39
Technical Report Title: Oriented Core Logging of DGR-5 and DGR-6 Document ID: TR-09-09 Authors: Steve Gaines, Kenneth Raven and Michael Melaney Revision: 0 Date: April 8, 2011 DGR Site Characterization Document Geofirma Engineering Project 08-200

TR 09 09 Oriented Core Logging of DGR 5 6 R0

Embed Size (px)

DESCRIPTION

Core Orientation Methods

Citation preview

Page 1: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report Title: Oriented Core Logging of DGR-5 and

DGR-6 Document ID: TR-09-09 Authors: Steve Gaines, Kenneth Raven and

Michael Melaney Revision: 0 Date: April 8, 2011

DGR Site Characterization Document Geofirma Engineering Project 08-200

Page 2: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 ii

Geofirma Engineering DGR Site Characterization Document

Title: Oriented Core Logging of DGR-5 and DGR-6

Document ID: TR-09-09

Revision Number: 0 Date: April 8, 2011

Authors: Steve Gaines, Kenneth Raven and Michael Melaney

Technical Review: Kenneth Raven, Dougal McCreath (Laurentian University), Branko Semec (NWMO)

QA Review: John Avis

Approved by:

Kenneth Raven

Document Revision History

Revision Effective Date Description of Changes

0 April 8, 2011 Initial Release

Page 3: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 iii

TABLE OF CONTENTS

1  INTRODUCTION ................................................................................................................. 1 

2  BACKGROUND ................................................................................................................... 1 

3  DRILLING AND CORE LOGGING OVERVIEW .................................................................. 3 3.1 Field Core Logging and Processing .............................................................................. 3 3.2 Borehole Orientation ..................................................................................................... 6 

4  RESULTS AND CONCLUSIONS ........................................................................................ 6 4.1 Field Core Logging ........................................................................................................ 8 4.2 Acoustic Televiewer Fracture Logging .......................................................................... 9 4.3 Fracture Analysis ......................................................................................................... 10 

4.3.1  MS Unit 2: Upper and Middle Silurian Shales, Dolostones and Anhydrites ...... 10 4.3.2  MS Unit 3: Lower Silurian and Upper Ordovician Shales and Dolostones ........ 11 4.3.3  MS Unit 4: Middle Ordovician Cobourg Formation ............................................ 12 4.3.4  MS Unit 5: Middle Ordovician Sherman Fall and Deeper Formations ............... 13 

5  DATA QUALITY AND USE ............................................................................................... 13 5.1 Comparison with Hatch Mott MacDonald On-Site Core Logging ................................. 14 5.2 Comparison with ATV Logging .................................................................................... 15 

6  CONCLUSIONS ................................................................................................................ 16 

7  REFERENCES .................................................................................................................. 17 

LIST OF FIGURES

Figure 1  Location of DGR Boreholes and US-8 at the Bruce Nuclear Site .................................................... 2 Figure 2  Bedrock Stratigraphic Column at the Bruce Site from DGR-5 and DGR-6 Data ............................. 4 Figure 3  Borehole Fracture Orientation Parameters ...................................................................................... 5 Figure 4  Reference Stratigraphic Column Showing Mechano-Stratigraphic Units at the Bruce Nuclear

Site. ................................................................................................................................................... 7 Figure 5  Bedding Fracture in DGR-6 at 504.93 mLBGS with Halite Infilling (MS Unit 3, Manitoulin

Formation) ........................................................................................................................................ 8 Figure 6  Inclined Fracture in DGR-5 at 676.18 mLBGS (MS Unit 3, Blue Mountain Formation). Note the

Apparent Offset Along the Fracture is Not True and is Due to Misalignment of the Core Pieces ... 9 Figure 7  Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in MS Unit 2. 10 Figure 8  Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in MS Unit 3. 11 Figure 9  Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in MS Unit 4. 12 Figure 10  Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in MS Unit 5. 13 Figure 11  Contoured Equal Area Polar Plot of Inclined Fractures Identified in ATV Structural Logging from

