Tutorial 1 Latest

Embed Size (px)

Citation preview

  • 8/17/2019 Tutorial 1 Latest

    1/12

    1.  In the two-bus system shown in Figure 1, bus 1 is a slack bus with 01

    01.0V   pu. A

    load of 100 MW and 50 MVAR is taken from bus 2. The line impedance is

    z 12 = 0.12 +  j 0.16 pu on a base of 100 MVA. Using Newton-Raphson method, obtain

    the voltage magnitude and phase angle of bus 2. Start with an initial estimate of)0(

    2V  = 1.0 pu and (0)

    2δ  = 0. Perform two iterations.

    Figure 1

    Y  =

     j43 j43 j43 j43  

    Y  

    55

    55  and  θ   =

    00

    00

    53.13126.87

    126.8753.13 

    In this problem 0.5QI

    1.0PI

    2

    2

      and unknown quantities  =

    2

    2

    V

    δ 

    With initial value0

    1 01.0V    ;0

    2 01.0V    

    iP  =

    ii

    2

    iGV +

    N

    in

    1n

    iV

    nV

    niY  cos (

    niθ  +

    nδ  -

    iδ )

    iQ  =

    ii

    2

    iBV

    N

    in

    1n

    iV

    nV

    niY sin (

    niθ  +

    nδ  -

    iδ )

    2P = )δδθ(cosYVVGV

    2112121222

    2

    2   

    = (1 x 1 x 3 ) + (1 x 1 x 0)0(126.87cos5 0 x ) = 0 pu

    22

    2

    22BVQ

    2V

    1V

    21Y sin (

      21θ  +

    1δ  -

    2δ )

    = -(1 x 1 x -4) - (1 x 1 x 5 x )00(126.87sin0

     = 0 pu

  • 8/17/2019 Tutorial 1 Latest

    2/12

    1.001.0PPIΔP222

       pu

    0.500.5QQIΔQ222   pu 

    ii

    Hii

    2

    iiBVQ    

    iiN   iP  + ii2

    i GV  

    ii

    M  i

    P  -ii

    2

    iGV  

    ii

    L  i

    Qii

    2

    iBV  

    22

    2

    2222BVQH 0 - ( 1 x 1 x -4 ) = 4

    22

    N  2

    P  +22

    2

    2GV  = 0 + (1 x 1 x 3) = 3

    22

    M  2

    P  -22

    2

    2GV  = 0 - (1 x 1 x 3) = -3

    22

    2

    2222BVQL 0 - ( 1 x 1 x -4 ) = 4

    43

    34 

    2

    2

    2

    V

    Δδ

      =

    0.5

    1.0 

    2

    2

    2

    V

    Δδ

      =

    0.2

    0.1 

    0)1(

    2.73rad.0.10.1)0δ   5(    

    pu0.80.2)1.0V)1(

    2     (  

    0

    101.0V    

    0

    2.730.8V   5  

    This completes the first iteration.

  • 8/17/2019 Tutorial 1 Latest

    3/12

    Second iteration:

    2P = )δδθ(cosYVVGV

    2112121222

    2

    2   

    = (0.8 x 0.8 x 3 ) + (0.8 x 1 x 5.73))(-0(126.87cos50

    x ) = -0.7875 pu

    22

    2

    22BVQ

    2V

    1V

    21Y sin (

    21θ  +

    1δ  -

    2δ )

    = -(0.8 x 0.8 x -4) - (0.8 x 1 x 5 x )5.73))(0(126.87sin0

     = -0.3844 pu

    0.2125-0.7875)1.0PPIΔP222

        (  pu

    0.11560.3844)(0.5QQIΔQ222

       pu

    22

    2

    2222BVQH -(-0.38440) - (0.8 x 0.8 x -4 ) = 2.9444

    22

    N  2

    P  +22

    2

    2GV  = -0.7875 + (0.8 x 0.8 x 3) = 1.1325

    22

    M  2

    P  -22

    2

    2GV  = -0.7875 - (0.8 x 0.8 x 3) = -2.7075

    22

    2

    2222BVQL -0.3844 - ( 0.8 x 0.8 x -4 ) = 2.1756

    2.17562.7075

    1.13252.9444 

    2

    2

    2

    V

    Δδ

      =

    0.1156

    0.2125 

    2

    2

    2

    V

    Δδ

      =

    0.0967

    0.0350 

    2

    VΔ - 0.0967 x 0.8 = -0.0773

    0)(2

    27.73rad.0.1350.035)(0.1-δ    

    pu0.72270.0773)0.8V)2(

    2    (  

    0

    101.0V    

    0

    27.730.7227V    

    This completes the second iteration.

