U. KLEIN; J. KERP- Physics of Interstellar Medium

Embed Size (px)

Citation preview

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    1/94

    Physics of the interstellar medium

    Prof. U. Klein

    P.D. J. Kerp

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    2/94

    Klein/Kerp ISM lecture Summer 2009

    timeline

    Today: Introduction (JK)

    28. April 2009: line radiation, fundamentals, radiationtransfer (JK)

    5. May 2009: continuum radiation processes (UK)

    12. May 2009: heating and cooling (JK)

    19. May 2009: dust (JK)

    (UK)

    Written exam: 21. July 2009 16:00 Hrsaal 0.03

    Second date: 08. September 2009 10:00 Hrsaal 0.03

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    3/94

    Klein/Kerp ISM lecture Summer 2009

    Further reading

    James Lequeux The interstellar medium Springer Verlag2005

    Ewine van Dishoeck Master lecture Leiden University

    2006 http://www.strw.leidenuniv.nl/~dave/ISM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    4/94

    The interstellar medium:line radiation processes, physicalconditions of the gas

    J. Kerp

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    5/94

    Klein/Kerp ISM lecture Summer 2009

    Outline

    The interstellar medium in general

    History of the discovery

    Composition

    Phases of the ISM

    Transitions Basic physical quantities

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    6/94

    Klein/Kerp ISM lecture Summer 2009

    The interstellar medium in general

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    7/94

    Klein/Kerp ISM lecture Summer 2009

    The interstellar medium in general

    The radiation of a galaxy isdominated by the stellar light

    The mass of a galaxy isdominated by the stellar massdistribution

    Studies of the stellar populationsof galaxies are essential todisentangle the formation history

    of a galaxy

    The radiation of the ISM is faintand the bulk of photons areemitted in the radio and infraredwavelength regime

    The ISM hosts only a fewpercent of the total mass of agalaxy

    The composition of the ISM iscontinuously modified by thestellar evolution

    The distribution and chemicalcomposition of the ISM iscontinuously modified by

    accretion of matter by the galaxy Density and temperature

    variations within the ISMtrigger the star formation rateof a galaxy

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    8/94

    Klein/Kerp ISM lecture Summer 2009

    Galaxy: M82

    www.wikipedia.org

    Visible light/HAST

    Starformation leadsto transfer of matter

    outside the stellardistribution

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    9/94

    Klein/Kerp ISM lecture Summer 2009

    Galaxy: M82

    www.wikipedia.org

    Blue: X-ray/Chandra

    Red: Infrared/Spitzer

    Visible light/HST

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    10/94

    Klein/Kerp ISM lecture Summer 2009

    Dark clouds

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    11/94

    Klein/Kerp ISM lecture Summer 2009

    Dark clouds: Horsehead Nebula

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    12/94

    Klein/Kerp ISM lecture Summer 2009

    Dark clouds: Horsehead Nebula

    Compiegne et al. 2008, A&A 491, 797

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    13/94

    Klein/Kerp ISM lecture Summer 2009

    Dark clouds: Horsehead Nebula

    Compiegne et al. 2008, A&A 491, 797

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    14/94

    Klein/Kerp ISM lecture Summer 2009

    Dark clouds: Horsehead Nebula

    Compiegne et al. 2008, A&A 491, 797

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    15/94

    Klein/Kerp ISM lecture Summer 2009

    The ISM in general

    van Dishoeck ISM lecture

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    16/94

    The discovery of the interstellarmedium

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    17/94

    Klein/Kerp ISM lecture Summer 2009

    Stellar distribution

    First attempts to determine the distribution of the stars werde made beThomas Wright (1750) and Immanuel Kant (1755). Systematic starcounts were performed by Wilhelm Herschel (1738-1822). He producedthe first map of the stellar density distribution. According to his star

    counts, the Sun is thought to be in the very center of the Milky WayGalaxy.

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    18/94

    Klein/Kerp ISM lecture Summer 2009

    Stellar distribution

    Astronomie II Gondolatsch, Groschopf, Zimmermann, Klett Studienbcher

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    19/94

    Klein/Kerp ISM lecture Summer 2009

    Stellar distribution

    We assume,

    that the stars fill entirely homogeneously the space.