DGR-5 and DGR-6 in MS Unit 2. ................................................................................................... 15 Figure 12  Contoured Equal Area Polar Plot of Fractures Identified in ATV Structural Logging from DGR-5

and DGR-6 in MS Unit 3. ................................................................................................................ 16 

Page 4: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 iv

LIST OF TABLES

Table 1 Summary of Natural Fractures in DGR-5 and DGR-6 Based on Core Logging ............................... 8 Table 2 Summary of Natural Fractures in DGR-5 and DGR-6 Based on ATV Fracture Logging ................. 9 Table 3 Natural Fracture Set Orientations in MS Unit 2 .............................................................................. 11 Table 4 Natural Fracture Set Orientations in MS Unit 3 .............................................................................. 12 Table 5 Natural Fracture Set Orientations in MS Unit 4 .............................................................................. 12 Table 6 Natural Fracture Set Orientations in MS Unit 5 .............................................................................. 13 Table 7 On-Site Core Logging Comparison ................................................................................................ 14 

LIST OF APPENDICES

APPENDIX A Summary of Oriented Fracture Logging APPENDIX B Sample Fracture Photographs APPENDIX C Polar Plots (Core Logging)

Page 5: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 1

1 Introduction

Geofirma Engineering Ltd. (formerly Intera Engineering Ltd.) has been contracted by the Nuclear Waste Management Organization (NWMO), on behalf of Ontario Power Generation, to implement the Geoscientific Site Characterization Plan (GSCP) for the Bruce nuclear site located near Tiverton, Ontario. The purpose of this site characterization work is to assess the suitability of the Bruce nuclear site to construct a Deep Geologic Repository (DGR) to store low-level and intermediate-level radioactive waste. The GSCP is described by Intera Engineering Ltd. (2006, 2008).

This Technical Report summarizes and presents the results of oriented core logging completed at two deep inclined bedrock boreholes (DGR-5 and DGR-6) as part of Phase 2B of the GSCP.

Work described in this Technical Report was completed in accordance with Test Plan TP-08-20 – DGR-5 and DGR-6 Drilling and Casing Installation (Intera Engineering Ltd., 2010a), Test Plan TP-09-01 – DGR-5 and DGR-6 Core Photography and Logging (Intera Engineering Ltd., 2009a), and Test Plan TP-09-11 – DGR-5 and DGR-6 Borehole Geophysical Logging (Intera Engineering Ltd., 2010b).

Work described in this Technical Report was completed following the general requirements of the DGR Project Quality Plan (Intera Engineering Ltd., 2009b).

2 Background

The GSCP comprises three phases of borehole drilling and investigations. The Phase 1 GSCP is described by Intera Engineering Ltd. (2006) and included the drilling, logging and testing of two deep vertical 159 mm diameter boreholes (DGR-1 and DGR-2) to total depths of 462.9 and 862.3 metres below ground surface (mBGS) respectively, and the drilling and testing of one shallow borehole, US-8, to a total depth of 200 mBGS. Both of these deep boreholes were drilled at one location (Drill Site # 1), approximately 40 metres apart from each other. The shallow borehole (US-8) was drilled at a second location (Drill Site # 2); both drill sites are located at the Bruce nuclear site as shown on Figure 1. Phase 1 drilling and testing was completed between December 2006 and December 2007.

The Phase 2 GSCP is described by Intera Engineering Ltd. (2008). Phase 2 is divided into two sub-phases, 2A and 2B. Phase 2A consisted of drilling, logging and testing of two deep vertical 143 mm diameter boreholes, DGR-3 (Drill Site #2) and DGR-4 (Drill Site #3) to total depths of 869.2 and 857.0 mBGS, respectively. Phase 2A was completed between March 2008 and September 2009. Phase 2B comprised the drilling, logging and testing of two deep inclined 143 mm diameter boreholes, DGR-5 (Drill Site #1) and DGR-6 (Drill Site #4). The Phase 2B drilling and core logging activities are described below. Phase 2B work was completed between December 2008 and June 2010.

