11
Australian School of Business Probability and Statistics Solutions Week 5 1. We are given that  X  ∼ Exp(1/5000). Thus,  E [X ] = 5000 and  V ar (X ) = (5000) 2 .  Let  S  =  X 1  + ... + X 100 . Th en  E [S ] = 100(500 0) = 500, 000 and  V ar (S ) = 100 (5 000) 2 .Thus, using the central limit theorem, we have: Pr (S > 100 (5 050)) = Pr S E (S )  V ar (S ) >  100 (50 ) 10 (50 00)  Pr (Z > 0.10) = 1 0.5398 = 0.4602. 2. To nd an estimato r for  θ  using the method of moments, let  E [X ] = X . We then have: X  = E [X ] =   ∞ −∞ f X (x)dx = θ  0 x 2 (θ x) θ 2  dx =  2 θ 2 θ  0 θx x 2 dx =  2 θ 2 θ x 2 2   x 3 3 θ 0 =  2 θ 2 θ θ 2 2   θ 3 3 =  θ 3 . Hence, the method moments estimate is:   θ = 3X. 3. T o prov e  X n  p µ in probability, we show that if we take any  ε > 0,  we must have: Pr X n µ  > ε 0,  as  n →∞ or, equivalently; lim n→∞ Pr X n µ  > ε  = 0. First, note that we have: E X n  = µ  and  V ar X n  =  1 n 2 n k=1 σ 2 k . Applying the Chebyshev’s inequality: Pr X n µ  > ε  1 ε 2 1 n 2 n k=1 σ 2 k . And take the limits on both sides: lim n→∞ Pr X n µ  > ε   lim n→∞ 1 ε 2  ·  1 n 2  · n k=1 σ 2 k =  1 ε 2  ·  lim n→∞ 1 n 2 n k=1 σ 2 k      =0 = 0. c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 1 of   10

Tutorial 5 So Ln

  • Upload
    bob

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 1/10

Australian School of Business

Probability and StatisticsSolutions Week 5

1. We are given that X  ∼ Exp(1/5000). Thus,  E [X ] = 5000 and  V ar (X ) = (5000)2 . Let  S  =  X 1 + . . . +

X 100. Then  E [S ] = 100(5000) = 500, 000 and   V ar (S ) = 100 (5000)2 .Thus, using the central limit

theorem, we have:

Pr (S > 100 (5050)) = Pr

S − E (S ) 

V ar (S )>

  100 (50)

10 (5000)

≈   Pr (Z > 0.10) = 1− 0.5398 = 0.4602.

2. To find an estimator for θ  using the method of moments, let  E [X ] = X . We then have:

X  =  E [X ] =

  ∞−∞

f X(x)dx

=

θ 0

x2 (θ − x)

θ2  dx

=  2

θ2

θ 0

θx − x2

dx

=  2

θ2 θ

x2

2 −  x3

3 θ

0

=  2

θ2

θ

θ2

2 −  θ3

3

=

  θ

3.

Hence, the method moments estimate is:  θ = 3X.

3. To prove X n p→ µ in probability, we show that if we take any  ε > 0,  we must have:

PrX n − µ

 > ε→ 0,   as  n →∞

or, equivalently;limn→∞

Pr X n−

µ > ε = 0.

First, note that we have:

E

X n

 =  µ   and   V ar

X n

 =  1

n2

nk=1

σ2k.

Applying the Chebyshev’s inequality:

PrX n − µ

 > ε ≤   1

ε2

1

n2

nk=1

σ2k.

And take the limits on both sides:

limn→∞

Pr X n

−µ > ε   ≤   lim

n→∞

1

ε2

 ·

  1

n2

 ·

n

k=1

σ2k

=  1

ε2 ·   limn→∞

1

n2

nk=1

σ2k     

=0

= 0.

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 1 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 2/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

Thus, the result follows.

4. Let L  be the location after one hour (or 60 minutes). Therefore:

L =  X 1 + . . . + X 60,

where

X k  =

  50 cm, w.p.   1

2−50 cm, w.p.   1

2 ,

so that  E [X k] = 0 and  V ar (X k) = 2500.Therefore,

E [S ] = 0 and  V ar (S ) = 60 · (2500) = 150000.

Thus, using the central limit theorem, we have:

Pr (L ≤ x) = Pr

 L− E [L] 

V ar (L)≤   x√ 

150000

≈ Pr

Z  ≤   x

100√ 

15

.

