15
5STF 07D1414 TS - TR/230/07b Feb-14 1 of 15 5STF 07D1414 Old part no. TR 907F-740-14 Medium Frequency Thyristor Properties Key Parameters Amplifying gate V DRM , V RRM = 1 400 V High operational capability I TAV = 736 A Optimized turn-on and turn-off parameters I TSM = 12.0 kA High operating frequency V TO = 1.683 V Applications r T = 0.274 m Power switching applications t q = 12.5 μs Types V RRM , V DRM 5STF 07D1414 5STF 07D1214 1 400 V 1 200 V Conditions: T j = -40 ÷ 125 °C, half sine waveform, f = 50 Hz, note 1 Mechanical Data F m Mounting force 10 ± 2 kN m Weight 0.26 kg D S Surface creepage distance 25 mm D a Air strike distance 14 mm Fig. 1 Case ABB s.r.o. Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic tel.: +420 261 306 250, http://www.abb.com/semiconductors

TR 907F-740-14 - MilimSyscon · 2017. 7. 14. · dv dt t t T t t t t T q q D q q j q q q q 1 1 1 1 where: t q1 is turn-off time at standard conditions, see section "Characteristics"

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 5STF 07D1414

    TS - TR/230/07b Feb-14 1 of 15

    5STF 07D1414 Old part no. TR 907F-740-14

    Medium Frequency Thyristor

    Properties Key Parameters

    Amplifying gate

    VDRM, VRRM = 1 400 V High operational capability ITAV = 736 A Optimized turn-on and turn-off parameters ITSM = 12.0 kA High operating frequency VTO = 1.683 V

    Applications rT = 0.274 m Power switching applications tq = 12.5 µs

    Types

    VRRM, VDRM

    5STF 07D1414

    5STF 07D1214

    1 400 V

    1 200 V

    Conditions:

    Tj = -40 ÷ 125 °C, half sine waveform,

    f = 50 Hz, note 1

    Mechanical Data

    Fm Mounting force 10 ± 2 kN

    m Weight 0.26 kg

    DS Surface creepage distance

    25 mm

    Da Air strike distance

    14 mm

    Fig. 1 Case

    ABB s.r.o.

    Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    tel.: +420 261 306 250, http://www.abb.com/semiconductors

    http://www.abb.com/semiconductors

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 2 of 15

    Maximum Ratings Maximum Limits Unit

    VRRM

    VDRM

    Repetitive peak reverse and off-state voltage

    Tj = -40 125 °C, note 1

    5STF 07D1414

    5STF 07D1214

    1 400

    1 200

    V

    ITRMS RMS on-state current

    Tc = 70 °C, half sine waveform, f = 50 Hz

    1 156 A

    ITAVm Average on-state current

    Tc = 70 °C, half sine waveform, f = 50 Hz

    736 A

    ITSM Peak non-repetitive surge

    half sine pulse, VR = 0 V

    tp = 10 ms

    tp = 8.3 ms

    12 000

    12 800

    A

    I2t Limiting load integral

    half sine pulse, VR = 0 V

    tp = 10 ms

    tp = 8.3 ms

    720 000

    682 000

    A2s

    (diT/dt)cr Critical rate of rise of on-state current

    IT = ITAVm, half sine waveform, f = 50 Hz,

    VD = 2/3 VDRM, tr = 0.3 µs, IGT = 2 A

    800 A/µs

    (dvD/dt)cr Critical rate of rise of off-state voltage

    VD = 2/3 VDRM

    1 000 V/µs

    PGAVm Maximum average gate power losses 3 W

    IFGM Peak gate current 10 A

    VFGM Peak gate voltage 12 V

    VRGM Reverse peak gate voltage 10 V

    Tjmin - Tjmax Operating temperature range -40 ÷ 125 °C

    Tstgmin -Tstgmax

    Storage temperature range -40 ÷ 125 °C

    Unless otherwise specified Tj = 125 °C

    Note 1: De-rating factor of 0.13% VRRM or VDRM per °C is applicable for Tj below 25 °C

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 3 of 15

    Characteristics Value Unit

    min. typ. max.