The purpose of drilling DGR-5 and DGR-6 was to:

• complement the information that was collected from DGR-1 to DGR-4,

• confirm the predictability of the strike/dip of strata around and below the proposed DGR location,

• provide information on inclined or sub-vertical fracture networks (fracture orientation, spacing, roughness and infilling characteristics), and

• to further investigate specific areas identified during the 2-D seismic study (TR-07-15, Intera Engineering Ltd., 2009c) showing seismic anomalies.

Page 6: TR 09 09 Oriented Core Logging of DGR 5 6 R0

&< &<

&<

+U

&<

&<

&<

ç

Core Storage Facility

DGR-2

DGR-1

çDrill Site #1

çDrill Site #2

ç

Drill Site #3

çDrill Site #4

DGR-4

DGR-6

DGR-3US-8

DGR-5

0 200 400 600 800100Meters

1:15,000Scale

PROJECT No. 08-200 TR-09-09

PROJECTION: UTM NAD 83 Zone 17NSOURCE: NRVIS/OBM, MNR, OPG, NWMO

DESIGN: NMPCAD/GIS: NMPCHECK: GDBREV: 0

Figure 1Location of DGR

Boreholes and US-8 at the Bruce Nuclear Site

PROJECT NWMO DGR Site Characterization Project

LEGEND

³

Pits or Landfills

Wetland Area, Permanent

Waterbody

Buildings

Stream or DrainageRoadsTransmission Line

+U US Well

Railways

L a k e H u r o n

Drilling Direction

Drill Sites

+U DGR Boreholes

Proposed Repository Outline

P:\QMS_DGR\TR_WorkingFiles\TR-09-09_Oriented Fracture Logging of DGR-5 and DGR-6 Core\Figures\TR-09-09_SiteLocationDGR1-6_R0.mxd

DATE: 08/04/2011

Page 7: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 3

Therefore, similar to Phase 1 and Phase 2A, drilling at DGR-5 and DGR-6 provided additional information on bedrock stratigraphy, core for additional laboratory, geological, geomechanical, hydrogeological and geochemical testing, and access for borehole geophysical testing and borehole hydraulic testing and possible future multi-level sampling, monitoring and testing. The information gathered from DGR-5 and DGR-6 will assist with developing descriptive geosphere models of the Bruce nuclear site.

3 Drilling and Core Logging Overview

The Phase 2B drilling program took into account the geological and hydrogeological conditions encountered during Phase 1 and Phase 2A drilling of DGR-1 through DGR-4. DGR-5 and DGR-6 were designed to provide two separate boreholes on either side of the proposed DGR with open bedrock intervals from Silurian dolostones and shales through the deeper Ordovician shales and limestones. The borehole stratigraphy, based on DGR-5 and DGR-6, is presented in Figure 2.

This section provides an overview of the drilling program at DGR-5 and DGR-6 and includes core logging and processing methodology, as well as a summary of borehole orientation data used. A detailed summary of all aspects of the DGR-5 and DGR-6 drilling program is provided in Technical Report, TR-09-01 – Drilling, Logging and Sampling of DGR-5 and DGR-6 (Geofirma Engineering Ltd., 2011a).

3.1 Field Core Logging and Processing

Core logging and processing was completed in accordance with the procedures outlined in Test Plan TP-09-01 – DGR-5 and DGR-6 Core Photography and Logging and is further summarized in TR-09-01 (Geofirma Engineering Ltd., 2011a). Core logging included descriptions of rock lithology, stratigraphy, sedimentological features, structural and discontinuity characteristics as well as any additional relevant observations made by the site geologist.

