Transverse Frame Analysis

Embed Size (px)

Citation preview

  • 7/29/2019 Transverse Frame Analysis

    1/6

    l.

    TRANSVERSE FRAME AI\ALISYS

    STRUCTURAL LAYOUT- See the transverse section (cross-section of the building).

    STRUCTURAL CONFIGURATION AND LOADING- Single storey sway frame2.l,l0? latEral support, =,vBrtj,cd bfacingbetween tws Dolur.TflS' .of : the longitr.roiRal: fram,E

    wlnd sucti0nlnd pressure

  • 7/29/2019 Transverse Frame Analysis

    2/6

    3. LOADS" LOAD FACTORS, LOAD COMBINATIONS

    Earthquake (|Jormativ P 1 00-92)Sersmrc Force :

    LoadsNominalLoadIrN/m2]

    FactorofSafety

    FactoredLoadtKN/m1

    DeadLoads(P)

    + Roofweight:.....-hy dro-insulation (tar roofi ng)-thermal insulation (mineral wool)-corrugated sheet4 Purlin weight:* Truss weisht:.

    0.45...0.50

    0.10...0.150.15

    1.35

    1.351.35

    PermanentLoads(c)+ Industrial dust:....Technological Ioad 0.250.20 1.351.35

    VariableLoads(V)(environmentalioads)

    Snow: :CeXCtX|lXwhere:Ss1 : grourrd snow load (as is shown inground snow load map)ce: exposure factor (to account for windeffects); c": 1.00 fornormal conditionsof exposure.ct: therml factor; ct: 1.00

    Wind pr=C"xCnxEref- Pressure cofficientscn: * 0'8 wind Pressure

    c o: - 0.3 wind suction- Velocity pressure exposure cofficienlc-: iosk m ljI_Q_E2-04;- .4*: the basic wind veiocity pressure(to 10m above the ground), see theproject data.

    1.s0

    1.50

    G is the total weight of building as follows :

  • 7/29/2019 Transverse Frame Analysis

    3/6

    . dead loads. pefinanenl ioadso snow (y "*pr);I| (nomrnalloads)y ":0.40 )F, *a,Cr=d q (global seismic factor)

    a =7.0O is the Importance factor.for normal buildings;a r ts tl;re grormd acceleration according to seismic risk zones (on the map);

    rr:o2\ dno ts l':''oA 1 UNtrno: "-. _ : rrr {ClTl l. JEI

    .t'l

    .i...rr:, .$e,,11,'. ' I r

    li-l- . : l /. lr.4i-?,l/ :rnl$: ./$)d; =" dns

    F,=2.75 if T"

  • 7/29/2019 Transverse Frame Analysis

    4/6

    Blmlum:?)',1,,',,,,,,:::-:,1,,,'l.,.,'l',,1" ", "

    A;n(,fcr

    t:: .1..:.:::::t:l:rI

    Of^,=C'xA,-\L ) UJJ .Oi-r=Cn xA.-tg/4x

    = p* xt -+ p", = p, *y,= P. xt + p: = P,xTp

    Snow (Z) :Z" = Tp x pzxAq, tKN]Z" =T,x P,xAor. tKN]4. Wind (W) :

    = 1.60 x 0.80 x c r(z)x g,=1.60x0.40 xcr(z)x g*

    tKN]tKN]

    OroctI

    P,p;

    4p; IKN/ml;IKN/ml;

    DETERMINATION OF THE LOADS AND MOMENT DISTRIBUTION''.i. Permanent (P): ", : :: ,, :Q(rl = P" x Aou. tKNlQ(rl= r" xAor tKNlt4of : t x L / 2

    2. Cvasipermanent (C) :

    L, I:nIIQ\Imz I pressure[KNlmz ] suction

    W = pr,ou"rog, x1.35x t -+W" =W xTp tKN]W'= p'r,*"*snxl.35x t -+W" -W'xTp IKN]

  • 7/29/2019 Transverse Frame Analysis

    5/6

    Calculation of bending moment distribution

    This frame is indeterminate to thefirst degree; it is a sidesway frame(oint translation is possible).

    sep 2Moment induceddue to jointtrenslation

    HHHHEHHHF;

    step 1Moment inducedif sidesway isprevented

    M'r= rt"+h2M''= Pt"'"i

    DM'= Lx h2

    5. Seismic Force (S) :

    a_a_R=W" +W'" +r-x p:" x& + i, p''. *h

    -> WWMlffi^ = M'n+.

    M =!^h2

    Mr (

  • 7/29/2019 Transverse Frame Analysis

    6/6

    Results of calculation:After finishing all the calculations, the results will be centraltzedin the follor,ving table forboth sections 1 -1 and 2 - 2 of the column.

    (The nominal load for snow is considered for the earthquake combination - 0.30 x p,)

    Columnsketch Section EffortsPermanent Loads(Pr) QuasipermanentLoads (Cr) Snow(z)

    Factored Nominal Factored Nominal Factored Nominal0 I 2 J 4 5 6 7 8

    l-1M&Nm)N

    ftN)T(kN)

    aaM(kNm)NftN)T&N)

    Wind(w) Eartquake(s) Relevant Load CombinationsI n.lx Pi+ I nix C;* nex I nix Vi3 5 7+9 I P1+ I Ci+ y"xZ + S46810Factored S=crxG M-u*N"^, N-u*M"^. M-"*N-io M-u"N"o. N-oM"^" M*ur.N-;.

    9 i0 l1 I2 l3 l4 15 76