    VTM Maximum peak on-state voltage

    ITM = 1 500 A

    2.100

    V

    VT0 Threshold voltage 1.683 V

    rT Slope resistance

    IT1 = 1 162 A, IT2 = 3 487 A

    0.274 m

    IDM Peak off-state current

    VD = VDRM

    70 mA

    IRM Peak reverse current

    VR = VRRM

    70 mA

    tgd Delay time

    Tj = 25 °C, VD = 0.4 VDRM, ITM = ITAVm,

    tr = 0.3 µs, IGT = 2 A

    2.0 µs

    tq1 Turn-off time

    IT = 500 A, diT/dt = -50 A/µs, VR = 100 V, VD = 2/3 VDRM,

    dvD/dt = 50 V/µs

    12.5

    µs

    Qrr Recovery charge

    the same conditions as at tq1

    160 µC

    IrrM Reverse recovery current

    the same conditions as at tq1

    100 A

    IH Holding current Tj = 25 °C

    Tj = 125 °C

    250

    150

    mA

    IL Latching current Tj = 25 °C

    Tj = 125 °C

    1 500

    1 000

    mA

    VGT Gate trigger voltage

    VD = 12V, IT = 4 A

    Tj = - 40 °C

    Tj = 25 °C

    Tj = 125 °C

    0.25

    4

    3

    2

    V

    IGT

    Gate trigger current

    VD = 12V, IT = 4 A

    Tj = - 40 °C

    Tj = 25 °C

    Tj = 125 °C

    10

    1000

    500

    300

    mA

    Unless otherwise specified Tj = 125 °C

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 4 of 15

    Thermal Parameters Value Unit

    Rthjc Thermal resistance junction to case

    double side cooling

    32.0 K/kW

    anode side cooling 52.0

    cathode side cooling 83.0

    Rthch Thermal resistance case to heatsink

    double side cooling

    10.0 K/kW

    single side cooling 20.0

    Transient Thermal Impedance

    Analytical function for transient thermal impedance

    5

    1

    ))/exp(1(

    i

    iithjc tRZ

    Conditions:

    Fm = 10 ± 2 kN, Double side cooled

    Correction for periodic waveforms

    180° sine: add 2.3 K/kW

    180° rectangular: add 3.1 K/kW

    120° rectangular: add 5.2 K/kW

    60° rectangular: add 8.7 K/kW

    i 1 2 3 4 5

    i ( s ) 0.4857 0.2162 0.0762 0.0043 0.0006

    Ri( K/kW ) 13.07 8.03 8.20 2.57 0.13

    0

    5

    10

    15

    20

    25

    30

    35

    0.001 0.01 0.1 1 10

    Square wave pulse duration t d ( s )

    Tra

    nsie

    nt

    therm

    al im

    ped

    an

    ce ju

    ncti

    on

    to c

    ase Z

    thjc (

    K/k

    W )

    Fig. 2 Dependence transient thermal impedance junction

    to case on square pulse

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 5 of 15

    On-State Characteristics

    0

    1000

    2000

    3000

    4000

    5000

    0 1 2 3 4V T ( V )

    I T (

    A )

    125 °CT j = 25 °C

    Fig. 3 Maximum on-state characteristics

    Gate Trigger Characteristics

    0

    1

    2

    3

    4

    5

    6

    0 0.2 0.4 0.6 0.8 1I G ( A )

    VG (

    V )

    +125 °C

    +25 °C

    -40 °C

    I GTmin

    VG

    Tm

    in

    DC

    0

    2

    4

    6

    8

    10

    12

    14

    0 2 4 6 8 10 12I G ( A )

    VG

    ( V

    )