The primary focus of this Technical Report is to present the structural and discontinuity characteristics, which includes the following information:

• Depth of all natural fractures, which was recorded as metres length along borehole from ground surface (mLBGS);

• Borehole orientation parameters (azimuth and plunge) along the length of each DGR borehole;

• Measurement of apparent dip angle (alpha) and apparent dip direction (beta), with corresponding true dip and true dip directions; and

• Assessment of joint roughness and infilling/staining characteristics.

In the field, the apparent dip angle, alpha, was measured as the angle between the core axis and the maximum dip of the core discontinuity. The apparent dip direction angle, beta, was the angle measured clockwise from the black core reference line to the bottom of the core discontinuity ellipse while looking down the core axis. The black core reference line is the line drawn along the lowest point of the core based on core orientation measurements or alternatively along the top of the bedding plane ellipse (TR-09-01, Geofirma Engineering Ltd, 2011a). The black core reference line is used to define the orientation of the core. The measurements collected for core orientation are illustrated in Figure 3.

The apparent dip and dip directions measured in the field were corrected by incorporating average borehole trend and plunge orientation collected during borehole geophysics or gyro surveys completed by Geofirma staff concurrent with drilling. The true dip and dip direction for a given fracture was determined by entering borehole orientation data into the Rocscience DIPS (Version 5.107) software package, which converts apparent measurements to true fracture orientations.

Page 8: TR 09 09 Oriented Core Logging of DGR 5 6 R0

-499.1

6

20

18

17

16

15F

15G

15E

15C

15B

15A2

15A1

14

13

12

11

10

9

7

15A0

8B

8A

15D

19

~~~~~~~~~~~~~~~~~~~

5

4

-259.1

~~~~~~~~~~~~~~~~~~~

109.6

152.2

61.6

17.48.8

-48.4

-107.9

-182.2-186.1

-245.8

-461.6

-525.5

-496.7

183.5 GS

-416.6

-468.1

-572.3

Ele

va

tio

n (

mA

SL

)

-49.3

-137.4

169.1

LEGEND - BRUCE SITE STRATIGRAPHY

6

155.3

110.7

63.5

11.4

-27.4

-46.7

-60.6

-138.0

-260.5

-224.0

-247.7

-330.9

-419.5

-529.6

185.7 GS

-186.6

-464.6

-500.3

20

18

17

16

15F

15E

15C

15B

15A2

15A1

14

13

12

11

10

9

7

Ele

va

tio

n (

mA

SL

)

-104.6

-47.8

-183.9

165.7

-473.2

15A0

8B

8A

15D

19

-31.2

-82.7

-222.4

-328.4

-594.6

15G

DE

PT

H I

N m

LB

GS

0

50

100

150

200

250

300

350

400

450

550

500

600

650

700

750

850

800

900

950

DGR-5 DGR-6

PLEISTOCENE 20 SURFICIAL DEPOSITS

MIDDLE DEVONIAN 19 LUCAS FORMATION - DOLOSTONE 18 AMHERSTBURG FORMATION - DOLOSTONE LOWER DEVONIAN 17 BOIS BLANC FORMATION - CHERTY DOLOSTONE~~~~~~ SILURIAN / DEVONIAN DISCONTINUITY

UPPER SILURIAN 16 BASS ISLANDS FORMATION - DOLOSTONE 15 SALINA FORMATION 15G G UNIT - ARGILLACEOUS DOLOSTONE 15F F UNIT - DOLOMITIC SHALE 15E E UNIT - BRECCIATED DOLOSTONE AND DOLOMITIC SHALE 15D D UNIT - ANHYDRITIC DOLOSTONE 15C C UNIT - DOLOMITIC SHALE AND SHALE 15B B UNIT - ARGILLACEOUS DOLOSTONE AND ANHYDRITE 15A2 A2 UNIT - DOLOSTONE AND ANHYDRITIC DOLOSTONE 15A1 A1 UNIT - ARGILLACEOUS DOLOSTONE AND ANHYDRITIC DOLOSTONE 15A0 A0 - BITUMINOUS DOLOSTONE