In other words,L ∼ N  (0, 150000)

approximately. The mean of a normal is also the mode, therefore its most likely position after onehour is 0, the point where he started with.

5. Consider N   independent random variables each having a binomial distribution with parameters  n  = 3and  θ   so that Pr(X i  =  k) = 3kθk (1 − θ)

n−k, for   i   = 1, 2, . . . , N    and   k   = 0, 1, 2, 3.   Assume that of 

these  N   random variables  n0  take the value 0,  n1  take the value 1,  n2   take the value 2, and  n3   takethe value 3 with  N  = n0 + n1 + n2 + n3.

(a) The likelihood function is given by:

L (θ; x) =ni=1

f X(xi)

=

3

0

(1− θ)3

n0·

3

1

θ (1 − θ)2

n1·

3

2

θ2 (1− θ)

n2·

3

3

θ3

n3.

The log-likelihood function is given by:

ℓ (θ; x) =log (L(θ; x)) =

ni=1

log(f X(xi))

∗=n0 ·

log

3

0

 + 3log(1− θ)

+ n1 ·

log

3

1

+ log(θ) + 2log(1− θ)

+ n2 ·

log

3

2

+ 2 log(θ) + log (1− θ)

 + n3 ·

log

3

3

+ 3 log(θ)

,

* using log(a · b) = log(a) + log(b) and log(ac · b) =  c log(a) + log(b)Then, take the FOC of  ℓ (θ; x):

∂ℓ (θ; x)

∂θ  =   −   3n0

(1− θ) +

 n1

θ −   2n1

(1− θ) +

 2n2

θ  −   n2

(1 − θ) +

 3n3

θ

=  n

1 + 2n

2 + 3n

3θ   −

 3n0

 + 2n1

 + n2

(1− θ)   .

Equating this to zero we obtain:

n1 + 2n2 + 3n3

θ  −  3n0 + 2n1 + n2

(1 − θ)  = 0,

or, equivalently:(n1 + 2n2 + 3n3) (1− θ) = (3n0 + 2n1 + n2) θ.

Thus we have the maximum likelihood estimator for  θ   is: θ   ∗=

  (n1 + 2n2 + 3n3)

(n1 + 2n2 + 3n3) + (3n0 + 2n1 + n2)

=  (n1 + 2n2 + 3n3)

(3n0 + 3n1 + 3n2 + 3n3)

=  (n1 + 2n2 + 3n3)

3N   ,

* using:   a1−a  =  bc →   1

1/a−1  =   bc →   1a − 1 =   cb →   1

a   =   c+bb   → a =   bb+c .

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 2 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 3/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

(b) We have:

N  = 20, n0 = 11, n1 = 7, n2 = 2, n3 = 0.

Thus the ML estimate for  θ  is given by:

 θ   =

  (n1 + 2n2 + 3n3)

3N 

=   7 + 460

  = 1160

= 0.1833.

Thus, the probability of winning any single bet is given by 0.1833.

6. (a) The likelihood function is given by:

L(α; y, A) =ni=1

f Y  (yi) =ni=1

αAα

yα+1i

=

ni=1 αAα

ni=1 yα+1i

=   αnAnα

(ni=1 yi)α+1

=  αnAnαni=1 y1/ni

n(α+1)

= αnAnα

Gn(α+1)

(b) In the lecture we have seen that:

π(α|y; A) =f Θ|Y (α|y; A)

∗=f Y 

|Θ(y

|α; A)π(α) ∞−∞ f Y |Θ(y|α; A)π(α)dα

∗∗=

f Y |Θ(y|α; A)π(α)

f Y |Θ(y; A)∗∗∗∝ f Y |Θ(y|α; A)π(α)

* using Bayes formulae: Pr(Ai|B) =   Pr(B|Ai)·Pr(Ai)j Pr(B|Aj)·Pr(Aj) , where the set  Ai(=  π(α))  i  = 1, . . . , n  is

a complete partition of the sample space.** using the law of total probability: Pr(A) = Pr(A|Bi) · Pr(Bi) if  Bi(=  π (α))   i  = 1, . . . , n  is acomplete partition of the sample space.*** using that  f Y |Θ(y; A) is, given the data, a known constant.

