‐andtorsional‐bendingbasedmodes.

2.5.6Improvedprobingsystems

ThescanrateofanAFMlimitsthesizesofareasthatcanbeanalysedtoafewhundredmicronsatbest.ItwouldbehighlydesirabletocreateanAFMwithmultipleprobesthatcouldscanmanyareassimultaneously.Severaleffortstocreate‘multipleprobe’atomicforcemicroscopesdemonstratedthatitispossible.Inthefirstapproach,severalAFMscannerswerepositionedaboveasiliconwafersampleandscannedindependently.Inthesecondapproach,severalprobesononesiliconwaferwereusedtoscanasamplesimultaneously[7].ThegreatestchallengeforcreatingmultipleprobeAFMinstrumentationistogetalloftheprobestobeassharpasisrequiredforhigh‐resolutionscanning.InmostmultipleprobeAFMdesigns,asimplifiedcantileveractuation/sensingsystemisused,toavoidthecomplicationoffittingmultipleopticalleverset‐upsaroundclosely‐spacedcantilevers[78].Theseset‐upsalsosimplifytheoperationoftheinstrumentsgreatly,althoughtheytypicallymeanthatstandardcost‐effectivecantileverscannotbeused.

AnotherapproachtoimprovetheoverallproductivityofAFMistomaintainasingleprobe,buttodriveitatmuchhigherspeedsthanareavailablebynormalAFM.AsshowninFigure2.29,standardAFMcantilevershavelengthsoftheorderofseveralhundredmicrometers,typically200–400μm,andwidthsoftheorderof40μm.However,thereareadvantagestobegainedinspecificapplicationsinusingmuchshorterandsmallercantilevers[3,79–81].FastscanningAFMbenefitsfromtheuseofsmallcantilevers,specificallybecausetheycanhavemuchhigherresonantfrequenciesthanlargercantilevers,withouthavingveryhighspringconstants,andcancauselesssampledamagewhenscanningathigherspeeds[3,34,81].Smallcantileversalsohaveadvantagesforforcespectroscopy,becausethenoiseflooristypicallycontrolledbyperturbationsofthecantileverbythesurroundingmedium(airorliquid),whichhasasmallereffectforsmallercantilevers,leadingtohighersignal‐to‐noiseratio[82].SmallcantileversforfastscanningAFMwerefirstproposedin1996[83],buttheiruseisfarfromwidespread.ThemainproblemisthatuseofsuchcantileversinanormalopticalleverAFMheadneeds(p.45) modificationstotheopticsofthelightlever[3,84].Nevertheless,theuseofsmallleversforbothspectroscopicandfastscanningapplicationsisgrowing,andrecentlyacommercialsourceofsuchleversbecameavailable,andcommercialAFMinstrumentscapableofusinglaserspotssizessuitabletousesmallleversarenowalsoavailable.

Page 39: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 39 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

2.6AFMinstrumentenvironmentVariousenvironmentalfactorscandrasticallyaffecttheresultsobtainedwithAFM.Theseincludetheenvironmenttheinstrumentismaintainedin,forexamplethepresenceofvibrationsinthebuildinginwhichtheAFMishoused.AnAFMisaverysensitivedevice,andishighlysusceptibletointerferencefromvibration.ThetwomaintypesofvibrationpickedupbytheAFMareacousticandmechanicalvibrations.Acousticvibrationsaretransmittedthroughtheair,andaresometimes,butnotalways,alsoaudibletohumans.IndecidingwheretoplaceanAFMinyourorganization,itisalwaysworthlookingforthequietestroomyoucanfind;evenpeopletalkingquietlycanshowupintheAFMwhenscanningatveryhighresolution,soitisideallylocatedinaplacewithfewotheractivitiestakingplace.Section6.4.2showsanexampleofacousticnoiseinanAFMimage.Ingeneral,locatingtheAFMinaroomwithlittletrafficandaudiblenoisereducesthesesortsofinterferingvibrationstoareasonablelevel.Someacousticnoisehowever,suchasthefansusedtocooltheAFMorcomputersystem,orfromairconditioningunitsarehardtoavoid.Inaddition,increasingly,AFMinstrumentsarebeinginstalledinlocationswithunfavourablecharacteristicsfortheoperationofanAFM.Inthesecases,someformofisolationfromacousticandfloorvibrationsisnecessary.Typically,theAFMiseasilyisolatedfromacousticnoisebyplacingitinasealedcabinetconstructedfromacousticdampingmaterials.Onedrawbackofthesecabinetsisthatsuchmaterialsarecommonlymadeofpolymerfoam,andtheytendtobegoodthermalinsulatorsaswell,sothatasmallacousticcabinetcanoftenmeanitismoredifficulttodispersetheheatgeneratedbytheAFM,leadingtopoorthermalstability.Analternativetosuchcabinetsistocladthewallsoftheroomwithsound‐absorbingpanels;thesegreatlydecreasethetransmissionofacousticnoisetotheinstrumentwithoutreducingthecoolingpotential.