MIDDLE SILURIAN 14 GUELPH, GOAT ISLAND, GASPORT, LIONS HEAD AND FOSSIL HILL FORMATIONS - DOLOSTONE AND DOLOMITIC LIMESTONE

LOWER SILURIAN 13 CABOT HEAD FORMATION - SHALE 12 MANITOULIN FORMATION - CHERTY DOLOSTONE AND MINOR SHALE

UPPER ORDOVICIAN 11 QUEENSTON FORMATION - RED SHALE 10 GEORGIAN BAY FORMATION - GREY SHALE 9 BLUE MOUNTAIN FORMATION - DARK GREY SHALE

MIDDLE ORDOVICIAN 8 COBOURG FORMATION 8B COLLINGWOOD MEMBER - BLACK CALCAREOUS SHALE AND ARGILLACEOUS LIMESTONE 8A LOWER MEMBER - ARGILLACEOUS LIMESTONE 7 SHERMAN FALL FORMATION - ARGILLACEOUS LIMESTONE 6 KIRKFIELD FORMATION - ARGILLACEOUS LIMESTONE 5 COBOCONK FORMATION - BIOTURBATED LIMESTONE 4 GULL RIVER FORMATION - LITHOGRAPHIC LIMESTONE 3 SHADOW LAKE FORMATION - SILTSTONE AND SANDSTONE

CAMBRIAN 2 CAMBRIAN SANDSTONE

NOTE:1. SUBSURFACE STRATIGRAPHIC NOMENCLATURE AFTER ARMSTRONG AND CARTER (2006)

18.9

Prepared by: NMP

Reviewed by: GDB

Date: Apr 7, 2011FIGURE 2 Doc. No.: TR-09-09_Figure 2_R1.cdr

Interpreted Bedrock Stratigraphy at Bruce Site from DGR-5 and DGR-6 Data

TR-09-09 Oriented Core Logging of DGR-5 and DGR-6

Page 9: TR 09 09 Oriented Core Logging of DGR 5 6 R0
Page 10: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 6

3.2 Borehole Orientation

Borehole orientation information was collected at regular intervals to continually monitor borehole azimuth and plunge during drilling operations. In order to convert apparent dip and dip direction into a true dip and dip direction, the borehole orientation parameters collected using the acoustic televiewer and gyroscope were averaged on a per core run basis. Additional description of the instruments used to record borehole azimuth and plunge, as well as the results of the borehole orientation monitoring can be found in TR-09-03 – Borehole Geophysical Logging in DGR-5 and DGR-6 (Geofirma Engineering Ltd., 2011b).

4 Results and Conclusions

Results of the field core logging program are summarized in Tables A.1 and A.2, Appendix A. Information presented in Tables A.1 and A.2, for DGR-5 and DGR-6, respectively include fracture depth, alpha and beta angles measured in the field, average borehole attitude, processed dip and dip direction, as well as qualitative notes regarding joint roughness and infilling characteristics.

The results of oriented core logging and processing have been divided into mechano-stratigraphic (MS) units for the purposes of presenting data and determining average joint set orientation and spacing. Presentation and interpretation based on MS units is an appropriate approach to describing the geomechanical characteristics of the subsurface, that is in accordance with the grouping of formation geomechanical data followed in the Descriptive Geosphere Site Model. The MS units are described detail in the Descriptive Geosphere Site Model (Intera Engineering Ltd., 2011) and presented in Figure 4. The following is a brief description of the MS units, relative depths in DGR-5 and DGR-6, and corresponding horizontal sampling distances:

MS Unit 1: Comprising principally dolostones, this MS unit includes Devonian formations encountered at the Bruce nuclear site, as well as the Upper Silurian Bass Islands Formation and the Salina G Unit dolostone. Since the boreholes were drilled and cased into the Salina F Unit, this MS unit was not cored in DGR-5 or DGR-6.