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 3 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 4/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

(c) We have that the posterior density is given by:

π(α|y; A) =f Θ|Y (α|y; A)

∝f Y |Θ(y|α; A)π(α)

∗=π(α)

ni=1

f Y  (yi; A)

=L(α; y, A) · π(α)

∝L(α; y, A) ·   1

α

=αn−1Anα

Gn(α+1)

=αn−1 ·

A

G

nα·   1

Gn

=αn−1 ·

G

A

−nα·   1

Gn

∗∗∝αn−1 ·

G

A

−nα=αn−1 · exp

logG

A

−nα=αn−1 · exp

−nα · log

G

A

=αn−1 · exp(−nαa)

* using independence between all  f Y |Θ(yi|α; A) and f Y |Θ(yj |α; A) for  i = j

* using   1(Gn)

 is a known constant.

(d) We have that π(α|y; A) ∝ αn−1 · exp(−nαa) or, equivalently, there exist some constant  c ∈ ℜ  for

which   π(α|y; A) =  c · αn−1 · exp(−nαa). we need to determine the constant  c. We know that

 ∞−∞ π(α|y; A)dα = 1, because otherwise it is not a posterior density.

Given this observation, we are going to compare c·αn−1·exp(−nαa) with the p.d.f. of X  ∼Gamma(αx, λx),which is given by:

f X(x) =  λαxxΓ(αx)

 · xαx−1 · e−λxx.

Now, substitute  x  =  α,  αx  = n,  λx  =  an, and  c =   1Γ(αx)   =   1

Γ(n) . Then we have the density of a

Gamma(n,an) distribution. Hence, the posterior density is given by:

π(α|y; A) =  (an)n

Γ(n)  · αn−1 · e−anα,   for 0 < α < ∞,

and zero otherwise.

(e) The Bayesian estimator of α is the expected value of the posterior. The posterior has a Z  ∼Gamma(n,an)distribution. We have that  E [Z ] =   nna . Thus:

 αB  = E

π(α|y; A)

 =  n

na  =

  1

a.

Thus the Bayesian estimator of  α  is   1a .

7. We use moment generating function to show that:

(a) The binomial tends to the Poisson: Let  X  ∼  Binomial(n, p). Its m.g.f. is therefore:

M X (t) =

1− p + petn

let np   =   λ  so that p  =  λ/n

=

1−  λn

 + λn

etn

=

1 +

 λ (et − 1)

n

nc  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 4 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 5/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

and by taking limit on both sides, we have:

limn→∞

M X (t) = limn→∞

1 +

 λ (et − 1)

n

n= exp

λ

et − 1

,

which is the moment generating function of a Poisson with mean  λ.

(b) The gamma, properly standardized, tends to Normal: Let  X  ∼  Gamma(α, β ) so that its densityis of the form:

f  (x) =   β 

α

Γ (α) xα−1e−βx,   for x ≥ 0,

and zero otherwise, and its m.g.f. is:

M X (t) =

  β 

β − t

α.

Its mean and variance are, respectively,  α/β  and α/β 2. These results have been derived in lectureweek 2. Consider the standardized Gamma random variable:

Y   =  X −E (X ) 

V ar (X )=

 X − α/β  α/β 2

= βX − α√ 

α  =

  βX √ α − √ α

Its moment generating function is:

M Y   (t) =   e−√ αtE 

eβX√ αt

 =  e−√ αtM X

 βt√ α

=   e−

√ αt

  β 

β − (βt/√ 

α)

α= e−

√ αte−α log(1−(t/

√ α))

= exp

−√ αt− α

− t/

√ α−  1

2

t/√ 

α2

+ R

here  R   is the Taylor’s series remainder term

= exp

1

2t2 + R

,

where R′

involves powers of 1/√ 

α.. Thus in the limit,  M Y   (t) → exp

12

t2

 as  α →∞.

8. If the law of large numbers were to hold here, it would have had the sample mean X  approaching themean of  X , which does not exist in this case. At first glance therefore it would seem not a violation.But, in fact, it is, because the assumption of finite mean does not hold for Cauchy and therefore thelaw of large numbers cannot hold.