    DC

    10 ms

    1 ms

    50 µs

    V GTmax

    I GTmax

    Fig. 4 Gate trigger characteristics Fig. 5 Maximum peak gate power loss

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 6 of 15

    Surge Characteristics

    0

    5

    10

    15

    20

    25

    30

    1 10 100t ( ms )

    I TS

    M (

    kA

    )

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    i2

    dt (

    10

    6 A

    2s)

    I TSM

    i 2 dt

    0

    2

    4

    6

    8

    10

    12

    14

    1 10 100

    Number n of cycles at 50 Hz

    I TS

    M (

    kA

    )

    V R = 0 V

    V R £ 0.5 V DRM

    Fig. 6 Surge on-state current vs. pulse length,

    half sine wave, single pulse,

    VR = 0 V, Tj = Tjmax

    Fig. 7 Surge on-state current vs. number

    of pulses, half sine wave, Tj = Tjmax

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 7 of 15

    Power Loss and Maximum Case Temperature Characteristics

    0

    500

    1000

    1500

    0 200 400 600 800I TAV ( A )

    PT (

    W ) y = 30° 60° 90° 120°

    180°

    DC

    0

    500

    1000

    1500

    0 200 400 600 800

    I TAV ( A )

    PT

    ( W

    ) y = 30° 60° 90° 120°

    180°

    270°

    DC

    Fig. 8 On-state power loss vs. average on-state

    current, sine waveform, f = 50 Hz, T = 1/f

    Fig. 9 On-state power loss vs. average on-state

    current, square waveform, f = 50 Hz, T = 1/f

    60

    70

    80

    90

    100

    110

    120

    130

    0 200 400 600 800

    I TAV ( A )

    TC

    ( °

    C )

    180° 60° 90° 120° y = 30°

    DC

    60

    70

    80

    90

    100

    110

    120

    130

    0 200 400 600 800I TAV ( A )

    TC

    ( °

    C )

    180°

    DC

    270°

    120° 90° 60° y = 30°

    Fig. 10 Max. case temperature vs. aver. on-state

    current, sine waveform, f = 50 Hz, T = 1/f

    Fig. 11 Max. case temperature vs. aver. on-state

    current, square waveform, f = 50 Hz, T = 1/f

    Note 2: Figures number 8 11 have been calculated without considering any turn-on and turn-off losses.

    They are valid for f = 50 or 60 Hz operation.

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 8 of 15

    Turn-off Time, Parameter Relationship

    Maximum values of turn-off time at application

    specific conditions are given by using this formula:

    )/()/()( dtdit

    tdtdv

    t

    tT

    t

    ttt T

    q

    qD

    q

    qj

    q

    qqq

    1111

    where:

    1qt is turn-off time at standard conditions,

    see section "Characteristics"

    )( jq

    qT

    t

    t

    1

    is factor to be taken from fig. 12

    )/( dtdvt

    tD

    q

    q

    1

    is factor to be taken from fig. 13

    )/( dtdit

    tT

    q

    q

    1

    is factor to be taken from fig. 14

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    25 50 75 100 125T j ( °C )

    t q /

    tq

    1 (

    - )

    Fig. 12 Normalised maximum turn-off time

    vs. junction temperature

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    1.50

    0 200 400 600 800 1000dv D /dt ( V/µs )

    t q /

    tq

    1 (

    - )

    0.80

    1.00

    1.20

    1.40

    1.60

    0 200 400 600 800 1000- di T /dt ( A/µs )

    t q /

    tq

    1 (

    - )

    Fig. 13 Normalised maximum turn-off time

    vs. rate of rise of off-state voltage

    Fig. 14 Normalised maximum turn-off time

    vs. rate of fall of on-state current

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 9 of 15

    Turn-on Characteristics

    0

    6000

    10 30t

    i G (

    t), v

    T (t)

    , i

    T (t)