    All stars have the same luminosity.

    The apparent magnitude of a star mis a function of r-2

    . Accordingly, stars with an apparent magnitude in excess of mfollows

    the relation

    log r= 0,2 m + const.

    The number of stars in space increases proportional to r3

    Accordingly we find

    log N(m) = 0,6 m+ const

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    20/94

    Klein/Kerp ISM lecture Summer 2009

    Stellar distribution

    Neuer Kosmos Unsld, Baschek, Springer Verlag

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    21/94

    Klein/Kerp ISM lecture Summer 2009

    Stellar distribution

    0,06

    10

    350

    3000

    0,25

    50

    6000

    200.000

    6,0

    11,0

    16,0

    21,0

    Polar region

    [N/square degees]

    Plane

    [N/square degrees]

    Apparentmagnitude

    [mag]

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    22/94

    Klein/Kerp ISM lecture Summer 2009

    Stellar distribution

    Considering the vertical distribution of the stars, we can approximatethis by a hydrostatic density distribution.

    According to this approach, we can characterise the distribution by asingle quantity, the scale height . z denotes the vertical distancefrom the galactic plane and 0 is the mid-plane stellar density.

    =

    z

    ez 0)(

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    23/94

    Klein/Kerp ISM lecture Summer 2009

    Z-distribution of the stellar populations

    Astronomie II Gondolatsch, Groschopf, Zimmermann, Klett Studienbcher

    Scale-heights for different types (Objektgruppe) of stars

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    24/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    ~ W. Herschel compiles thefirst catalog of "nebulae"

    Until ~1900 absorption lines

    have been discovered, but it isunclear whether they are ofstellar (circum-stellar) orinterstellar origin

    1919 Barnard compiled thefirst catalog of "Dark Clouds"

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    25/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    1933 Plasket & Pearce found a correlation between theCaII absorption line strength and the stellar distance.

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    26/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    ~1937 the first interstellar molecules CH, CH+ and CN werediscovered

    1945 van der Hulst predicted the detect ability of the HI 21-

    cm line 1949 discovery of interstellar magnetic field by polarization

    measurements

    1950`s maps of the Milky Way in HI (10% of the stellarmass is in HI)

    LAB Kalberla et al. 2005

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    27/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    1945 van der Hulst predicted that the hyperfinetransition ofthe radiation emerging from the hydrogen ground level willbe detectable within the Milky Way

    1951 Ewen & Purcell and Oort & Muller detectedidenpendently the HI 21-cm line of neutral hydrogen.

    This was the starting point to explore the Milky Way Galaxy

    in HI 21-cm emission. The HI disk is much larger than the stellar disk

    The total gas mass of the HI disk is about 10% of the stellar mass

    The average volume density of atoms is 1 cm-3

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    28/94

    Klein/Kerp ISM lecture Summer 2009

    Properties of the HI 21-cm line

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    29/94

    Klein/Kerp ISM lecture Summer 2009

    Detection of the 21-cm line

    http://www.astro.uni-bonn.de

    accuracysurface2cm

    dish100mawith9dish25mawith53

    D

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    30/94

    Klein/Kerp ISM lecture Summer 2009

    Distribution of the line intensity

    http://www.astro.rug.nl

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    31/94

    Klein/Kerp ISM lecture Summer 2009

    Properties of the HI 21-cm line

    Natural line width is 10-16 km s-1, accordingly the line isideal suited to trace turbulence and Doppler motions.

    The thermal line width is ~ 0.09 T, which corresponds

    to 2 km s-1 at T= 100 K Doppler shift

    =

    =

    c

    c1

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    32/94

    Klein/Kerp ISM lecture Summer 2009

    HI in the Milky Way

    HI 21-cm rotation curve of the Milky Way galaxy. Shown is the velocity measured relative to the

    local standard of rest versus the galactic longitude (Burton 2001)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    33/94

    Klein/Kerp ISM lecture Summer 2009

    HI in the Milky Way

    Assuming that the gasencircles the center ofthe Milky Way on

    concentric orbits, it isfeasible to determine isdistance (tangentialpoint method).

    The method isrestricted to the innergalaxy. However, itprobes a large fraction

    of the baryonic mass.

    van Dishoek lecture 8

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    34/94

    Klein/Kerp ISM lecture Summer 2009

    HI in the Milky Way

    van Dishoek lecture 8

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    35/94

    Klein/Kerp ISM lecture Summer 2009

    HI in the Milky Way

    The tangent point method is only applicable

    for R < RSonne.

    The outer galaxy can be explored by the HI21-cm line only via continuing the rotation

    curve. The derived dynamical distances are

    only estimates with partly highuncertainties.

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    36/94

    Klein/Kerp ISM lecture Summer 2009

    HI in the Milky Way

    Kalberla, 2003, ApJ 588, 805

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    37/94

    Klein/Kerp ISM lecture Summer 2009

    HI in the Milky Way

    Velocity

    Expected line shape

    Observed line

    van Dishoek lecture 8

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    38/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    http://www.astron.nl

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    39/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    1960 discovery of the soft X-ray background

    http://www.mpe.mpg.del

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    40/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    1963 the first interstellarmaser had be discovered(OH)

    1968 NH3, the"thermometer" in theUniverse was observed forthe first time

    1970 12CO(10), thesecond most abundantmolecule in the Universe

    was discovered

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    41/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    1970`s infrared

    astronomy opens the

    window to the most

    abundant molecule H2

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    42/94

    Klein/Kerp ISM lecture Summer 2009

    H2: necessity for tracers

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    43/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    ~1990 Sub-millimeterastronomy opened thewindow to molecular clouds

    and star forming regions 1990 COBE studied the

    distribution of the dominantcooling line of the ISM CII.

    1995 allowed detailedspectroscopic studies of the

    dust, the vibrationally

    excited H2 emission lineand the infrared dark clouds

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    44/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    S

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    45/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    Infrared Dark Clouds

    Di f h ISM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    46/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    Di f th ISM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    47/94

    Klein/Kerp ISM lecture Summer 2009

    Discovery of the ISM

    1998-2006 SWAS studied thedistribution of H2O, O2, CI upto 500 GHz

    2000-today FUSEobservation of H2 inabsorption againstbackground continuum

    sources, observation of thevertical structure of highlyionized gas like OVI and NV

    2003-today Spitzer studiesthe ISM with high angularresolution

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    48/94

    Basic properties of the ISM

    Basic properties of the ISM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    49/94

    Klein/Kerp ISM lecture Summer 2009

    Basic properties of the ISM

    Confined to the Galactic Plane (much flatter than acompact disk!)

    The interstellar medium consists mainly of hydrogen and

    helium. All elements heavier than hydrogen are denoted as metals

    Temperature range 4 K < T < 106K

    The temperature is used as a measure for the physical conditions of

    the interstellar gas. The phases of the interstellar medium arecharacterized by the average gas temperature.

    Densities 10-4 cm-3 < n < 107 cm-3

    Far from thermal equilibrium!Not easy to calculate!

    Abundances of elements

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    50/94

    Klein/Kerp ISM lecture Summer 2009

    Abundances of elements

    4.310-5Fe2.210

    -6

    Ca

    1.710-5S

    4.310-5Si

    3.110-6Al4.210

    -5

    Mg

    2.110-6Na

    4.510-4O

    6.310-5N2.510

    -4

    C

    0.075He

    1.00H

    AbundanceElement

    Abundances of the ISM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    51/94

    Klein/Kerp ISM lecture Summer 2009

    Abundances of the ISM

    "Metalls"He about 10%

    C,N and O

    Si, Ca and Fe bound in dust grains

    Grains

    About 1% of the ISM mass

    Photons

    Magnetic fields

    Cosmic rays

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    52/94

    Phases of the interstellar matter

    Classification of the ISM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    53/94

    Klein/Kerp ISM lecture Summer 2009

    Classification of the ISM

    Chemical composition of the ISMcomparable to the elements abundance of

    the Solar System The state of Hydrogen determines the state

    of the ISM

    Molecular region H2Neutral region HI

    Ionized region H+

    Molecular regions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    54/94

    Klein/Kerp ISM lecture Summer 2009

    Molecular regions

    Molecular clouds aredefined by the presenceof molecular hydrogen.