9. Given that there are   n   realizations of   xi,where   i   = 1, 2, . . . , n. We know that   xi| p ∼   Ber( p) and p ∼ U (0, 1). We are asked to find the Bayesian estimators for p  and  p(1− p). Since n  random variablesare independent, then:

f (x1, x2, . . . , xn| p) =

ni=1

f (xi| p)

= pni=1 xi(1

− p)n−

ni=1 xi

Since xi’s are independent with random variable p, then

f (x1, x2, . . . , xn, p) = pn

i=1 xi(1− p)n−n

i=1 xi .

Then we can compute the joint density for  xi  where i = 1, 2, . . . , n,

f (x1, x2, . . . , xn) =

   1

0

 pn

i=1 xi(1− p)n−n

i=1 xidp

=  Γ(ni=1 xi + 1)Γ(n−ni=1 xi + 1)

Γ(n + 2)  .

(a) Method 1: Hence we can obtain the posterior function:

f ( p|x1, x2, . . . , xn) =  f (x1, x2, . . . , xn, p)f (x1, x2, . . . , xn)

=  Γ(n + 2)

Γ(ni=1 xi + 1)Γ(n + 1 −ni=1 xi)

 pn

i=1 xi(1− p)n−n

i=1 xi ,

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 5 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 6/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

which is the probability density function for:Beta((

ni=1 xi + 1) , (n + 1 −ni=1 xi)). Method 2: Observe that the difference between f (x1, x2, . . . , xn)

and the p.d.f. in of a Beta distribution are proportional to each other and use this to find thedistribution of  f ( p|x1, x2, . . . , xn).Hence, we have f ( p|x1, x2, . . . , xn) ∝ f Y  (x),where Y  ∼Beta((

ni=1 xi + 1) , (n + 1 −ni=1 xi)).

The Bayesian estimator for  p  will thus be:

  pB =  E [ p|X ] = ni=1 xi + 1n + 2

  .

(See Formulae and Tables page 13).

(b) Now we wish to find a Bayesian estimator for  p(1− p). Then using the similar idea:

  ( p(1− p))B

=E [ p(1− p)|X ]

=

   1

0

 p(1− p)f ( p|x1, x2, . . . , xn)dp

=  Γ(n + 2)

Γ(ni=1 xi + 1)Γ(n + 1

−ni=1 xi)

   1

0

 p1+n

i=1 xi(1− p)n+1−ni=1 xidp

∗=

  Γ(n + 2)Γ(ni=1 xi + 1)Γ(n + 1 −ni=1 xi)

Γ(ni=1 xi + 2)Γ(n−ni=1 xi + 2)Γ(n + 4)

∗∗=

  Γ(n + 2)

Γ(ni=1 xi + 1)Γ(n + 1 −ni=1 xi)

·

((ni=1 xi + 1) · Γ(

ni=1 xi + 1)) · ((n−ni=1 xi + 1) · Γ(n−ni=1 xi + 1))

(n + 3) · (n + 2) · Γ(n + 2)

=(ni=1 xi + 1)(n + 1 −ni=1 xi)

(n + 3)(n + 2)  .

* using Beta function:   B(α, β ) =   Γ(α)·Γ(β)Γ(α+β)   =

 1

0  xα−1 · (1 − x)β−1dx, where  α   =

 ni=1 xi  + 2,

β  =  n + ni=1 xi + 2,  α + β  =  n + 4.

** using Gamma function: Γ(α) = (α − 1) · Γ(α− 1).Alternatively, using first to moments of the beta distribution (see Formulae and Tables page 13)we have:

  ( p(1− p))B

=  E [ p(1− p)|X ]

=  E [ p|X ]− E  p2|X 

∗=

ni=1 xi + 1

n + 2  −  Γ(a + b) · Γ(a + 2)

Γ(a) · Γ(a + b + 2)

=

ni=1 xi − 1

n− 2  −   (a + 1) · a

(a + b + 1)(a + b)

=

 (ni=1 xi + 1)(n + 1

−ni=1 xi)

(n + 3)(n + 2)   ,

* where a  = ni=1 xi + 1 and  b  =  n + 1 −ni=1 xi

(c) We are interested in the Bayesian estimator of   p(1 −  p), since   np(1 −  p) is the variance of thebinomial distribution (with n a known constant) and we can use this for the normal approximation.