    0

    2500

    di T /dt

    t gd

    v T (t)

    i T (t)

    I TM

    0.5 I TM

    0.1 I TM

    V D

    0.9 V D

    i G (t) 0.1 V D

    t gt t d

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 200 400 600 800 1000di T /dt ( A/µs )

    Wo

    n ( J

    )

    Fig. 15 Typical waveforms and definition of symbols

    at turn-on of a thyristor

    Fig. 16 Maximum turn-on energy per pulse vs.

    rate of rise on-state current, Tj = Tjmax

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 10 of 15

    Turn-off Characteristics

    -600

    10

    t

    vT

    (t)

    , i

    T (t)

    -600

    - di T /dt

    t q

    v T (t)

    i T (t)

    I rrM V R

    Q rr

    I TM

    V D

    dv D /dt

    10

    100

    1000

    10000

    10 100 1000- di T /dt ( A/µs )

    Qrr

    ( µ

    C )

    I TM = 2000 A1000 A

    500 A

    Fig. 17 Typical waveforms and definition of symbols

    at turn-off of a thyristor, inductive switching

    without RC snubber

    Fig. 18 Max. recovered charge vs. rate of fall

    on-state current, trapezoid pulse,

    VR = 100 V, Tj = Tjmax

    10

    100

    1000

    10 100 1000- di T /dt ( A/µs )

    I rrM

    ( A

    )

    I TM = 2000 A

    1000 A

    500 A

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 200 400 600 800 1000- di T /dt ( A/µs )

    Wo

    ff ( J

    )

    V R = 2/3 V DRM

    500 V

    200 V

    100 V

    Fig. 19 Max. reverse recovery current vs.

    rate of fall on-state current, trapezoid pulse,

    VR = 100 V, Tj = Tjmax

    Fig. 20 Maximum turn-off energy per pulse vs.

    rate of fall on-state current, trapezoid pulse,

    inductive switching without RC snubber,

    ITM = 2 000 A, Tj = Tjmax

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 11 of 15

    Frequency Ratings

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 21 Average on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 100 A/µs, VR = 100 V

    Fig. 22 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 100 A/µs, VR = 100 V

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 23 Average on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 100 A/µs, VR = 2/3 VDRM

    Fig. 24 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 100 A/µs, VR = 2/3 VDRM

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 12 of 15

    Frequency Ratings

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 25 Average on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 500 A/µs, VR = 100 V

    Fig. 26 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 500 A/µs, VR = 100 V

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 27 Average on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 500 A/µs, VR = 2/3 VDRM

    Fig. 28 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 70 °C,

    diT/dt = 500 A/µs, VR = 2/3 VDRM

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 13 of 15

    Frequency Ratings

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 29 Average on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 100 A/µs, VR = 100 V

    Fig. 30 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 100 A/µs, VR = 100 V

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 31 Average on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 100 A/µs, VR = 2/3 VDRM

    Fig. 32 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 100 A/µs, VR = 2/3 VDRM

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 14 of 15

    Frequency Ratings

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 33 Average on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 500 A/µs, VR = 100 V

    Fig. 34 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 500 A/µs, VR = 100 V

    0

    200

    400

    600

    800

    1000

    10 100 1000 10000

    f ( Hz )

    I TA

    V (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    0

    1000

    2000

    3000

    4000

    5000

    6000

    10 100 1000 10000

    f ( Hz )

    I TM (

    A )

    180°

    270°

    120°

    90°

    60°

    y = 30°

    Fig. 35 Average on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 500 A/µs, VR = 2/3 VDRM

    Fig. 36 Maximum on-state current vs. frequency,

    trapezoid waveform, TC = 90 °C,

    diT/dt = 500 A/µs, VR = 2/3 VDRM

  • 5STF 07D1414

    ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic

    ABB s.r.o. reserves the right to change the data contained herein at any time without notice

    TS - TR/230/07b Feb-14 15 of 15

    Notes: