19
AFM image artefacts Page 1 of 19 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy ). Subscriber: UC - Berkeley Library; date: 20 February 2015 University Press Scholarship Online Oxford Scholarship Online Atomic Force Microscopy Peter Eaton and Paul West Print publication date: 2010 Print ISBN-13: 9780199570454 Published to Oxford Scholarship Online: May 2010 DOI: 10.1093/acprof:oso/9780199570454.001.0001 AFM image artefacts Peter Eaton Paul West DOI:10.1093/acprof:oso/9780199570454.003.0006 Abstract and Keywords AFM, like any other measurement technique, is prone to artefacts. These can arise due to the AFM probe, the scanner, the instrument electronics, from the laboratory environment, or from many outer sources. Some artefacts are obvious to experienced users, while others are more subtle. Identifying the artefacts so that they can be explained and excluded from analysis is one of the most difficult tasks facing new AFM users. This chapter explains the origins of the artefacts that occur in AFM images, and explains what can be done to avoid them. Keywords: AFM, artefacts, image artefacts, probe convolution, scanners All measurements and measurement techniques are prone to artefacts. In AFM imaging, these artefacts are sometimes easy to spot and sometimes very difficult. Some artefacts

University Press Scholarship Online AFMfimage artefacts ...experimentationlab.berkeley.edu/sites/default/...6.1 Probe artefacts Probably the most commonly seen AFM artefacts arise

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

  • AFM image artefacts

    Page 1 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    UniversityPressScholarshipOnline

    OxfordScholarshipOnline

    AtomicForceMicroscopyPeterEatonandPaulWest

    Printpublicationdate:2010PrintISBN-13:9780199570454PublishedtoOxfordScholarshipOnline:May2010DOI:10.1093/acprof:oso/9780199570454.001.0001

    AFMimageartefacts

    PeterEaton

    PaulWest

    DOI:10.1093/acprof:oso/9780199570454.003.0006

    AbstractandKeywords

    AFM,likeanyothermeasurementtechnique,ispronetoartefacts.ThesecanariseduetotheAFMprobe,thescanner,theinstrumentelectronics,fromthelaboratoryenvironment,orfrommanyoutersources.Someartefactsareobvioustoexperiencedusers,whileothersaremoresubtle.IdentifyingtheartefactssothattheycanbeexplainedandexcludedfromanalysisisoneofthemostdifficulttasksfacingnewAFMusers.ThischapterexplainstheoriginsoftheartefactsthatoccurinAFMimages,andexplainswhatcanbedonetoavoidthem.

    Keywords:AFM,artefacts,imageartefacts,probeconvolution,scanners

    Allmeasurementsandmeasurementtechniquesarepronetoartefacts.InAFMimaging,theseartefactsaresometimeseasytospotandsometimesverydifficult.Someartefacts

  • AFM image artefacts

    Page 2 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    canbeeasilyavoided,iftheuserknowswhattolookforandknowsthesourceoftheerror.Afewartefactsareunavoidable,butknowingthattheyexistinanimagehelpstoavoidmisinterpretingthemasgenuineimagefeatures.ThismeansthatrecognizingimageartefactsisveryimportantfortheAFMuser.However,whenusersbegintouseAFMforthefirsttime,itisverydifficulttosorttherealfeaturesfromtheartefactual.ExperiencedAFMusersaswellasnovicescanbenefitfromconsideringthesourcesofAFMartefacts,assomeartefactualfeaturesareverysubtle,andcanonlybeclearlyseenwhenmakingparticularmeasurementsfromanimage(forexamplewhenmeasuringlineprofiles,orFourierfiltering).ThischaptercontainsexamplesofcommonAFMartefacts,explainsthesourceofthefeatures,andshowswhatcanbedonetoavoidthem.

    6.1ProbeartefactsProbablythemostcommonlyseenAFMartefactsarisefromtheprobeusedtoscanthesample.AsexplainedinChapter2,allAFMimagesareaconvolutionofthetopographyofthesamplewiththeshapeofthetipoftheprobe(andsometimeswiththesidesoftheprobe)[54].WheninterpretingAFMimages,weoftenassumethatthetipradiusisfinerthanthedetailsimaged,andthattheopeningangleoftheprobeissmallerthantheangleofthefeaturesinthesample.Thismeansthattheinfluenceofthetip‐shapeontheimageobtainedwillbesmall(butfinite).However,evenifthisisthecase,continualusemaydulltheprobetiporitcanbreakorbecomecontaminated[46].Often,iftheuserhasmanysamplestoimage,theprobewillbeuseduntiloneofthesephenomenaoccurs,andtheprobebecomesunusable.Ineithercase,theusermustknowwhattolookforwhenthetipdegrades,inordertoknowwhentoreplacetheprobe.