10. The common distribution function is given by:

F X (x) =

   x1

αu−(α+1)du =−u−α

x1

 = 1− x−α,   if  x > 1,

and zero otherwise. The distribution function of  Y n  will be:

F Y n (x) = Pr (Y n ≤ x) = Pr   1

n1/αX (n) ≤ x

= Pr

X (n) ≤ n1/αx

 =

1−

n1/αx

−αn=

1−  x−α

n

n,

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 6 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 7/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

if  x > 1 and zero otherwise. Notice that whereas x > 1, due to the transformation  Y n  =  X(n)n1/α

  y > 0,

i.e., when  α is close to zero  n1/α is large! Taking the limit as  n →∞, we have:

limn→∞F Y n (x) = lim

n→∞

1−  x−α

n

n= exp

−x−α

.

Thus, limit exists and therefore converges in distribution. The limiting distribution is:

F Y n (y) = exp −y−α ,   for  y > 0,

and zero otherwise, the corresponding density is:

f Y n (y) = ∂F Y n (y)

∂y  = αy−(α−1) exp

−y−α

,   if  y > 0,

and zero otherwise. You can prove that this is a legitimate density by  f Y n(y) ≥  0 for all  y, becauseα > 0,  y−α+1 ≥ 0 and exp(−y−α) ≥ 0 and  F Y n(∞) =

 ∞−∞ f Y n(y)dy  = exp(−0) = 1.

11. The mean and the variance of  S  are respectively:

E [S ] =  40

3  and   V ar (S ) =

  10

9  .

Thus, using the central limit theorem, we have:

Pr (S  ≤ 10) = Pr

 S − E [S ] 

V ar (S )≤  10− (40/3) 

10/9

≈   Pr

Z  ≤ −

√ 10

 = Pr (Z  ≤ −3.16) = 0.0008.

12. Note that  X  can be interpreted as a geometric random variable where  k  is the total number of trials.Here  E [X ] =   1

 p.

(a) The method of moments estimator is given by:

X    =   1 p

⇒  p   =  1

=  nni=1

X i

(b) The likelihood function is:

L( p; x) =

n

i=1

f X(xi) =

n

i=1

 p(1− p)xi−1

=   pn(1 − p)

ni=1 xi−n.

The log-likelihood function is:

ℓ( p; x) = log (L( p; x)) =ni=1

log(f X(xi)) = n log( p) +

  ni=1

xi − n

· log(1 − p).

Take the FOC of  ℓ( p; x) wrt p  and equate equal to zero:

ℓ′( p) = n

 p −

ni=1 xi − n

1− p  = 0.

The we obtain the Maximum Likelihood estimator for  p:

  p   ∗=   nni=1 X i − n + n

  =  nni=1 X i

,

* using:   a1−a  =  bc ⇒   1

1/a−1  =   bc ⇒   1a − 1 =   cb ⇒   1

a   =   c+bb   ⇒ a =   bb+c .

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 7 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 8/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

13. For the Pareto distribution with parameters x0  and  θ  we have the following p.d.f.:

f (x) = θ (x0)θ x−θ−1, x ≥ x0, θ > 1,

and zero otherwise. The expected value of the random variable  X  is then given by:

E [X ] =

  ∞−∞

xf X(x)dx =

  ∞x0

xθ (x0)θ x−θ−1dx

=   θ (x0)θ· ∞x0  x−θdx

=   θ (x0)θ

x1−θ

1− θ

∞x0

=   −   θ

1− θx0

=  θ

θ − 1x0.

(a) Given  x0,  we have  E [X ] =   θθ−1 x0, thus:

θ

θ−

1x0 =X 

⇒ x0θ =X  (θ− 1)

x0θ =Xθ −X 

⇒ X  =

X − x0

θ

⇒ θ =  X 

X − x0

.

Thus the method of moment estimator of  θ   is   XX−x0 .

(b) The likelihood function is given by:

L(θ; x) =n

i=1

f X(xi) =n

i=1

θ (x0)θ x−θ−1i

=   θn (x0)nθni=1

x−θ−1i   .

The log-likelihood function is given by:

ℓ(θ; x) =log(L(θ; x)) =ni=1

log(f X(xi))

=n log(θ) + nθ log(x0)− (θ + 1)

ni=1

log(xi).

Take the FOC of  ℓ(θ; x) and equate equal to zero:

∂ℓ(θ)

∂θ  =

n

θ  + n log(x0)−

ni=1

log(xi) = 0

⇒   n

θ  =− n log(x0) +

ni=1

log(xi)

⇒ θ =  n

−n log(x0) +ni=1

log(xi).

