33
Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal set of quantum gates: single qubit rotations; two-ion entanglement gates 5. Memory coherence times 3. Qubit measurement. How well??? Benchmarked to current threshold estimates Disclaimer: non exhaustive; focuses on laser-driven gates

Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Tutorial overview

1. The ion-qubit: different ion-qubit choices, Ion traps.

2. Qubit initialization.

4. Universal set of quantum gates:

single qubit rotations;

two-ion entanglement gates

5. Memory coherence times

3. Qubit measurement.

How well???

Benchmarked to current threshold estimates

Disclaimer: non exhaustive; focuses on laser-driven gates

Page 2: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Magnetic spin-spin interactions:

• Magnetic dipole: spin. equivalent ~ ea0 / 137

• Dipole-dipole interaction:

mHz

d = 5mm

Page 3: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

• Spin dependent forces

• Dipole moment ≈ 200 ea0

• Dipole-dipole interaction:

d = 5mm

x0 ≈ 3-10 nm

≈ 10’s - 100’s kHz

Phonon-mediated (synthetic) - spin-spin interactions

Page 4: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Universal Gate set

- A finite set of unitary gates that spans any such U.

Single qubit gate

- Barenco et. al. Phys. Rev. A, 52, 3457, (1995).

- For N-qubits, and unitary transformation U on a 2N-dimension Hilbert space.

U

2-qubit C-not gate

Page 5: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

C-not gates vs. Phase gate

2-qubit C-not gate

A p/2 Hadamard rotation on the target qubit before and after the gate maps the

C-not into a phase gate:

Page 6: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

C-not gates vs. Phase gate

- A p/2 phase shift on both qubits:

A phase shift on anti-parallel spin states vs. parallel spin states.

- Changing to the x basis:

- Collective spin flip:

Page 7: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Phases in QM

(Berry, Aharonov-Anandan)

Dynamic phase

Geometric

phase

Aharonov and Anandan, PRL, 58, 1593, (1987) Berry, Proc. Roy. Soc. Lon., 392, 45, (1984)

T- dependent. Schr. Eq. :

Cyclic motion. :

Eq. of motion. For f :

Bare state. :

Page 8: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

The Geometric phase

A curve in parameter space a :

Encircling an area in parameter space is a necessary condition for g≠0

Stokes:

Vector potential:

Page 9: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Examples for different proposed phase gates.

- Cirac and Zoller

Cirac and Zoller, PRL, 74, 4091 (1995). Geometric,

Spin d.o.f

- Spin dependent dipole forces - “Push” gate

Cirac and Zoller, Nature, 404, 579 (2000). Dynamic,

Harmonic Oscillator. d.o.f

- Spin dependent dipole forces – near resonant drive

Sorensen and Molmer, PRL, 82, 1971 (1999).

Munro, Milburn, Sanders , PRA, 62, 052108 (2000).

Solano, Santos, Milman, PRA, 64, 024304 (2000).

Geometric + Dynamic combo,

Harmonic Oscillator. d.o.f

A (Pseudo) spin attached to a harmonic oscillator

1 0 0 00 𝑖 0 00 0 𝑖 00 0 0 1

Page 10: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

- Oscillation amplitude grows until the force is out-of-phase with motion, then damped.

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.03

-0.02

-0.01

0

0.01

0.02

0.03

- Classical oscillator.

x and p vs. time Phase space (x vs. p )

Page 11: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

Neglecting terms of order

Normalizing by and and moving to a frame rotating at

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Phase space, rotating frame (x’ vs. p’ )

Page 12: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

- Quantum Driven Oscillator:

Lee et. al. J. of Optics B, 7, S371, (2005)

where

For short enough times:

With another RWA (interaction representation):

Page 13: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

x’

P’

- Coherent state as displaced vacuum.

where

By the end of the gate:

Phonon Fock basis

Page 14: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

- Two ways of calculating the acquired phase:

1. The direct way:

From

We get:

Therefore:

The acquired phase:

Displacement vs. time:

Page 15: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

Displacement vs. time:

x’

P’

Phase space radius:

Phase space area:

Page 16: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

- Geometric and dynamic parts:

Dynamic phase:

Page 17: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Off-resonantly Driven harmonic oscillator

- Geometric and dynamic parts:

Geometric phase:

The overlap between two coherent states

The acquired phase is a sum of partial canceling dynamic and geometric phases!

Page 18: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Spin dependent forces

- To acquire a spin dependent phase we need a spin dependent force.

Where ↑,↓ are eigenstates of

Page 19: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Spin dependent forces: Two ions

Two. Long. motional modes:

1st mode (COM) 2nd mode (stretch)

- Same analysis applies, only:

- For COM mode: total force = sum of forces on the two ions.

- For Stretch mode: total force = diff. of forces on the two ions.

- For a non-uniform force: forces at eq. positions of the two ions.

- Assume force is uniform over ion w.f. (Lamb-Dicke regime).