    Commoneffectsseenwhenimagingwithaninadequateprobeinclude:

    •Thefeaturesonasurfaceappeartoolarge.•Thefeatures,especiallyholes,appeartoosmall.•Strangelyshapedobjectsappear.•Repeatingpatternsappearintheimage.•Theimageappearsnormalonthetopoffeatures,butnotontheirsides.

    Thebestadviceiftheuserisunsureistouseatip‐checksample.Thiscanbeanysamplethattheuseriscertainofthetopographyof,andwhichhasrelativelyfinefeatures,suchthattheradiusofthetipcanbedetermined.Inpractice,certaintypesofsamplesareparticularlyusefulforthisoperation,andsomeofthemostcommononesaredescribedin(p.122) AppendixA.Inthischapter,imagesoftip‐checksamplesthatwereacquiredwithfaultyprobesareshown,alongwithimagesmeasuredwithanewprobe,toillustratetheeffectthatprobedamagehasontheimagesobtained.

    6.1.1Bluntprobes

    Typically,bluntprobeswillleadtoimageswithfeatureslargerthanexpected,withaflattenedprofile,duetotheeffectshownbelow.Notethatholesinaflatsurfacewillshowtheoppositeeffect,appearingsmallerwithbluntprobesthanwithsharpones(seethelowerpartofFigure6.1).

  • AFM image artefacts

    Page 3 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    ThedilationduetotheprobeshapeasshowninFigure6.1isanormalfeatureofAFMimaging.Forexample,whenmeasuringglobularfeatureswithaknowndiameterof2nmitwouldbenormaltofindthefeatureintheAFMimagehas2nmheightbut10–20nmwidth[279,375,376].However,whenitoccurstoalargeextentitisaproblem,becauseitmaysignificantlyaltertheapparentsizeofthefeatures,andcanreallychangetheirappearance.AnexampleisshowninFigure6.2.Ifthiseffectisnoticed,theusershouldchangetheprobe.Ifthefeaturecannotbeimagedcorrectlyevenwithnewerprobes,thenanothertypeofprobe(e.g.super‐sharpprobesorhigh‐aspect‐ratioprobes)mayberequired[377].However,someextremelyhigh‐aspect‐ratiofeaturescanbeextremelychallengingtoimagebyAFM,nomatterwhichprobeischosen.

    ThefinedetailsoftheBOPPsamplewhenimagedwithasharpprobeareseenintheleftimageinFigure6.2.Whenimagedwithablunt,wornprobe,asshownintherightimage,theydisappear,andthesamplebecomesalmostunrecognizable.AnexampleoftheeffectofpitsinasamplebecomingsmallerwithadullprobeisshowninFigure6.3.

    Fig.6.1. Illustrationofprobe‐baseddilation.Convexfeaturessuchasparticlestendtoappearwiderwithblunterprobes,althoughfeatureheightmaybeaccurate.Concavefeaturessuchaspitstendtoappearsmaller(bothlesswideandlessdeep)withblunterprobes.

    (p.123)

    Fig.6.2. Illustrationoftheeffectofusingabluntprobe.Thesetwoimagesareofthesamesample,andbothare1.5μm×1.5μm×40nm.Theimageontheleftwastakenwithasharpprobe,theimageontherightwithabluntprobe.ThesampleisBOPP,ausefulsampletocharacterizethesharpnessofIC‐AFMprobetips,seeAppendixA9.

  • AFM image artefacts

    Page 4 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.3. Exampleoffeaturesappearingsmallerduetotheuseofabluntprobe.Left:SEMimageofatestpatternofsquares(NT‐MDTgratingTGX,seeAppendixA).Thesidesofthesquaresareallequal.B:AFMimageofthetestpattern.Becausetheprobeisnotsharp,thetestpatternsquaresappearmuchsmallerthantheyshould,andappearasrectanglesinsteadofsquares.

    6.1.2Contaminatedorbrokenprobes

    ContaminationofAFMprobesisquitecommon,andscanningcertainsamplesleadstodirtyprobesmorequicklythanothers.Inparticular,biologicalorothersoftsamples,oranysamplewithloosematerialatthesurface,tendtocontaminateprobetipsquickly,leadingtoimagedegradation[378].Ontheotherhand,breakingoftheAFMprobeislesscommon,butstilloccurs,mainlywhentheprobeaccidentallytouchesthesampleoutsideoffeedbackcontrol.Thereasonthesetwoproblemsaredescribedtogetheristhantheycangiveverysimilarresults.Whenimagingasamplewithabrokenordirtyprobe,theresultingimagesoftencontainfeatureswithunexpectedshapes,duetoconvolutionofthemisshapentipwiththesamplefeatures.ExamplesareshowninFigure6.4.Anyrepeatingpatternswithintheimages,whicharenotexpectedbasedonwhatisknownofthesample,arelikelytobeduetoabrokenorcontaminatedprobe.