    We differentiate between: Diffuse molecular clouds

    T 40 ... 80 K

    n 100 cm-3

    Dark clouds

    T 10 ... 50 K

    n 104 ... 106 cm-3

    Dust is an importantconstituent of molecularclouds.

    Molecular regions (sub-mm range)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    55/94

    Klein/Kerp ISM lecture Summer 2009

    Molecular regions (sub-mm range)

    van Dishoeck ISM lecture 1

    Molecular regions (sub-mm range)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    56/94

    Klein/Kerp ISM lecture Summer 2009

    Molecular regions (sub-mm range)

    van Dishoeck ISM lecture 1

    Molecular regions (UV-range)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    57/94

    Klein/Kerp ISM lecture Summer 2009

    Molecular regions (UV range)

    van Dishoeck ISM lecture 1

    Neutral gas regions (radio-range)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    58/94

    Klein/Kerp ISM lecture Summer 2009

    Neutral gas regions (radio range)

    Dusty cirrus clouds

    T 80 K

    n 1 cm-3

    Warm neutral gas

    T 6000 K

    n 0.05 ... 0.2 cm-3

    Neutral gas regions (infrared range)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    59/94

    Klein/Kerp ISM lecture Summer 2009

    Neutral gas regions (infrared range)

    Neutral gas regions (infrared range)

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    60/94

    Klein/Kerp ISM lecture Summer 2009

    Neutral gas regions (infrared range)

    van Dishoeck ISM lecture 1

    Ionized gas regions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    61/94

    Klein/Kerp ISM lecture Summer 2009

    o ed gas eg o s

    HII regions are envelopesof early-type stars

    T

    104

    Kn 0.1 ... 104 cm-3

    Ionized gas regions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    62/94

    Klein/Kerp ISM lecture Summer 2009

    g g

    van Dishoeck ISM lecture 1

    Ionized gas regions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    63/94

    Klein/Kerp ISM lecture Summer 2009

    g g

    van Dishoeck ISM lecture 1

    Ionized gas regions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    64/94

    Klein/Kerp ISM lecture Summer 2009

    g g

    Coronal Gas T 106 K

    n 0.005 cm-3

    Ionized gas regions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    65/94

    Klein/Kerp ISM lecture Summer 2009

    g g

    van Dishoeck ISM lecture 1

    Phase transitions: Orion nebula

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    66/94

    Klein/Kerp ISM lecture Summer 2009

    Phase transitions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    67/94

    Klein/Kerp ISM lecture Summer 2009

    van Dishoeck ISM lecture 1

    Phase transitions: M82

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    68/94

    Klein/Kerp ISM lecture Summer 2009www.wikipedia.org

    Blue: X-ray/Chandra

    Red: Infrared/SpitzerVisible light/HST

    Phase transitions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    69/94

    Klein/Kerp ISM lecture Summer 2009

    van Dishoeck ISM lecture 1

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    70/94

    Physical quantities

    Atoms and Ions

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    71/94

    Klein/Kerp ISM lecture Summer 2009

    The dominant part of baryonic matter in theuniverse is in neutral or partly ionized state (Warm

    Hot Intergalactic Medium, 80% of all baryons)

    Line emission and absorption of atoms and ionsare the dominant sources of photon emission and

    absorption

    Basic knowledge of atomic physics is necessary tounderstand the processes in the universe

    Fraunhofer lines

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    72/94

    Klein/Kerp ISM lecture Summer 2009

    Astronomie I, Gondolatsch, Groschopf & Zimmermann, KlettStudienbcher

    Fraunhofer lines of the Sun, from 390 nm to 690 nm

    Fraunhofer lines

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    73/94

    Klein/Kerp ISM lecture Summer 2009

    Fraunhoferlines can be observed in laboratory experiments. Acontinuous light source is observed through a gas. Using a

    spectrometer, absorption lines are observed, which are unique for

    individual chemical elements.

    If the continous light source is switched off, the absorption lines changeinto emission lines in the spectrum.