Page 20: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

For a Zeeman qubit: F↓= -F↑

Polarization gradient “walking-standing” wave

Set ion spacing such that Dk(xeq1-xeq2)=2pN and set wm = wst

Sigma z gate

Page 21: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

A

|↑↑ or |↓↓

|↓↑ or |↑↓

Df = p/2

Df = 0

x

x

p

p

Leibfried et. al., Nature, 422, 412 (2003)

Sigma z gate

F = 0.97; e = 0.03

9Be+, |F=1, mf = -1 |F=2, mf = -2

F↓= -2F↑

- Hyperfine qubit (NIST)

Page 22: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Used two facts:

1. Both spin states feel a force.

2. Force is different.

This Sigma z gate would not work for:

1. Optical qubit.

2. Clock transition qubit (hyperfine).

↑,↓ are eigenstates of where

Sigma f gate (Sorensen-Molmer)

- Since in the meas. Basis looks like collective spin flip the bi-chromatic fields

have frequencies ~w0

- How is f determined? – optical phase differences.

Page 23: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Sigma f gate

- Clock transition hyperfine qubit (Michigan), F=0.79 Haljan, et. al. PRA, 72, 062316 (2005).

- Optical qubit (Innsbruck), F=0.993 Benhelm, et. al. Nature Phys. (2008).

- Hyperfine qubit (NIST), F=0.83 Sacket, et. al. Nature, 404, 256 (2000).

- Optical qubit (Weizmann), F=0.985 Navon, et. al. arXiv:1309.4502 (2013).

Page 24: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal
Page 25: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal
Page 26: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal
Page 27: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Tutorial overview

1. The ion-qubit: different ion-qubit choices, Ion traps.

2. Qubit initialization.

4. Universal set of quantum gates:

single qubit rotations;

two-ion entanglement gates

5. Memory coherence times

3. Qubit measurement.

How well???

Benchmarked to current threshold estimates

Disclaimer: non exhaustive; focuses on laser-driven gates

Page 28: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Field independent qubits

10 20 B(mT)

9Be+ hyperfine

energy

|2,2 |1,1

f/B = -21 kHz/mT

for B = 0.1 mT

2(f = 1 rad) 76 ms

|F,mF

|1,-1

|1,0

|1,+1

|2,+2

|2,+1

|2,0

|2,-1

|2,-2

|2,0 |1,1

½ 2f/B2 = 0.3 Hz/mT2

for B = 0.1 mT

2(f = 1 rad) 53 s

|2,1 |1,0

½ 2f/B2 = 0.3 Hz/mT2

for B = 0.1 mT

2(f = 1 rad) 53 s

H = A I J - (gI I + gJ J) B

|2,0 |1,0

f/B = 940 Hz/mT @ 1.3 mT

for B = 0.1 mT

2(f = 1 rad) 1.7 ms

|2,0 |1,0

field-independent at B = 0

mF levels are degenerate 2S1/2

|2,0 |1,0 2 1.7 ms

|2,2 |1,1 2 76 ms

|2,0 |1,1 2 53 s

Solution: Breit-Rabi formula

Page 29: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Characterizing the field-independent qubit

States labeled (F, mF)

(1, 1)

(2, 2)

(2, 0) (2, 1)

qubit

transition

~1.2 GHz

|

|

|A

-8 -4 0 4 80

5

10

15

-

1,2

07

,49

5,8

43

[H

z]

B - 11,944.6 [mT]

transition frequency |A | is linearly

dependent on the magnetic field:

- 0 = 17.6 kHz/mT (B - B0).

Probing this transition measures

the magnetic field.

Page 30: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

Qubit coherence time

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

P

phase f

4 ms

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

P

phase f

4 ms 4 s

prep | p/2 p/2

f detect |

TR Ramsey experiment:

contrast 0.93(1)

contrast 0.74(4)

0 2 4 6 80.4

0.5

0.6

0.7

0.8

0.91.0

co

ntr

ast

Ramsey interval TR [s]

Coherence time 14.7 1.6 s

C. Langer, et. al. Phys. Rev. Lett. 95 060502 (2005).

During detection: e ~ 10-5

Page 31: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

All the states in the sub-space, spanned by the two states,

(triplet; m=o)

(singlet)

Haffner et. al. Appl. Phys. B, 81, 151 (2005) Langer et. al. Phys. Rev. Lett., 95, 060502 (2005)

- +

- Remain coherent under collective magnetic field noise.

Decoherence-Free Subspaces

Page 32: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

- +

Coherence time = 44 Seconds

0.1 sec

15 sec

Decoherence-Free Subspaces

Page 33: Tutorial overview - Weizmann Institute of Science · 2016. 9. 5. · Tutorial overview 1. The ion-qubit: different ion-qubit choices, Ion traps. 2. Qubit initialization. 4. Universal

High Fidelity Universal Set of Quantum Operations

Single-qubit gate error

Weizmann Oxford NIST Innsbruck Maryland

10-6

10-4

10-2

100

Two-qubit gate error

Detection error

Memory error