    (p.124)

  • AFM image artefacts

    Page 5 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.4. Examplesofhowimagesproducedwithbrokenordirtyprobesshowrepeatingpatternsintheimages.Left:SEMimagesofdamagedanddirtyprobes.Right:AFMimagesproducedusingtheprobesshownontheleft.Imageswithrepeatingpatternsliketheseareusuallyduetobrokenordirtyprobes.

    Doubletips

    Afurtherexampleofdamageorcontaminationoftipsalteringtheimageisthecreationofmultipletips.Ifthetipbreakssuchthatithassmallspikesattheend,ormorecommonly,hasdebrisattachednearthetip,thesamplemaybeimagedbothbythetruetip,andthedebris.Thisresultsinmultiplecopiesofeachfeatureappearingintheimage[379].It'snotpossibletodistinguishwhichimagefeatureisfromthe‘true’tip,anddouble,ormultiplecopiesofeachfeatureoccurintheimage,asshowninFigure6.5.

    Whentheuserdeterminesthattheprobeisblunt,contaminated,orbroken,theymustreplacetheprobe.SomeproceduresforcleaningofAFMprobeshavebeendescribed[380],however,intheauthors'experience,itisusuallysimplerandfarmoreeffectivetoreplacetheprobethantotrytocleanit.

    (p.125)

  • AFM image artefacts

    Page 6 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.5. Exampleofdouble‐tipimaging.Left:animageofvesiclesmeasuredwithadirtytip.Right:DNAmoleculesmeasuredwithabrokentip,eachmoleculehasafalse‘twin’nexttoit.Centre:abadlybrokenandcontaminatedtipwhichproduceddouble‐tipimageslikethese.

    6.1.3Probe–sampleangle

    Whenscanninglargefeatures,artefactscanbeintroducedbyhavingalargeanglebetweentheprobeandthesample,asillustratedinFigure6.6.Ideally,theAFMprobeshouldbeperpendiculartothesamplesurface.

    Solvingthisproblemisachievedbyadjustingtheanglebetweentheprobeandthesamplesothattheyareperpendicular.Often,asetofthreeadjustmentscrewsonthemicroscopeallowstheusertoadjustthisangle.Inmanymicroscopestheprobeisdesignedtobeata12°anglewithrespecttothesample,andsomeprobesaredesignedwiththisangleinmind,i.e.suchthatwhenthecantileversubstrateisat12°tothesample,theprobewillbeperpendiculartoit.SomeAFMsdonothavemechanicaladjustmentstocontroltheprobe–sampleangle.Inthiscase,thesamplemustbeadjustedtocorrecttheprobe–sampleangle.

    6.1.4Side‐wall/probeimagingCertainsampleswithextremelyhigh‐aspect‐ratiofeaturesareverydifficulttoimagecorrectly,andtheycaninteractwiththeprobeinsuchawaythattheimagecontainsrepeatingimagesoftheprobe,oroftheside‐wallsoftheprobe.Examplesoffeaturesthatproduceside‐wallimagesaresphericalmicro‐organisms,sphericalparticlesorredbloodcells,withtheirtypicaldoughnut‐likeshape,imagesofwhichoftenaregreatonthetopofthecell,butit'snotpossibletoimagethesidesofthecell,andimagesoftheprobeside‐

    Fig.6.6. Illustrationofprobe–sampleangleproblems.Withtheprobeatanangletothesample,distortionsareintroduced,andsamplefeaturesappearasymmetric.

    (p.126)

  • AFM image artefacts

    Page 7 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.7. Effectofprobeorprobeside‐wallimaging.Top:illustrationsoftheeffectofimagingaspike–animageoftheprobeisproduced–andimagingasphere‐likefeature–onlyatthetopisthesampletopographyreproduced,andtherestoftheimagefeatureshowstheprobe'sside‐walls.Bottom:examplesofprobe–side‐wallimaging.Left:redbloodcells,right:S.aureusbacteria.Inbothcases,onlytheupperpartsofthecellscanbeimagedcorrectly(someexamplesofprobeside‐wallimaginghighlightedbyarrows).

    wallappearinstead(seeFigure6.7)[381,382].Sampleswithspike‐likefeatures(includingcertaintip‐checksamples,seeAppendixA)leadtorepeatedcopiesofthetipintheresultingimages[383].

