23
Qubit Control

Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

  • Upload
    ngonga

  • View
    236

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Qubit Control

Page 2: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive

Results in dispersive approximation up to 2nd order in g

Unitary transform

A. Blais, et al., PRA 69, 062320 (2004)

with

and

Drive induces Rabi oscillations in qubit when in resonance with dispersively shifted qubit frequency

Page 3: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Single Qubit Gates

L. Steffen et al., Quantum Device Lab, ETH Zurich (2008)

experimental Bloch vector: experimental density matrix and Pauli set:

Pulse sequence for qubit rotation and readout:

Page 4: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Coupling Superconducting Qubitsand Generating Entanglementusing a Controlled Phase Gate

Page 5: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

A 4 Qubit 3 Resonator Sample

• 4 Qubits• 3 Resonators• single-qubit gates• two-qubit gates

(qubits in the same resonator)

• joint single-shot readout of qubits 1 & 2 and qubits 3 & 4

R1

R2

R3

Q1

Q2 Q3

Steffen et al., Nature 500, 319 (2013)

Q4

Page 6: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

The CircuitDevice highlights:• 3 high-Q resonators• 4 transmon qubits• individual control of all

qubits• nearest neighbor

interaction via quantum bus

• individual read-out for pairs of qubits 1-2 and 3-4 through resonators

• single-shot read-out using parametric amplifiers

• qubit separation ~ 10 mm• cross-overs for resonators

12-port quantum device based on circuit QED:

Steffen et al., Nature 500, 319 (2013)

Page 7: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

12-Port Device on 16-Port Sample Mount

M. Peterer et al., Quantum Device Lab, ETH Zurich (2012)

~ 1 cm

Page 8: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Resonator as a quantum bus for qubit-qubit interactions

J. Majer, J.M. Chow et al., Nature 445, 515 (2007)

Magnetic Field (Gauss)

Freq

uenc

y (G

Hz)

0.46 0.47

6.46

6.60

Magnetic Field (Gauss)

Freq

uenc

y (G

Hz)

Qubit A

Qubit B

resonator

In the ‘old days’:qubits tuned with static, global magnetic field

slide credit: L. DiCarlo (TUD)

Page 9: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Resonator as a quantum bus for qubit-qubit interactions

J. Majer, J.M. Chow et al., Nature 449, 443 (2007)

Magnetic Field (Gauss)

Freq

uenc

y (G

Hz)

0.46 0.47

6.46

6.60

( ) †1 1 2 2

1 21 2

1 2 1 2

2 2

( )

z zr

z z

H a a

J

ω χ σ χ σ

ω ωσ σ

σ σ σ σ− + + −

≈ − −

+ +

+ +

% h

h h

h

1 2

1 2

1 12

g gJ

= + ∆ ∆ Resonator mediated qubit-qubit coupling

In the ‘old days’:qubits tuned with static, global magnetic field

slide credit: L. DiCarlo (TUD)

Page 10: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Local flux control

cavity

left qubit

right qubit

Cavity-qubit resonant interactionVacuum Rabi splitting

RVFlux bias on right transmon (a.u.)

2g 2g

slide credit: L. DiCarlo (TUD)

Page 11: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Dispersive qubit-qubit interactions

Dispersive qubit-qubit swap interaction

cavity

left qubit

right qubit

RVFlux bias on right transmon (a.u.)

22 /g ∆

( )2 /g g× ∆

slow-downfactor ~1/10

natural speed

slide credit: L. DiCarlo (TUD)

Page 12: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

cavity

Conditionalphase gate

Use control lines to push qubits near a cavity-mediatedresonance

RV

RVFlux bias on right transmon (a.u.)

Two-qubit gate: turn on interactions

slide credit: L. DiCarlo (TUD)

Page 13: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Exchange (XY) Interaction, J-Coupling: Calculation

Page 14: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Exchange (XY) Interaction, J-Coupling: Experiment

maximally entangled state

Indicated by

state fidelity: 99.7 %

Page 15: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

2011

Two-excitation manifold

Two-excitation manifold of system

• Transmon “qubits” have multiple levels…

Strauch et al. PRL (2003): proposed using interactions with higher levels for computation in phase qubits

• Avoided crossing (160 MHz)

11 02↔

Flux bias on right transmon (a.u.)

slide credit: L. DiCarlo (TUD)

Page 16: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Universal Two-Qubit Controlled Phase Gate

proposal: F. W. Strauch, Phys. Rev. Lett. 91, 167005 (2003).first implementation: L. DiCarlo, Nature 460, 240 (2010).

Interaction mediated by virtual photon exchange

through resonator

Tune levels into resonance using magnetic field

qubit A qubit B

Page 17: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Universal Two-Qubit Controlled Phase Gate

proposal: F. W. Strauch, Phys. Rev. Lett. 91, 167005 (2003).first implementation: L. DiCarlo, Nature 460, 240 (2010).

C-Phase gate:Universal two-qubitgate. Used together with single-qubitgates to create any quantum operation.

qubit A qubit B

How to verify the operation of this gate?

Page 18: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Flux bias on right transmon (a.u.)

11 1e1 11 iϕ→

01 e10 10iϕ→

10 1e0 01 iϕ→

0

2 ( )ft

a at

f t dtϕ π δ= − ∫

Adiabatic conditional-phase gate

01

10

11

2-excitationmanifold

1-excitationmanifold

ζ

0

11 10 01 2 ( )ft

t

t dtϕ ϕ ϕ π ζ= + − ∫

2001 10f f+

slide credit: L. DiCarlo (TUD)

Page 19: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

1 0 0 00 1 0 00 0 1 00 0 0 1

U

Adjust timing of flux pulse so that only quantum amplitude of acquires a minus sign:

11

01

10

11

1 0 0 00 0 00 0 00 0

ˆ

0

i

i

i

eU

ee

ϕ

ϕ

ϕ

00 1001 11

00

10

01

11

Implementing C-Phase with 1 pulse

slide credit: L. DiCarlo (TUD)

Page 20: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Process Tomography: C-Phase Gate

arbitrary quantum process

decomposed into

is an operator basis is a positive semi definite Hermitian matrix characteristic for the process

Measured χ-matrix:Re[χ] (|Im[χ]|<0.04)

Controlled phase gate

χ

Page 21: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Re[χ] (|Im[χ]|<0.08)

Process Tomography: C-NOT Gate

arbitrary quantum process

decomposed into

is an operator basis is a positive semi definite Hermitian matrix characteristic for the process

Measured χ-matrix:Controlled-NOT gate

χ

Page 22: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

Maximally Entangled Three Qubit StatesGeneration of GHZ class, e.g. |000>+|111>, states:• single qubit gates• C-PHASE gates

Measured density matrix• high fidelity

Page 23: Qubit Control - ETH Z · PDF fileHamiltonian for microwave drive ... qubit-qubit swap interaction cavity ... DiVincenzo Criteria fulfilled for Superconducting Qubits

DiVincenzo Criteria fulfilled for Superconducting Qubits

for Implementing a Quantum Computer in the standard (circuit approach) to quantum information processing (QIP):

#1. A scalable physical system with well-characterized qubits.#2. The ability to initialize the state of the qubits.#3. Long (relative) decoherence times, much longer than the gate-operation time.#4. A universal set of quantum gates.#5. A qubit-specific measurement capability.

plus two criteria requiring the possibility to transmit information:

#6. The ability to interconvert stationary and mobile (or flying) qubits.#7. The ability to faithfully transmit flying qubits between specified locations.