34
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1. Magneto-fingerprint in Ca-doped Bi2Se3 2. Tuning chemical potential in Bi2Se3 by gate voltage 3. Transport in non-metallic Bi2Te3 November 19, 2009 Exotic Insulator conf. JHU Jan 14-16, Supported by NSF DMR 0819860

Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Embed Size (px)

Citation preview

Page 1: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Transport experiments on topological insulators

J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO

1. Magneto-fingerprint in Ca-doped Bi2Se3

2. Tuning chemical potential in Bi2Se3 by gate voltage

3. Transport in non-metallic Bi2Te3

November 19, 2009 Exotic Insulator conf. JHU Jan 14-16, 2010Supported by NSF DMR 0819860

Page 2: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Quantum oscillations of Nernst in metallic Bi2Se3

Problem confronting transport investigationAs-grown xtals are always excellent conductors,lies in conduction band (Se vacancies).

(1 K) ~ 0.1-0.5 mcm, n ~ 1 x 1018 cm-3

m* ~ 0.2, kF ~ 0.1 Å-1

Page 3: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Resistivity vs. Temperature : In and out of the gap

Onset of non-metallic behavior ~ 130 K

SdH oscillations seen in both n-type and p-type samples

Non-metallic samples show no discernable SdH

Checkelsky et al., PRL ‘09

Page 4: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Metallic vs. Non-Metallic Samples: R(H)

Metallic samples display positive MR and detectable SdH oscillations

R(H) profile changes below T onset of non-metallic behaviorLow H feature develops below 50 K

Page 5: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Low H behavior

At lower T, low H peak in G(H) becomes more prominent

Consistent with sign for anti-localization

Page 6: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Non-Metallic Samples in High Field

Fluctuation does not change character significantly in enhanced field

Still no SdH oscillations

Page 7: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Magnetoresistance of gapped Bi2Se3

Logarithmicanomaly

Conductancefluctuations

Giant, quasi-periodic, retraceable conductance fluctuations

Checkelsky et al., PRL ‘09

Page 8: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Magneto-fingerprints

Giant amplitude(200-500 X too large)

Retraceable(fingerprints)

Spin degreesInvolved in fluctuations

Fluctuations retraceableCheckelsky et al., PRL ‘09

Page 9: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Quasi-periodic fluctuations

Background removed with T = 10 K trace (checked with smoothing)

Autocorrelation C should polynomial decrease for UCF yielding

If interpreted as Aharonov-Bohm effect, Fourier components yield

Page 10: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Table of parameters non-metallic Bi2Se3

Signal appears to scale with G but not n

Possibly related to defects that cause conductance channels

Thickness dependence obscured by doping changes?

Checkelsky et al., PRL ‘09

Page 11: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Angular Dependence of R(H) profile Cont.

For δG, 29% spin term

For ln H, 39% spin term (~200 e2/h total)

Theory predicts both to be ~ 1/2π

(Lee & Ramakrishnan), (Hikami, Larkin, Nagaoka)

Checkelsky et al., PRL ‘09

Page 12: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Quasi-periodic fluctuations vs T

Fluctuation falls off quickly with temperature

For UCF, expect slow power law decay ~T-1/4 or T-1/2

AB, AAS effect exponential in LT/P

Doesn’t match!

Page 13: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Features of anomalous magneto-fingerprint

1. Observed in mm-sized xtals – not UCF

2. RMS value very large 1-10 e2/h

3. Modulated by in-plane (spin degrees play role)

4. T dependence steeper than UCF

Page 14: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Fabry-Perot resonances produce cond. oscillationsof amplitude 5-10 e2/h

Young & Kim, Nat. Phys 2008

Page 15: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

50 100 150 200 250 3000.0

5.0

10.0

15.0

20.0

25.0Q4

Q0

T1Q1

Q2

xx (

m

cm)

T (K)

Non-metallic samplesBi2Te3 Bi2Se3

Bismuth Telluride

-10 -5 0 5 100.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T5

T13

T16 n=1x1019 Q0

T15 n=2.7x1018 T10 p=4.4x1018

T9 ACP15 Bi2Te

3

p=5.4x1018

1/B

(T

-1)