    Typically,anyimageshowingsquarepyramid‐shapedfeatureswillbeshowingimagesoftheproberatherthantruesamplefeatures,sotheseimagefeaturescanbediscounted.Inordertoavoidthisproblem,theuserisrecommendedtouseashapertip,specifically,onewithahigheraspectratio.Siliconnitridecontact‐modeprobesareverypronetoproducingimagesoftheprobeside‐wall,astheytypicallyhavemuchwideropeningangles(ca.35–40°versus15–20°formostintermittentcontact‐modeprobes).Ifthisartefactcausesrealproblems,forexampleinmetrologyapplications,super‐high‐aspect‐ratioprobesarealsoavailable(forexample,withopeningangles

  • AFM image artefacts

    Page 8 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.8. Effectofx‐ynon‐linearityinAFMimages.Left:exampleofanAFMimageofatestsample(TGX01,seeAppendixA)whenscannedwithoutcorrectlylinearizingtheAFMscanner.Right:linearizedAFMimageofthesamesample.Thespacingofthesquaresatthetop,bottom,leftandrightsidesshouldbeallthesamedistanceapart.ImagescourtesyofMikromasch.

    toproduce,andgivesrapidandverypreciseresponseundermostcircumstances.However,mostAFMscannersdointroducesomeartefactsintotheimagesobtained,thetubescannermorethanmost.Theartefactsdescribedinthissectionalloccurwithpiezoelectrictubescanners.Manyofthemareavoidedwhenusingalinearizedscanner(seeChapter2).

    6.2.1X‐Ycalibration/linearityAllatomicforcemicroscopesmustbecalibratedintheX‐Yaxissothattheimagesandmeasurementsobtainedareaccurate.Themotionofthescannersshouldalsobelinearsothatthedistancesmeasuredfromtheimagesareaccurate.Duetothenon‐linearityofpiezoelectricscanners,withoutcorrection,thefeaturesonanimagewilltypicallyappearsmallerononesideoftheimagethanontheother,seeFigure6.8.Oncethescannerisproperlylinearized,itisalsocriticalthatthescannerbecalibrated.Inotherwords,itispossibleforthescannertobelinearbutnotcalibrated.Ifthecalibrationisincorrect,thentheX‐Yvaluesmeasuredfromlineprofileswillbeincorrect.

    AcommonmethodforcorrectingtheproblemsofX‐Ynon‐linearityandcalibrationistoaddcalibrationsensorstotheX‐Ypiezoelectricscanners.Thesesensorscanbeusedtocorrectthelinearityandthecalibrationinrealtime;often,suchasystemisdescribedashavinglinearizedscanners.Ifthesearenotavailable,andnon‐linearityisdetectedinimages,thentheinstrumentshouldbere‐linearizedaccordingtothemanufacturer'sinstructions.Typicallythisiscarriedoutwithatestgridasillustratedabove,andinAppendixA.Notethatnon‐linearityatjustoneedgeoftheimagecouldbeduetoothereffects;seetheothersectionsinthischapter.

    6.2.2zcalibrationandlinearity

    HeightmeasurementsinanAFMrequirethatthepiezoelectricceramicsintheZaxisofthemicroscopearealsobothlinearandcalibrated.Usuallythemicroscopeiscalibratedatonly(p.128)

  • AFM image artefacts

    Page 9 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.9. GraphshowingtherelationshipbetweenanactualzheightandameasuredzheightinanAFM.Usuallyonlyonecalibrationpointismeasuredasshownbythebox,andthezpiezoelectricisassumedtobelinear,asshownbythedashedline.However,asisoftenthecase,thepiezoelectricactuatorisnon‐linear,asshownbythesolidline.Insuchcasesincorrectzheightsaremeasuredunlessthefeaturebeingmeasuredhasdimensionsclosetothoseofthecalibrationspecimen.

    oneheight.However,iftherelationshipbetweenthemeasuredzheightandtheactualzheightisnotlinear,thentheheightmeasurementswillnotbecorrect,seeFigure6.9.

    Theonlywaytoensureabsolutelyaccuratezheightmeasurementsatarangeofheightsistouseaninstrumentwithasensorforthezpiezoelectric.Analternative,whichonlyworksformeasurementsoffeatureswithinaparticularheightrange,istorecalibratetheinstrumentusingacalibrationspecimenofknownheight,whichissimilarinsizetothefeatureswhichwillbemeasured.TypicallythezaxesofAFMmicroscopesarecalibratedusingsemiconductortestsampleswithfeaturesontheorderof100–200nminheight.So,forexample,measurementsofsmallfeaturesof5–10nmcouldnotbeexpectedtobeveryaccuratelymeasuredunderthesecircumstances.Inthiscase,itwouldbebesttorecalibratetheinstrumentusingatestsampleofknownheightintherange5–10nm.Alternatively,somesamplescanbeusedasaninternalstandard,avoidingtheneedtorecalibratetheAFM[279].SomewidelyavailableZ‐heightcalibrationstandardsaredescribedinAppendixA.

    6.2.3Scannerbow

    ThescannersusedinAFMinstrumentsoftenmovetheprobeinaslightlycurvedmotionoverthesamplesurface.Thisistypicallythecasefortubescannersfixedtothemicroscopebodyatoneend,andfreetomoveattheother–currentlythemostcommondesigninAFM.AsshowninFigure6.10,thismotiongivesrisetoacurvatureor‘bow’asitismostoftenknown,intheresultingimages.ThistendstogiveasmallvariationinzheightoverarelativelylargeX‐Yarea,soitismostobviouswithflatsamples.

    Thisartefactcannotbeavoidedwithinstrumentswhosedesignispronetoit,buttheeffectcanberemovedinprocessing.TheprocedurestocarryoutthisoperationaredescribedinSection5.1.1.

  • AFM image artefacts

    Page 10 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    (p.129)

    Fig.6.10. Effectofscannerbow.Left:withtubescannersfixedatoneend,thetrajectoryoftheprobeiscurved.Right:theresultisanapparentcurvatureintheheightofmeasuredsamples,althoughtheheightchangeissmalloveralargearea.

    6.2.4EdgeovershootintheZaxis

    Hysteresisinthepiezoelectricceramicthatmovesthecantileverintheperpendicularmotiontothesurfacecancauseedgeovershoot.Hysteresisisaninherentpropertyofpiezoelectricmaterials,andmeansthatforwardandbackwardmovementsarenotexactlyequivalent.TheeffectintheZaxisaffectstheAFM'sabilitytotraceaccuratelyoverstepprofiles.ThisproblemismostoftenobservedwhenimagingmicrofabricatedstructuressuchaspatternedSiwafersorcompactdisks,butmaybeobservedinanysamplewithsharp‐edgedfeatures.Theeffectcancausetheimagestoappearvisuallybetterbecausetheedgesappearsharper.However,alineprofileoftheimagestructureshowserrors,asshowninFigure6.11.

    Edgeovershootcannotbeavoidedbytheuser.Itwillonlyoccuronmicroscopeswithoutazaxiscalibrationsensor,however.Incaseswherethisoccursstepheightmeasurementsshouldonlyusetheunaffected(flat)portionofthefeatureprofile.

    6.2.5Scannercreep

    Creepinpiezoelectricsgivesrisetothephenomenonthatwhenaninstantaneousvoltageisappliedtothepiezoelectricandmaintained,theresponseofthematerialdoesnotfollowexactlytheappliedvoltage,butinsteadcontinuestomoveinthesamedirectionastheinitialoffset,evenwhenthevoltageisnolongerchanging.ThisisillustratedinFigure6.12.Thepracticaleffectofthisisthatwhentheusertranslatesthescanningpositiononthesample,movestheprobetothestartofanewscan,orzoomsintoapreviousscan(allofwhicharedonebyrapidlychangingthevoltageappliedtothepiezoelectric),distortionoccursintheimage.Thedurationofthiseffectislimited,andeventuallyitdisappears.Anexampleofthisdistortion(‘scannerdrift’)isshowninFigure6.12.

    Thisartefactcanberemovedbysimplywaitingforthepiezopositiontostabilize.Onewayistomakeaninitialscaninanynewregion,beforerecordingasecondscanfreeof(p.130)

  • AFM image artefacts

    Page 11 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.11. Edgeovershootinthezaxis.Top:theprobeisscannedfromlefttorightacrossafeatureonasurface;overshootmaybeobservedinthelineprofileattheleadingandtrailingedgeofthefeatures.Bottom:theAFMimageofatestpatternappearstohavenoartefactsatfirstglance(left),butalineprofileofthetestpatternshowsovershootatthetopofeachofthelines(right,overshootarrowed).

    Fig.6.12. Scannerdriftcauseandeffect.Left:creepinpiezoelectricscannerscausesthescannertokeepmovingevenaftertheappliedvoltagestopschanging.Right:theeffectonAFMimagesismostoftenseenasadistortioninthebeginningofthescan(here,scanningfromthetop).

    distortion.Alternatively,theinstrumentcanbesettodoacontinuouslinescaninthenewposition.Whentheuserobservesthatthefeaturesinthelinescanarenolongerchanging,thedrifthasstoppedandtheimagescanshouldthenbebegun.

    6.2.6Zanglemeasurements

    MechanicalcouplingbetweenthepiezoelectricceramicsthatmovetheprobeinthexorYdirectionsandtheZdirectioncancausesubstantialerrorswhentryingtomeasureverticalangleswiththeAFM.Thissortofcrosstalkiscommoninpiezoelectrictubescanners,andmeansthattheaccuracyofanglesintheZaxismeasuredwithmostAFMs(p.131)

  • AFM image artefacts

    Page 12 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.13. IllustrationandexampleoferrorsinZanglemeasurementbyAFMcausedbycrosstalk.Top:illustrationoftheeffect.Thesamplehasaseriesofrepeatingtrianglesatitssurface.Alineprofileofthesampleshowsthatthetrianglesdonotappearsymmetric.Bottom:realAFMimageofasamplehavingatrianglepatternatitssurface,andalineprofileextractedfromtheAFMimage.Althoughtheanglesofthetwofacetsareinrealityequal,theAFMimagesuggeststhatthisisnotso.

    areunreliable.Thiserrorcanbestbemeasuredwithasamplethathasrepeatingtrianglestructures.AnexampleofthisisshowninFigure6.13.