MechanicalvibrationsaretransmittedtotheAFMstagefrommechanicalcontact.Therearemanypossiblesourcesofsuchmechanicalnoise.Typically,however,thenoisereachestheAFMviafloorcontact.ThereforeisolationoftheAFMstagefromthefloorisnecessary.ThemostsimplemethodtodothisisbysimplymountingtheAFMonagranitestage(oftenincludedaspartoftheAFM),andfurtherisolatingwithametallicplate/rubberballsstack.Suchsystemsworkadequatelyforlow‐resolutionworkorworkwithquiteroughsamples,butaregenerallyinadequateformoredemandingapplications.Forbettervibrationisolationstwotypesofsolutionexist;activeandpassivevibrationisolation.

ActivevibrationsolutionsgenerallytaketheformofaplatformfortheAFM,whichmaybesuspended,devicesthatmeasurethevibrationtransmittedfromthebaseoftheplatform(accelerometers),andactiveelements(transducers)thatcountermeasuredvibrations,viaafeedbackloopincludingthesignalfromtheaccelerometers.SuchdevicesworkextremelywellinisolatingAFMinstruments,andaregenerallyverycompact.

(p.46)

Page 40: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 40 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.34. Examplesofdifferenttypesofvibrationisolation.Left:anactivevibrationisolationplatform(reproducedwithpermissionfromHerzan).Centre:acompressedair‐basedisolationtable.Thistypeofpassivevibrationisolationisparticularlyappropriateforlargeinstruments.ReproducedwithpermissionfromKineticSystems,Inc.Right:animageofanAFMmountedonabungeecordsuspendedplatform.ThesuspendedplatformisenclosedinacabinetdesignedtofurthershieldtheAFMfromacousticnoise.ImageusedwithpermissionfromAgilent.Metallicspringsarealsosuitableforsuspensionofplatforms.

Passivevibrationsolutionsbasicallyconsistofsomesortofspring,aweight,andadampingdevice.Usually,thesewilltaketheformofanairtableorasuspendedplatform.Thesuspendedplatformisaverysimpledevice,andconsistsofplacingtheAFMonaheavystage(whichformstheweight)thatissuspendedbysprings(eitherstrongelasticbungeecords,ormetalsprings).Withlongspringsandalargeweight,thesedeviceshaveexcellentisolationcharacteristics,butusealotofspace.Theairtableismarginallymorecompactandconsistsofasuspendedplatform,whichiscushionedbyair.Ingeneral,anyofthesolutionsmentionedhereworkextremelywell,andattenuatefloorvibrationsfrommostlocationstoanacceptablelevelforhigh‐resolutionAFMwork.SometypicaldevicesareshowninFigure2.34.

2.7ScanningenvironmentTypicallyAFMiscarriedoutunderambientconditions,butamajoradvantageofAFMistheabilitytoimagethesampleinalmostanyenvironment,fromvacuum,togas,toliquid.Themostcommonapplicationistoscaninliquid,whichisparticularlyimportantinbiologicalapplicationsinordertomeasurethesamplesintheirnativestate,orforelectrochemicalmeasurementsofmetallicsurfaces.FormoreexamplesofliquidscanningapplicationsseeChapter7.Inaddition,scanninginliquidhassomeadvantagesoverscanninginair,suchasreproducibilityofthescanningenvironment,andnotably,thetip–sampleinteractionsinliquidaremuchweaker.Oneofthemajorproblemsofscanninginambientairisthattypicallyameniscuslayerofwaterwillcoatthesampleand/ortip.InteractionoftheAFMwiththislayerofwaterwilldominatethebehaviourofthetip–sampleinteraction[85],makingitdifficulttoapplyasmallforcetothesamplewhenscanning(especiallyincontactmode)[86].Scanninginwaterremovestheseforcesaltogether.

Practically,mostAFMsrequiretheuseofaspecificliquidcellinordertoscaninfluid.TheleakingofwaterinanAFMexperimentcancauseproblemsfortheinstrument.Apartfromthenormalincompatibilitiesbetweenelectronicsandwater,piezoelectricscanners

Page 41: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 41 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

arehighlysensitivetomoistureandmustbewellsealedtoprevent(p.47)

Fig.2.35. TwoapproachestoAFMscanninginliquidwithaprobe‐scanningmicroscope.Scanninginadropletofwater(left)issimpler,butallowslesscontrolofthesolution.ScanninginanAFMfluidcell(right)allowsexchangeoffluids,andcontroloffluidtemperature,ionicstrength,etc.

