21
Turbulence modelling for gas-particle flows Mohit P. Tandon 1 , Meera Gupta 2 and Aditya Karnik 1 1 CD-adapco, India, 2 IIT-Delhi , India

Turbu lence mode lling for gas -particle flows · 2020. 8. 13. · Turbu lence mode lling for gas -particle flows M o hit P . T a n do n 1, M e era G u pt a 2 a n d A d itya K ar

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Turbulence modelling for gas-particle flows

    Mohit P. Tandon1, Meera Gupta2 and Aditya Karnik1

    1 CD-adapco, India, 2 IIT-Delhi , India

  • Outline

    • An effort to understand the role of Particle Phase Turbulence

    • Focus Applications: Downers and Risers

    • Experimental Data: Lateral Segregation in Volume Fraction

  • Background

    • Fox (2014)# stressed on the need to separate between turbulent

    kinetic energy and granular energy of particles

    Individual Particle

    Scale Cluster Scale

    Fluctuations associated

    with granular

    temperature

    Fluctuations associated

    with turbulent kinetic energy

    # Fox, R.O. On multiphase turbulence models for collisional fluid-particle flows, JFM (742), 2014

  • • Volume Fraction

    • Momentum

    Turbulent Dispersion Force

    Governing Equations: Particle Phase

    s

  • • Granular Temperature

    • Turbulent Kinetic Energy

    Governing Equations: Particle Phase

    Interphase

    Turbulence Exchange

  • Governing Equations: Fluid Phase

    • Turbulent Kinetic Energy

    Turbulence induced due to the presence of particles

  • Downer

    • Experimental Details#

    – Co-current down flow – Height of Column: 7 m – Diameter of Column: 0.14 m – Density of Particles: 1545 Kg/m3 – Diameter of Particles: 54 μm – Density of Gas: 1.18 Kg/m3 – Gas Viscosity: 1.8 e-5 Pas – Superficial Gas Velocity: 4.33 m/s – Inlet Solid Flow Rate: 70 Kg/m

    2-s

    g

    Inlet for gas & particles

    # Wang et al. Powder Technology (70), 1992, 271-275

  • Downer

    • Problem Set-up – Mesh: 70x70 – Radial Distribution Function: Ding-Gidaspow – Particle Viscosity: Gidaspow – Granular Conductivity: Gidaspow – Drag Model: Wen and Yu – Wall treatment: No-slip for gas and Slip for particles

  • Downer: Results

    Simulation without considering particle phase turbulence

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0 0.2 0.4 0.6 0.8 1 1.2

    Experimental

    Simulation

    r/R

    Vo

    lum

    e F

    ractio

    n o

    f P

    art

    icle

    Lateral distribution of the particles

  • Downer: Results

    Simulation with particle phase turbulence – no exchange

    r/R

    Vo

    lum

    e F

    ractio

    n o

    f P

    art

    icle

    Lateral distribution of the particles

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0 0.2 0.4 0.6 0.8 1 1.2

    Experimental

    Simulation A

    Simulation B

  • Downer: Results

    Simulation with particle phase turbulence – exchange accounted

    r/R

    Vo

    lum

    e F

    ractio

    n o

    f P

    art

    icle

    Lateral distribution of the particles

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0 0.2 0.4 0.6 0.8 1 1.2

    Experimental

    Simulation A

    Simulation B

    Simulation C

  • Downer: Turbulent Kinetic Energy Exchange

    Particle Phase:

    Fluid Phase:

    Net Dissipation of Turbulent Kinetic Energy

  • Downer: Turbulent Kinetic Energy Exchange

  • Downer: Turbulent Kinetic Energy Exchange

  • Particle Thermal

    Energy

    Turbulent Kinetic

    Energy Gas Mean Kinetic

    Energy Gas

    Turbulent Kinetic

    Energy Particle

    Mean

    Shear

    Inter Phase

    Turbulent

    Exchange

    Mean Kinetic

    Energy Particle Mean

    Shear

    Drag

    Buoyancy

    Granular

    Temperature

    ℇp e Collisions

    Gas Thermal

    Energy

    ℇf Heat

    Transfer

    Energy Flow Diagram

  • Downers: Parametric Study for beta

    Lateral distribution of the particles

  • Downers: Parametric Study for restitution coefficient

    Lateral distribution of the particles

  • Downers: Scale up investigation

    Lateral distribution of the particles

  • Riser

    • Experimental Details

    – Circulating Fluidized Bed – Density of Gas: 1.18 Kg/m3 – Gas Viscosity: 1.8 e-5 Pas – Superficial Gas Velocity: 1.29 m/s – Inlet Solid Flow Rate: 11.71 Kg/m

    2-s

    • Problem Set-up – Mesh: 80x430 – Radial Distribution Function: Ding-Gidaspow – Particle Viscosity: Syamlal – Granular Conductivity: Syamlal – Drag Model: EMMS – Wall treatment: No-slip for gas and Slip for particles

  • Riser: Results

    r/R

    Vo

    lum

    e F

    ractio

    n o

    f P

    art

    icle

    Lateral distribution of the particles at z/D = 1.06

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0 0.2 0.4 0.6 0.8 1

    Experimental

    Turbulence

    Laminar

  • Thank You!