  • 8/17/2019 Tutorial 1 Latest

    4/12

    2.  Figure 2 shows the one-line diagram of a simple three-bus power system with

    generation at buses 1 and 2. The voltage at bus 1 is 01

    01.0V   per unit. Voltage

    magnitude at bus 2 is fixed at 1.05 pu with a real power generation of 400 MW. A

    load consisting of 500 MW and 400 MVAR is taken from bus 3. Line admittances

    are marked in per unit on a 100 MVA base. For the purpose of hand calculations,

    line resistances and line charging susceptances are neglected. UsingNewton-Raphson method, start with the initial estimates of

    )0(

    2V  = 1.05 +  j 0 and

    )0(

    3V  = 1.0 +  j 0, and keeping

    2V  = 1.05 pu, determine the phasor values of

    2V  and

    3V . Perform two iterations.

    Figure 2

    Y  =

    000

    000

    000

    904090209020

    902090609040

    902090409060

     

    Y  

    402020

    206040

    204060

      and  θ   =

    000

    000

    000

    909090

    909090

    909090

     

    In this problem 

    4QI

    5PI

    4PI

    3

    3

    2

      and unknown quantities  =

    3

    3

    2

    V

    δ

    δ

     

    With flat start0

    101.0V    ;

    0

    201.05V     ;

    0

    301.0V    

  • 8/17/2019 Tutorial 1 Latest

    5/12

    ii

    2

    iiii

    iiiiii

    ii

    2

    iiii

    BVQL

    PM;PN

    BVQH

     

    )δδ(sinYVVM

    )δδ(sinYVVN

    )δδ(cosYVVH

    i j ji ji ji

    i j ji ji ji

    i j ji ji ji

     

    iP  =

    ii

    2

    iGV +

    N

    in

    1n

    iV

    nV

    niY  cos (

    niθ  +

    nδ  -

    iδ )

    iQ  =

    ii

    2

    iBV

    N

    in

    1n

    iV

    nV

    niY sin (

    niθ  +

    nδ  -

    iδ )

    2P = )δδθ(cosYVV)δδθ(cosYVVGV

    233232322112121222

    2

    2   

    = 0   + 0))90(cosx20x1x(1.05))90(cosx40x1x1.05(00

     

    3P = )δδθ(cosYVV)δδθ(cosYVVGV

    323232233113131333

    2

    3   

    = 0   + 0))90(cosx20x1.05x1())90(cosx20x1x(100

     

    22

    2

    22BVQ

    2V

    1V   )δδθ(sinY

    211212)δδ(θsinYVV

    232332 

    23  

    = 60)-x1.05x(1.05- ))(90sinx40x1x(1.050

    ))(90sinx20x1x(1.05-0 = 3.15

    33

    2

    33BVQ

    3V

    1V   )δδθ(sinY

    311313)δδ(θsinYVV

    3232323 

    = 40)-x1x(1- ))(90sinx20x1x(10

    ))(90sinx20x1.05x(1-0 = -1

    404PPIΔP222   

    505PPIΔP333

       

    31)(4QQIΔQ333

       

    Sinceii

    G  are zero and ji

    θ  are0

    90  

    22

    2

    2222BVQH  -3.15 + ( 1.05 x 1.05 x 60 ) = 63

    33

    2

    3333BVQH    = 1 + ( 1 x 1 x 40 ) = 41 

    0PM;0PN333333

       

    33

    2

    3333BVQL -1 + ( 1 x 1 x 40 ) = 39 

    32

    H2

    V3

    V   )δδ(cosY2332

       = 211x20x1x1.05     and23

    H  = -21

    32

    N2

    V3

    V 0)δδ(sinY2332

       ; 32

    M3

    V2

    V   0)δδ(sinY3223

       

  • 8/17/2019 Tutorial 1 Latest

    6/12

     

    3900

    04121

    02163

     

    3

    3

    3

    2

    V

    Δδ

    Δδ

      =

    3

    5

    4

     

    3

    3

    3

    2

    V

    Δδ

    Δδ

      =

    0.0769-

    0.1078-

    0.0275

     

    0)1(

    21.5782rad.0.02750.02750δ    

    0)1(

    36.179rad.0.10780.10780δ    

    0.92310.07691.0V)1(

    3   

    0

    101.0V    

    0

    21.581.05V    

    0

    36.180.9231V    

    This completes the first iteration.