Thus, the maximum likelihood estimator for  θ  is given by   n

−n log(x0)+ni=1

log(xi).

14. The p.d.f. of a chi-squared distribution with one degree of freedom:

f Y  (y) = exp(−y/2)√ 

2πy  ,   if  y > 0,

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 8 of   10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 9/10

7/23/2019 Tutorial 5 So Ln

http://slidepdf.com/reader/full/tutorial-5-so-ln 10/10

ACTL2002 & ACTL5101 Probability and Statistics Solutions Week 5

ii) Determine the inverse of the transformations:

V   = G U  = n1 · F  · V /n2 =  n1 · F  ·G/n2.

iii) Calculate the absolute value of the Jacobian:

J  = det

  0 1g ·   n1n2

f  ·   n1n2

 =  g ·  n1

n2.

iv) Determine the joint probability density function of  F   and  G:

f FG(f, g) =  1

|J | · f UV  (u, v)  ∗=

  1

|J | · f U (u) · f V  (v)

=n1g

n2·   u(n1−2)/2

2n1/2Γ(n1/2) · exp(−u/2) ·   v(n2−2)/2

2n2/2Γ(n2/2) · exp(−v/2)

∗∗=

n1g

n2·  (f n1g/n2)(n1−2)/2

2n1/2Γ(n1/2)  · exp

−f n1g

2n2

·   g(n2−2)/2

2n2/2Γ(n2/2) · exp(−g/2)

∗∗∗= n1 · (f n1)(n1−2)/2 ·   (g)(n1+n2−2)/2

nn1/22   · 2n1/2Γ(n1/2)

· exp

−g

1

2 +

 f n1

2n2

·   1

2n2/2Γ(n2/2)

* using independence between  U   and  V , ** using inverse transformation, determined in step ii), and*** using exp(ga) · exp(gb) = exp(g(a + b)) and  ab · ac = ab+c.v) Calculate the marginal distribution of  F  by integrating over the other variable:

f F (f ) =

  ∞0

f FG(f, g)dg

=  1

2n2/2Γ(n2/2) · n1 ·   (f n1)(n1−2)/2

nn1/22   · 2n1/2Γ(n1/2)

·  ∞

0

g(n1+n2−2)/2 · exp

−g

1

2 +

 f n1

2n2

dg

∗=

  1

2n2/2Γ(n2/2) · n1 ·   (f n1)(n1−2)/2

nn1/22   · 2n1/2Γ(n1/2)

·

  2n2

n2 + f n1

(n1+n2−2)/2

·   2n2

n2 + f n1

·   ∞0

x(n1+n2−2)/2 · exp(−x) dx

∗∗=

  1

2n2/2Γ(n2/2) · n1 ·   (f n1)(n1−2)/2

nn1/22   · 2n1/2Γ(n1/2)

·

  2n2

n2 + f n1

(n1+n2−2)/2

·   2n2

n2 + f n1

· Γ((n1 + n2)/2)

=  1

2(n1+n2)/2 ·  f (n1−2)/2 · n

(n1)/21

nn1/22

·

  2n2

n2 + f n1

(n1+n2)/2

·   Γ((n1 + n2)/2)

Γ(n1/2) · Γ(n2/2)

=f (n1−2)/2 · n

(n1)/21

nn1/22

·

  n2

n2 + f n1

(n1+n2)/2

·   Γ((n1 + n2)/2)

Γ(n1/2) · Γ(n2/2)

=f (n1−2)/2

·n(n1)/2

1   ·n(n2)/2

2   ·(n

2 + f n

1)−(n1+n2)/2

·  Γ((n1 + n2)/2)

Γ(n1/2) · Γ(n2/2)

=nn1/21   · n

n2/22   ·   Γ((n1 + n2)/2)

Γ(n1/2) · Γ(n2/2) ·   f n1/2−1

(n2 + f n1)(n1+n2)/2

* using transformation x  =

12

 +   fn12n2

g  and thus  g =   2n2

n2+fn1x  and we have dx  =

12

 +   fn12n2

dg,

and ** using Γ(α) = ∞

0  xα−1 exp(−x)dx.

-End of Week 5 Tutorial Solutions-

c  Katja Ignatieva School of Risk and Actuarial Studies, ASB, UNSW Page 10 of   10