    Fraunhofer lines originate via resonance absorption. The gas

    attenuates the continous light emission only at those wavelengths

    (energies) which corresponds exactly to the spacing of the energylevels.

    Linien radiation

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    74/94

    Klein/Kerp ISM lecture Summer 2009

    Top: continous spectrumMiddle: emission spectrum of the gas

    Bottom: absorption spectrum of the gas

    http://de.wikipedia.org

    Line radiation processes

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    75/94

    Klein/Kerp ISM lecture Summer 2009

    http://www.homepages.ucl.ac.uk/~ucapphj/EinsteinAandB.jpg

    Line radiation: hydrogen

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    76/94

    Klein/Kerp ISM lecture Summer 2009

    Line radiation: hydrogen

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    77/94

    Klein/Kerp ISM lecture Summer 2009

    Line radiation: hydrogen

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    78/94

    Klein/Kerp ISM lecture Summer 2009

    http://pulsar.sternwarte.uni-erlangen.de/wilms/teach

    Line radiation: line width

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    79/94

    Klein/Kerp ISM lecture Summer 2009

    The natural line with is determined by the time-energy uncertainty dueto the Heisenberg uncertainty principle

    This relates the life time of an excited state with the energy uncertaintyof the transition. The natural line width can be describe by a Lorentzian

    profile

    determines the FWHM and the amplitude 1/

    tE 2

    h

    ( )( )22

    ,

    +

    =x

    xL

    Linien radiation: line broadening

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    80/94

    Klein/Kerp ISM lecture Summer 2009

    Astronomie I, Gondolatsch, Groschopf & Zimmermann, KlettStudienbcher

    Radiation from a background sourceis absorbed by the gas cloud G. Theabsorbend photon energy is emittedisotropically. The total amount of

    absorbed energy is relased after theabsorption processes but withoutany preferred direction.

    Observer

    Line radiation: line broadening

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    81/94

    Klein/Kerp ISM lecture Summer 2009

    Inelastic scattering

    Maxwell-Boltzmanndistribution

    Line radiation: line broadening

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    82/94

    Klein/Kerp ISM lecture Summer 2009

    An absorption line is produced wenna atom absorbs an amount of energy

    E=hc/ at a wavelength .

    The electron which is bound to the

    electronic state Em is excited after the

    absorption to the higher energy state

    Ek.

    ch=

    mk EE

    Equivalent width

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    83/94

    Klein/Kerp ISM lecture Summer 2009

    Astronomie I, Gondolatsch, Groschopf & Zimmermann, KlettStudienbcher

    Definition of the full-width halfmaximum equivalent width .IK denotes the intensity of the

    continuum at the wavelenghtof the absorption line. I0 is theintensity minimum and I is theresidual intensity at the

    wavelength . A is thecorresponding equivalentwidth, which has the samearea as the the absorption line.

    Full-width half maxium

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    84/94

    Klein/Kerp ISM lecture Summer 2009

    The advantage of use the full-width half maximum definition is,that we apply the assumption,that the absorbing/emitting gas

    atoms are following a Maxwell-Boltzmann distribution.

    According to this assumption wefind

    ( )

    =

    =

    35482.22ln8

    2

    1)(

    2

    20

    2

    FWHM

    exf

    xx

    Maxwell-Boltzmann FWHM

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    85/94

    Klein/Kerp ISM lecture Summer 2009

    ( )

    02

    02

    2

    2

    0

    2

    2

    2ln8

    2)(

    2

    )(

    20

    20

    2

    fmckTf

    fmc

    kT

    dfekTf

    mcdffP

    de

    kT

    mdP

    FWHM

    f

    kTf

    ffmc

    kT

    m

    =

    =

    =

    =

    Line radiation: line broadening

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    86/94

    Klein/Kerp ISM lecture Summer 2009

    We apply the non-relativisticDoppler formula

    For a gas with the moleculare mass

    M* we can calculate the average

    velocity dispersion of the gas atoms

    Applying the Doppler shift formula,

    we can calculate the average line

    width due to thermal motion.