    After second iteration :

    0)2(

    21.61rad.0.02810.00060.0275δ    

    0)2(

    3

    6.898rad.0.12040.01260.1078δ    

    0.90560.01750.9231V)2(

    3  pu

    Thus at the end of second iteration :

    0

    101.0V    

    0

    21.611.05V    

    0

    36.90.9056V    

  • 8/17/2019 Tutorial 1 Latest

    7/12

    3.  Referring to question 2 above, perform 2 iterations in computing :

    a)  Power flow using Decouple Power Flow method.

    b)  Power flow using Fast Decouple Power Flow method.

    Figure 2

    a)  Power flow using Decouple Power Flow method.

    4121

    2163 

    3

    2

    Δδ

    Δδ

      =

    5

    0)1(

    2

    1.5756rad.0.02750.02750δ    0)1(

    36.1765rad.0.10780.10780δ    

    0

    101.0V    

    0

    21.581.05V    

    0

    36.181.0V    

    33

    2

    33BVQ

    3V

    1V   )δδθ(sinY

    311313)δδ(θsinYVV

    3232323 

    = 40)-x1x(1- )))6.18(0(90insx20x1x(100

     

    ))6.18)(1.58(90insx20x1.05x(1- 00  = -0.6915

    3.3085-0.6915)(4QQIΔQ333

       

    33

    2

    3333BVQL -0.6915 - ( 1 x 1 x -40 ) = 39.3085 

  • 8/17/2019 Tutorial 1 Latest

    8/12

    ii

    2

    iiii

    ii

    2

    iiii

    BVQL

     BVQH

     

    )δδ(cosYVVHi j ji ji ji

       

    39.3085

    3

    3

    V

    VΔ  = 3.3085  

    3VΔ = - 3.3085 x 1.0 / 39.3085 = - 0.0842

    0.91580.08421.0V)1(

    3   

    After first iteration :

    0

    101.0V    

    0

    21.581.05V    

    0

    36.180.9158V    

    Second iteration:

    2P = )δδθ(cosYVV)δδθ(cosYVVGV

    233232322112121222

    2

    2   

    = 0   +

    3.7548))90(cosx20x0.9158x(1.05))90(cosx40x1x1.05(00

      000

    58.118.658.1

     

    3P = )δδθ(cosYVV)δδθ(cosYVVGV

    323232233113131333

    2

    3   

    = 0   +

    4.5685))90(cosx20x1.05x())90(cosx20x1x(0.915800

      000

    18.658.19158.018.6

     

    22

    2

    22BVQ

    2V

    1V   )δδθ(sinY

    211212)δδ(θsinYVV

    232332 

    23  

    =

    ))58.118.690sin(x20x9158.0x05.1())58.190sin(x40x1x05.1(  00000

    60)-x1.05x(1.05-

     

    33

    2

    33BVQ

    3V

    1V   )δδθ(sinY

    311313)δδ(θsinYVV

    3232323 

    =

    .658.190sin(x20x05.1x9158.0())18.690sin(x20x1x9158.0(  0000

    40)-x0.9158x(0.9158-

      = -3.7177

    2452.07548.3   4PPIΔP222

     

    4315.0)5685.4(   5PPIΔP333

     

    0.2823)(4QQIΔQ333

        7177.3  

    Sinceii

    G  are zero and ji

    θ  are0

    90  

  • 8/17/2019 Tutorial 1 Latest

    9/12

    22

    2

    2222BVQH  -5.1103 + ( 1.05 x 1.05 x 60 ) = 61.0397

    33

    2

    3333BVQH    = 3.7177 + ( 0.9158 x 0.9158 x 40 ) = 37.2653 

    32

    H2

    V3

    V   )δδ(cosY2332

       = -1.05 x 0.9158 x 20 x cos (-6.180-1.58

    0)

    = -19.0557

    23H  = -19.0557

    37.2653.0557

    .055761.0397

    19

    19 

    3

    2

    Δδ

    Δδ

      =

    0.4315

    0.2452 

    3

    2

    Δδ

    Δδ

      =

    0.0113

    0.0005 

    0)2(

    21.60rad.0.02800.00050.0275δ    

    0)2(

    36.82rad.0.11910.01130.1078δ    

    0

    101.0V    

    0

    21.05V   6.1  

    0

    30.9158V   85.6  

    33

    2

    33BVQ

    3V

    1V   )δδθ(sinY

    311313)δδ(θsinYVV

    3232323 

    =

    8.66.190sin(x20x05.1x9158.0())85.690sin(x20x1x9158.0(

      0000

    40)-x0.9158x(0.9158-  = -3.6607

    0.3393-.6607)(4QQIΔQ333

        3  

    33

    2

    3333BVQL -3.6607 + ( 0.9158 x 0.9158 x 40 ) = 29.8869 

    29.8869

    3

    3

    V

    VΔ  = 0.3393  

    3VΔ = - 0.3393 x 0.9158 / 29.8869 = - 0.0104

    0.90540.01040V)1(

    3    9158.  

    Thus at the end of second iteration, bus voltages are

    0

    101.0V    

    0

    21.V   6.105  

    0

    36.850.9054V    

  • 8/17/2019 Tutorial 1 Latest

    10/12

    B =

    b)  Power flow using Fast Decouple Power Flow method.

    40

    60

    60

    20203

    20402

    20401

    321

     

    The constant matrices are

    40203

    2602

    32

      0  

    Initial solution is

    0

    3

    0

    2

    0

    1

    01.0V

    01.05V

    01.0V

     

    4ΔP2   ; 5ΔP

    3   

    5V

    ΔP;3

    V

    ΔP

    3

    3

    2

    2   8095.  

    V

    ΔPΔδB

    '  

    40 20

    2060

    3

    2

    Δδ

    Δδ

      =

    5

    3.8095 

    On solving the above

    3

    2

    Δδ

    Δδ

      =

    0.1119

    0.0262 

    0)1(

    2rad.0.02620.02620δ   50.1  

    0)1(

    341rad.0.11190.11190δ   .6  

    0

    3

    0

    2

    0

    1

    411.0V

    1.05V

    01.0V

    .6

    50.1

     

    '

    B   and  "

    B  40 

  • 8/17/2019 Tutorial 1 Latest

    11/12

    33

    2

    33BVQ

    3V

    1V   )δδθ(sinY

    311313)δδ(θsinYVV

    3232323 

    = ))41.65.190sin(x20x05.1x1())41.690sin(x20x1x1(  00000

    40)-x1x(1-  

    = -0.6752

    3.3248-)(4QQIΔQ 333     6752.0  

    V

    ΔQVΔB

    "  

    40 3

    VΔ  = - 3.3248  i.e.3

    VΔ   = - 0.0831 

    0.91690.08311.0V)1(

    3   

    At the end of first iteration, bus voltages are

    0

    3

    0

    2

    0

    1

    410.9169V

    1.05V

    01.0V

    .6

    50.1

     

    Second iteration:

    2P = )δδθ(cosYVV)δδθ(cosYVVGV

    233232322112121222

    2

    2   

    = 0   +

    3.7492))90(cosx20x0.9169x(1.05))90(cosx40x1x1.05(00

      000

    50.141.65.1

     

    3P = )δδθ(cosYVV)δδθ(cosYVVGV

    323232233113131333

    2

    3   

    = 0   +

    6971.441.65.19169.041.6  000

    ))90(cosx20x1.05x())90(cosx20x1x(0.916900

     

    2508.07492.3   4ΔP2

     

    .30295ΔP3

      06971.4    

    3304.02389.0   3

    3

    2

    2

    V

    ΔP

    ;V

    ΔP

     

    V

    ΔPΔδB

    '  

    40 20

    2060

    3

    2

    Δδ

    Δδ

      =

      3304.0

    0.2389 

  • 8/17/2019 Tutorial 1 Latest

    12/12

    3

    2

    Δδ

    Δδ

      =

    0.0075

    0.0015 

    0)1(

    2rad.0.02770.001502620δ   59.1.    

    0)1(

    3 6.84rad.0.11940.00750.1119δ    

    0

    3

    0

    2

    0

    1

    0.9169V

    1.05V

    01.0V

    84.6

    59.1

     

    33

    2

    33BVQ

    3V

    1V   )δδθ(sinY

    311313)δδ(θsinYVV

    3232323 

    =

    .659.190sin(x20x05.1x9169.0())84.690sin(x20x1x9169.0(  0000

    40)-x0.9169x(0.9169-

      = -3.6261

    0.3739-)(4QQIΔQ333

        6261.3  

    V

    ΔQVΔB

    "  

    40 3

    VΔ  = - 0.4078  i.e.3

    VΔ   = - 0.0102 

    0.90670.01020.9169V)1(

    3   

    At the end of second iteration, bus voltages are

    0

    3

    0

    2

    0

    1

    0.9067V

    1.05V

    01.0V

    84.6

    59.1