    Theusercannotcontroltheappearanceofthisartefact.Itoccurswithnon‐linearizedtubescanner‐basedAFMs,andindependentX‐YandZscannersarerequiredforthemeasurementofcorrectZangles.

    6.3ImageprocessingartefactsSomeimageprocessingisusuallynecessarybeforeviewingoranalysinganyAFMimage.AsdescribedinChapter5,therearealargenumberofprocessingoperationsthatcanbeappliedtoAFMimages.ThecorrectproceduresweredescribedinChapter5,sohereonlyexamplesoftheartefactsthatmightbeintroducedareshown.

    6.3.1Levellingartefacts

    LevellingchangestheentireAFMimage,sotheresultingimageisdifferentfromtherawdata.However,itisveryoftenanecessaryprocedurebeforeusefulinformationcanbeextractedfromanimage.Commonly,levellingartefactsareintroducedbypolynomialfittingroutines;Figure6.14showsanexampleofthis.

    Thiserroriseasilyavoidedbyexcludingpartsoftheimagefromthefit.ThiswasdescribedinSection5.1.1.Despitetheeasewithwhichthisartefactisavoided,itiscommonlyseeninpublishedAFMimages.

    6.3.2Filteringartefacts

    Imagefiltering,bydefinition,altersthedataintheimageandthereforealwaysintroducessomesortofartefact.WhenpresentingAFMdata,itisimportanttospecifywhatfilters,if(p.132)

  • AFM image artefacts

    Page 13 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.14. Examplesofline‐by‐line(polynomialfitting)basedlevellingartefacts.Theleftimageofnanoparticlesisunlevelled.Themiddleimageshowsanartefactcausedbypolynomialline‐by‐linelevelling–theparticlesseemtobesittinginlowered‘trenches’inthebackground.Thecorrectlylevelledimageisshownontheright.

    Fig.6.15. Exampleofimagedistortionbyfiltering.Theimageofnanoparticlesontheleftshowsconsiderablenoise.Low‐passfiltering(smoothing)producedtheimageontheright.Thelineprofileshowsthatnoisewasreduced,buttheshapesofthetwoparticlesinthelineprofilewerealsochanged.

    any,wereappliedtothedata,becausetheresultsfromfilteredimagescanbeverymisleading.Forexample,low‐pass(orsmoothing)filterstendtogreatlyreducenoiseinAFMimages,butcanalsointroduceartefactssuchaschangingtheshapeoffeatures,andincreasingtheapparentsharpnessofsteps.AnexampleoffilteringartefactsisshowninFigure6.15.

    (p.133) Inadditiontomatrixfilters,asillustratedabove,Fouriertransform‐basedfilteringcanalsointroduceartefactsintoanimage.ThiswasdescribedinSection5.3.4,andshowninFigure5.12.

    6.4VibrationnoiseEnvironmentalvibrationsintheroomwheretheAFMislocatedcancausetheprobeinthemicroscopetovibrateandmakeartefactsinanimage.Typically,theartefactsappearasoscillationsintheimage.BothacousticandfloorvibrationscanexcitevibrationalmodesinanAFMandcauseartefacts.

    6.4.1Floorvibrations

    Often,thefloorinabuildingcanvibrateupanddownbyasmuchasseveralmicrons,

  • AFM image artefacts

    Page 14 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    typicallyatfrequenciesbelow5Hz.Thefloorvibrations,ifnotproperlyfiltered,cancauseperiodicstructureinanimage.Becauseithaslowamplitude,thistypeofartefactismostoftennoticedwhenimagingveryflatsamples.Sometimesthevibrationscanbestartedbyanexternaleventsuchasmachineryinmotion,atraingoingby,orevenpeoplewalkingoutsidetheAFMlaboratory.However,itisoftenratherdifficulttodiagnosethistypeofnoise.

    6.4.2Acousticvibrations

    Soundwaves(acousticvibration)cancauseartefactsinAFMimages.Thesourceofthesoundcouldbefromanairplanegoingoverabuildingorfromthetonesinaperson'svoice.Thenoiseofcoolingfansfromotherinstruments,orevenfromtheAFMelectronics,canalsoberegisteredbytheAFM.Figure6.16isanimagethatshowsthenoisederivedfromapersontalkinginthesameroomasthemicroscope.Diagnosingthistypeofinterferenceisrathereasy;theusermustisolatetheAFMfromthesourcesofnoiseorremovethem,andlookforachangeinthesignalsregistered.