Landau Level Index n

Page 16: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

0

1

2-10 -5 0 5 10

-10 -5 0 5 100

1

2

3

(H

)/(

0)-1

0.3 K0.9 K1.8 K

5 K10 K20 K

Sample Q0

20 K10 K

5 K1.8 K0.9 K0.3 K

(

H)/(

0)-1

0H (T)

Metallic Sample

0H (T)

Page 17: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

-12 -8 -4 0 4 8 12

Samle Q0

dxx/d

H

20 K

5 K

0.3 K

0H (T)

Page 18: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

-10 -5 0 5 10-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10 K

10 K

5 K

5 K

1 K

1.9 K

1.9 K

0.3 K

0.3 K1 K

Q0

H in the Plane

H Vertical to the Plane

(H

)/(

0)-1

0H (T)

Page 19: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Tuning the Chemical Potential by Gate Voltage

Page 20: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Cleaved Crystals

2 µm

28 Ǻ

Page 21: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Electric field effectEstim. -300 to -200 V

to reach Dirac pointNo bulk LL because of

surface scattering?

(a)

Tune carrier density with Gate Voltage

Few Layer Graphene

Novoselov Science ‘04

Graphene Bi2Se3

Page 22: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Hall effect vs Gate Voltage

Electron doped sample Mobility decreases towards gap

DoS

Energy

Page 23: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Gating approach to Topological Insulators

Flat band case

Negative gate bias

In thin sample, moves inside gap

d

Conducting surface states?

VB

CB

gap

Ef

Chemical potentialIn the cond. band

Ef

gap

Au

-eVg

Page 24: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Gating thin crystal of Bi2Se3 into gap (d ~ 20 nm)

Hall changes sign!Metallic surface state

CB edge? CB edge?

Checkelsky et al. unpub

Vg = 0-170

CBVB

E

Page 25: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Systematic changes in MR profile in gap region of Bi2Se3

Page 26: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Helicity and large spin-orbit coupling

• Spin-orbit interaction and surface E field effectv B = v E in rest frame

• spin locked to B

• Rashba-like Hamiltonian

Like LH and RH neutrinos indifferent universes

vE

B

vE

B

spin aligned with B inrest frame of moving electron

s

s

k

k

Helical, massless Dirac states with opposite chirality on opp.surfaces of crystal

skn̂ FvH

Page 27: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

END

Page 28: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

ARPES results on Bi2Se3 (Hasan group)

Se defect chemistry difficult to control for small DOS

Xia, Hasan et al. Nature Phys ‘09

Large gap ~ 300meV

As grown, Fermi level in conduction band

Bulkstates

Page 29: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Band bending induced by Gate Voltage (MOSFETs)

b

F

n-type

gapb

F

p-type

gap

Inversion layer

Not applicable to topological insulator gating expt.

Page 30: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Gate tuning of 2-probe resistance in Bi2Se3

DoS

Energy

Conductance from surface states?Strong H dependence

Page 31: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Conductance -- sum over Feynman paths

ji

i

jii

iji

jijieAAAAAG

,

)(

,

* ||||2

Universal conductance fluctuations (UCF)

G = e2/h

Universal Conductance Fluctuations

in a coherent volume defined by thermal length LT = hD/kT

At 1 K, LT ~ 1 m

For large samples size L, 212 /

L

L

h

eG T

H

LT

Stone, Lee, Fukuyama (PRB 1987)

LT

L = 2 mm“Central-limit theorem”

UCF should be unobservable in a 2-mm crystal!

Quantum diffusion

our xtal

Page 32: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

Into the gap

Decreaseelectron density

Solution:Tune by Ca doping

cond. band

valence band

electrondoped

holedoped

targetHor et al., PRB ‘09Checkelsky et al., PRL ‘09

Page 33: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

-10 -5 0 5 100.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T5

T13

T16 n=1x1019 Q0

T15 n=2.7x1018 T10 p=4.4x1018

T9 ACP15 Bi2Te

3

p=5.4x1018

1/B

(T

-1)

Landau Level Index n

Page 34: Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.53.5

4.0

20 K

Sample T3

10 K

5 K

3 K

1.8 K

1 K

0.5 K0.3 K

xx (

m

cm)

0H (T)