damagefromwaterfromtheliquidcell.Duetothespecificdangerofpiezodamage,AFMsdesignedforliquidworkareusuallybasedonthetip‐scanningdesign,tominimizethechanceofliquidreachingthescanner.AFMliquidcellswilltypicallyhaveportstoexchangefluidsduringscanning,andcanbeofasemi‐closedorcompletelysealeddesign.Withsealedcells,someflexibility(arubbermembraneoro‐ring)mustbeincludedtopermitthemovementofthepiezo,orofthesample.Othertypicaladditionstoliquidcellsareelectricalconnections(forelectrochemicalAFM),orheating/coolingcircuits(seenextsection).Analternativetoaliquidcellforscanninginfluidistosimplyscanwithinadropletofwater.AnillustrationofthistechniqueandofaclosedliquidcellisgiveninFigure2.35.Inthismethod,typicallyappliedwithprobescanningmicroscopes,thebottomofthescannerassemblyiscoveredbyaglasswindow,toallowthelasertofocusonthecantilever,whichismountedbelowtheglasswindow.Adropletofliquidsitsonthesamplesurface,andwhenthescanningheadisloweredintoit,theliquidformsacontinuousbridgebetweentheglassofthescanninghead,andthesamplesurface.Thistechniqueonlyworkswithaqueoussamples,andhydrophilicsamples,asthesurfacetensionofthewaterisrequiredtokeepthedropletinplaceastheAFMheadislowered.Furthermore,thedropletispronetoevaporateoveraperiodoftime.Withthesecaveats,however,thetechniqueissurprisinglyeffective,andgreatlyreducesthechancesofbubblesenteringtheopticalpath,whichcancauseproblemsinclosedcells.Non‐aqueoussolventsmustbescannedintheclosedliquidcell.MoredetailsaboutproceduresforscanninginliquidsaregiveninsectionsChapter4.

Temperaturecontrol

TemperaturecontrolofscanningishighlydesirableforawiderangeofapplicationsinAFM.Infact,AFMhasbeenperformedataverywiderangeoftemperatures;imagingattemperaturesaslowas5K[1,87]andashighas750°C[88].However,forpracticalpurposes,withcommercialAFMs,inair,amorelimitedrangeoftemperaturesisavailable,duetotwomaineffects:

•atlowtemperatures–condensationonthesampleormicroscope;•athightemperatures–destructionoftheAFMscanner.

(p.48)

Page 42: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 42 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.2.36. Exampledatashowingtheeffectoftemperaturevariationsonpositioningaccuracy.Left:whileheating,thepositionoftheprobeonthesamplewilldriftconsiderably:Right:atelevatedtemperatures,oncestabilized,theprobewillnotdrift.

Whenheatingthesample,toavoiddamagetothescannerthemostimportantthingistothermallyisolatethescannerfromthehotsample,thisistypicallydonebyuseofaspacingmaterialwithveryhighthermalinsulation,andhighstiffness(i.e.aceramicsuchasMACOR®–aceramicwithverylowthermalconductivityandalowthermalexpansioncoefficient).

Asasampleisheatedorcooled,therewillbeconsiderablethermaldriftintheAFMstageintheX‐YandZdirections.Thethermaldriftcanonlybeminimizedbymakingthestageassymmetricalaspossibleandusinglowdriftmaterials.Usuallythereisdriftasthestagetemperatureisraised,andthedriftstopswhenthedesiredtemperatureisreachedandthestagetemperatureisstabilized.DataillustratingthisisshowninFigure2.36.

CoolingsamplesinanAFMstagehasanotherpotentialproblem.Condensationoccursonthecomponentsthatarebeingcooled.WhencoolingasampleinanAFMstage,itisrecommendedthattheentirestagebemaintainedinadryenvironmentsuchasinaglovebox.Ifgoingtoverylowtemperatures,theidealsituationistoscaninavacuum.Assuchtemperaturesaregenerallyusedinphysicsapplicationsthisisrathercommon.Anotherapproachistoimageinliquidnitrogenvapouratambientpressure[89].Atcryogenictemperatures,AFMbecomesverysensitive,duetothelackofthermalexcitationfromairmoleculesonthecantilever,andalsoreducedsamplemovement,andsomeuniqueexperimentsmaybecarriedout.Examplesincludebiologicalmoleculestoodelicatetomeasureinambientconditions[90,91],measurementoffrozenliquids[92]andevensingleatomhoppingfromsampletotip[1].WhilethedesignanduseofAFMstobeinsertedinvacuumandoperatedatcryogenictemperaturesisoutsidethescopeofthisbook,theinterestedreaderisdirectedtothereferences[90,93].

Page 43: University Press Scholarship Online AFMfinstrumentation

AFM instrumentation

Page 43 of 43

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015