    Thesolutiontothisnoiseproblem,likethatfromfloorvibrations,isisolationfromthenoisesource.SolutionsforthiswerediscussedinSection2.6.Briefly,buildingvibrationsaregenerallycounteredbymountingtheAFMonasuspendedstagethatisisolatedfromthefloor.Ontheotherhand,acousticisolationisaccomplishedbyenclosingtheAFMinacabinetwithacousticshieldingontheinside.Alternatively,thenoisesourcescanberemoved,andtheAFMplacedinalocationlesspronetobuildingvibrations.Forthis,aroominthebasementofthebuildingwithlittletrafficusuallyservesbest.

    6.5NoisefromothersourcesFloorandacousticnoisearethemostcommontroublesomenoisesourcesinAFM,however,othersourcesofnoisesuchaselectronicnoise,whichoccursrarely,ornoisefromavacuumleak,whichislimitedonlytothoseinstrumentsthatuseavacuumsamplemountingsystem,cansometimescauseproblems.TheresultsofpoorfeedbacksettingscanalsoappeartogiverisetonoiseinAFMimages,whenthePIDsettingsaretoohigh.

    (p.134)

  • AFM image artefacts

    Page 15 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.16. Effectofacousticnoise.Thishigh‐zresolutionimageofasiliconwafershowstheeffectofacousticnoiseonanimage.Right:imageandlineprofilesmeasuredwhileacousticnoisewaspresentintheroom.Theacousticvibrationsfromapersonspeakingwhiletheimagewasacquiredareclearlyvisibleinthelinescansandtheimage.Left:imagethatwasmeasuredwithouttheacousticnoise.(Acolourversionofthisillustrationcanbefoundintheplatesection.)

    Fig.6.17. ExampleofelectronicnoiseinanAFMimage.Thisimageofatestpatternhaselectronicnoiseatthetopandbottomofthescan.Theelectronicnoiseinthiscasewasaresultofnothavingagroundwireattachedtothestage.Theartefactwasidentifiedbytheoscillationfrequency.(Acolourversionofthisillustrationcanbefoundintheplatesection.)

    (p.135) 6.5.1ElectronicnoiseImageartefactscanappearinAFMimagesbecauseoffaultyelectronics,oraccidentalelectricconnectionstoapartoftheAFM.Artefactsfromelectronicsmostoftenappearasregularoscillationsorunexplainablerepeatingpatternsinanimage,seeFigure6.17.Electronicgroundloopsandbrokencomponentsareusuallythesourceofelectronicnoise.

    6.5.2Vacuumleaks

    Atomicforcemicroscopesthataredesignedforimagingwafersanddisksoftenuseavacuumchucktoholdthewafer/diskwhilescanningimages.Aleakinthevacuumbetweenthespecimenholderandthespecimencancauseimageartefacts.Theartefactcausesalossofresolutionintheimage.Cleaningthevacuumchuckandsampleand

  • AFM image artefacts

    Page 16 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    remountingthesampleinthestageofteneliminatesthisproblem.

    6.6OtherartefactsInthissectionwegathersomeothereffectsthatgiverisetoproblemsinAFM.Someofthese,suchassampledriftandsurfacecontaminationarethesortofissuesencounteredinallhigh‐resolutionmicroscopytechniques.

    6.6.1Feedbacksettingsandscanrate

    Ifthefeedback(PID)settingsusedwhilescanningarenotoptimized,thenit'sverylikelythattheresultingimagewillshowconsiderableartefacts.Thisisbecausetheprobeisnottrackingthesurface,andthecantileverisbendingtopassoversurfacefeatures.ThecorrectsettingsforthePIDcircuitsarealsodependentonthescanrate–higherscanratesmayrequirehigherPIDsettings.Thisartefactcanbeidentifiedeasilybymonitoringtheerrorsignal.Iftheerrorsignalislarge,thentheprobeisnotcorrectlytrackingthesurface.AnexampleofthisisshowninFigure6.18,butseealsoChapter4forfurtherdiscussionoffeedbackparameteroptimization.IfthePIDsettingsaretoohigh,‘feedbackoscillation’canoccur,whichlookslikehigh‐frequencynoiseintheimage.

    6.6.2Surfacecontamination

    AsexplainedinSection4.1,suitablesamplepreparationisvitalforreproducible,artefact‐freeAFMimaging.SubstantialcontaminationatthesurfaceofasamplesuchasafingerprintoroilfilmcancauseAFMimageartefacts.Suchartefactsmayappearasstreaksontheimageespeciallyinlocationswherethereare‘sharp’featuresandedgesonthesample'ssurface.Oftenthestreakingcanbereducedoreliminatedbycleaningthesamplewithahigh‐puritysolvent.AnexampleofthiseffectisshowninFigure6.19.