    A typical value for the interstellar

    medium is

    nm0026,0

    kmol47,9kg

    K106kmolKJ10314,82

    sm103

    m10491,5

    R2

    c

    R2

    c

    1-

    31-1-3

    1-8

    7

    *

    *

    =

    =

    =

    =

    =

    D

    D

    D

    r

    M

    T

    M

    T

    Line shape

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    87/94

    Klein/Kerp ISM lecture Summer 2009

    Astronomie I, Gondolatsch, Groschopf & Zimmermann, KlettStudienbcher

    Doppler core

    Damping wings

    Damping wings

    Line radiation: line broadening

    A h i th i h b f 2

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    88/94

    Klein/Kerp ISM lecture Summer 2009

    As shown in the viewgraph before, wehave two processes which lead to the

    broadening of an absorption/emission

    line.

    Thermal broadening (temperature T)

    Pressure broadening (temperature T and

    volume density n)

    Thermal and pressure broadeing are

    different in their physical behaviour.

    Thermal broadening implies a folding of

    the Lorentzian profile (natural line width)

    with the Maxwell-Boltzmann velocity

    distribution.

    Pressure broadening leads to a shift of

    the atomic energy levels due to the

    interaction process. In gerenal, the

    interaction with ambient gas atoms is onshorter time scale than the spontaneous

    emission. Here, the volume density nis

    of prime importance, Tis of second

    interest.

    ( )

    ( ) 220

    1

    20

    DI

    eI D

    +

    Evaluation the strength of an absorption line

    A photon of the wavelenght will be absorbed by a ion which has the ionzation degree i

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    89/94

    Klein/Kerp ISM lecture Summer 2009

    A photon of the wavelenght will be absorbed by a ion which has the ionzation degree iwill move the excited electron from orbit m (Ei,m) to orbit k (Ei,k).

    The strenght of the absorption line is proportional to the path length through the

    absorbing medium H.

    The strenght of the absorption line is also proportional to the number of ions in the same

    energetic state Ei,m Finally, the strength of absorption is a function of the propability that the absorption

    events occurs quantum mechanically. This propability is describe by the oscillator

    stength fm,k

    HNfA mikm ,,

    Evaluation the strength of an absorption line

    1 Determination of A

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    90/94

    Klein/Kerp ISM lecture Summer 2009

    1. Determination of A.2. The gas atom, its ionization state i, energy levels Ei,mand Ei,kand fm,k

    are known, accordingly A

    yields directly Ni,mH

    3. Using the Boltzmann equation one can calculate the population of

    the Ions at a certain energy level (Ei,m

    )

    = T

    EE

    i

    mi

    imi

    e

    N

    N k

    1,

    ,

    1,,

    Evaluation the strength of an absorption line

    We know from quantum mechanics that most of the energy levels

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    91/94

    Klein/Kerp ISM lecture Summer 2009

    We know from quantum mechanics, that most of the energy levelsshow up with a degeneracy in the orbital and magnetic quantum

    number. These hidden energy levels are well known as fine-

    structure levels. According to this degeneracy, we have to apply som

    weightening to the number of energy levels.

    = T

    EE

    i

    mi

    i

    miimi

    e

    g

    g

    N

    N k

    1,

    ,

    1,

    ,1,,

    Fine-structur

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    92/94

    Klein/Kerp ISM lecture Summer 2009

    Evaluation the strength of an absorption line

    Finally we need the number of elements which are within the excited

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    93/94

    Klein/Kerp ISM lecture Summer 2009

    Finally, we need the number of elements which are within the excitedstate Ei,m

    The population of elements in the state is a function of the

    temperature. It follows the Boltzmann equation but deals with the

    ions. The equation is the Saha equation

    =

    TEE

    eee

    Tm

    g

    g

    N

    NN k3

    1,0

    1,1

    1,0

    1,11,01,1

    h

    k22

    Evaluation the strength of an absorption line

    Using the Saha and the Boltzmann equation we can calculate

  • 8/10/2019 U. KLEIN; J. KERP- Physics of Interstellar Medium

    94/94

    Klein/Kerp ISM lecture Summer 2009

    Using the Saha and the Boltzmann equation, we can calculateTemperature

    Elektron density

    Element abundance

    Elektron pressure Accordingly, we can determine the physical state of a gas!