    6.6.3Laserinterferencepatterns

    Interferencepatternscanbecreatedbythelaserusedtodetectthebendingoftheprobecantilever.Theinterferenceappearsaslow‐frequencybackgroundoscillationsinimagesandtypicallyhasaperiodthatissimilartothewavelengthofthelaserlightbeingusedin(p.136)

  • AFM image artefacts

    Page 17 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.18. Exampleofanartefactcreatedbynothavingthefeedback(PID)parametersfullyoptimizedwhilescanning.Intheupperimageparametersareoptimized,inthelowerimageparameterarenotoptimizedandtheerrorsignalislarge.Thisalsoleadstolessaccurateheightimage,seethelineprofiles.

    Fig.6.19. Theeffectofsurfacecontamination.Left:SEMimageofaheavilycontaminatedcalibrationgridsample.Right:thecontaminationcausesstreakingandpreventstheprobefromproperlyfollowingthesurfacetopographyintheAFMimage.

    theAFMscanner(typically0.5–1.5microns).Thisinterferenceoriginatesfromlaserlightspillingoverthecantilever,orpassingthroughit,reflectingfromthesamplesurface,andinterferingwiththelightreflecteddirectlyfromthecantilever.Asimilareffectcanalsobeseeninforce–distancecurves,wheretheinterferenceappearsaswavinessinthebaselineoftheforce–distancecurve,withthesameperiod.ThisisillustratedalongwithatypicalimageshowingtheartefactinFigure6.20.

    (p.137)

  • AFM image artefacts

    Page 18 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.20. ExamplesoftheeffectoflaserinterferenceonAFMimagesandforce–distancecurves.Left:animageofareflectivesample,showingtypicallaserinterferencefringes.Right:theeffectonaforcecurve;thebaselineshowssimilaroscillations.Inset:theartefactoriginatesfrominterferencebetweenthelaserbeamsreflectedbythecantileverandthesample.

    ThiseffectisreducedinAFMinstrumentswithlowcoherencelasers,whicharefittedinnewerinstruments.Itisalsomorecommonwithpatternedorreflectivesamples.Iftheuserencountersthisproblem,itcansometimesbereducedbyadjustmentoftheopticalalignmentoftheAFM.Theusershouldtrytoensurethelaserispositioneddirectlyinthecentreofthecantileverbeam,andnottooclosetotheend.SeeSection4.2.1foralaserspotpositioningprotocol.

    6.6.4Sampledrift

    Acommonprobleminhigh‐resolutionmicroscopiesissamplemovement.Ingeneral,AFMsamplesmustbewellfixeddowninordertoenablehigh‐resolutionimaging.Atlowresolutions(scansofsizelargerthan5μm),somesamplesdonotneedtobefixedtothemicroscope,providedtheyhaveastablesubstrate.Atsmallerscansizes,thesampleshouldbegluedtoasamplesupport,whichisheld(usuallymagnetically)inthemicroscope.Evenwhenfirmlyfixeddownsomesamplescanappeartobe‘moving’inthemicroscope.Thereasonforthisisthermalexpansionofthesample;thiscanbeexacerbatedbysourcesofheatinthemicroscope(e.g.thelaserorheatfromtheelectronics),leadingtosamplesmovingbyexpansionathundredsofnanometresperminute,whichtotallyprecludeshigh‐resolutionimaging.Somesamples(e.g.metals)aremorepronethanotherstothiseffectduetohighthermalexpansioncoefficients.

    AsshowninFigure6.21,scanningthesamplewiththeslowscanaxisinoppositedirectionscanhelptodiagnosethisproblem.AnothermajorproblemassociatedwithsampledriftisthatifthesampledriftsintheZ‐axis,itcanpreventscanningaltogether.ThiscanbeduetoexpansionintheZaxisorexpansionlaterally,whicheffectivelymovesthesampleinZ,duetosampletilt.Althoughthefeedbacksystemcantakeaccountofsmall(p.138)

  • AFM image artefacts

    Page 19 of 19

    PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

    Fig.6.21. ExampleoftheeffectofsampledriftonAFMimages.ThetwoimagesofaclusterofE.colibacteriaweremeasuredwiththeslowscanaxisinoppositedirections.Thedifferencebetweenthemindicatesthatthesamplewasdriftingwhilescanning.Whenthesampledriftsinthesamedirectionastheslowscanaxis,thesamplewillappearstretched(imageontheleft);ifitdriftsintheoppositedirectionitwillbecompressed(rightimage).Scanningintwodirectionscanhelptodeterminethecauseofimagedistortion.

    driftsinZ,thiseffectwilleventuallycauseproblemsinscanningduetothelimitedZscanrangeofmanyscanners.Iftheuserdeterminesthesampleisdrifting,theyshouldattempttofixthesampledownmorefirmly,andremovepossiblesourcesofheat,forexamplethewhitelightusedtoilluminatethesample.Sometimestheonlysolutionistowaitforthermalequilibrium.