MS Unit 2: Comprising the sequence of interbedded shales, dolostones and anhydrites, this MS unit includes the Silurian strata from the top of the Salina F Unit to the base of the Fossil Hill Formation. MS-2 lies from 192.5 to 447.8 mLBGS and 203.0 to 467.9 mLBGS in DGR-5 and DGR-6, respectively. The total horizontal sampling distance is 99.8 m in DGR-5, and 128.4 m in DGR-6.

MS Unit 3: Comprising principally the sequence of shales that overlie the repository horizon, this MS unit includes the strata from the top of the Lower Silurian Cabot Head Formation, through all of the Upper Ordovician strata, to the base of the Middle Ordovician Collingwood Member. MS-3 lies from 447.8 to 708.7 mLBGS and 467.9 to 746.1 mLBGS in DGR-5 and DGR-6, respectively. The total horizontal sampling distance is 76.3 m in DGR-5, and 130.6 m in DGR-6.

MS Unit 4: Includes the repository horizon and comprises the Middle Ordovician Cobourg Formation argillaceous limestone. This unit lies between 708.7 to 736.5 mLBGS and 746.1 to 780.2 mLBGS in DGR-5 and DGR-6, respectively. The total horizontal sampling distance is 6.3 m in DGR-5, and 18.6 m in DGR-6.

MS Unit 5: This MS unit consists of all units below the Cobourg Formation, from the Sherman Fall Formation to the Precambrian unit. In DGR-5, this MS unit lies between 736.5 mLBGS to the end of the borehole at 807.2 mLBGS, in the Sherman Fall Formation. In DGR-6, MS-5 ranges from 780.2 mLBGS to 903.2 mLBGS, in the Kirkfield Formation. The total horizontal sampling distance is 15.9 m in DGR-5, and 67.0 m in DGR-6.

Page 11: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 7

Figure 4 Reference Stratigraphic Column Showing Mechano-Stratigraphic Units at the Bruce Nuclear Site.

Page 12: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 8

4.1 Field Core Logging

In total, 153 natural fractures in DGR-5 and 181 natural fractures in DGR-6 were identified based on field core logging. Of these fractures, the majority constitute bedding plane fractures, with the remaining fractures considered to be inclined joints. For the purposes of this report, and in accordance with the approach followed in the Descriptive Geosphere Site Model report, fractures with a true dip of greater than 35 degrees are considered to be inclined fractures. Table 1 summarizes the total number of fractures and number of inclined features recorded during core logging in DGR-5 and DGR-6. Sample photographs of bedding plane fractures and inclined fractures are presented in Figures 5 and 6, respectively. Additional representative fracture photographs are included in Appendix B.

Table 1 Summary of Natural Fractures in DGR-5 and DGR-6 Based on Core Logging

Mechano-Stratigraphic Unit DGR-5 DGR-6

Total # of Fractures

Inclined Fractures 1

Total # of Fractures

Inclined Fractures 1

MS-2 – Upper and Middle Silurian Shales, Dolostones and Anhydrites 90 34 126 39

MS-3 – Lower Silurian and Upper Ordovician Shales and Dolostones 50 30 51 32

MS-4 – Middle Ordovician Cobourg Formation 7 0 0 0

MS-5 – Middle Ordovician Sherman Fall and Deeper Formations 6 0 4 1

Notes: 1 - inclined fractures are considered to have a true dip of greater than 35 degrees.

Figure 5 Bedding Fracture in DGR-6 at 504.93 mLBGS with Halite Infilling (MS Unit 3, Manitoulin

Formation)

Page 13: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 9

Figure 6 Inclined Fracture in DGR-5 at 676.18 mLBGS (MS Unit 3, Blue Mountain Formation). Note the Apparent Offset Along the Fracture is Not True and is Due to Misalignment of the Core Pieces

In DGR-5, 64 of 153 fractures are inclined and in DGR-6, 72 of 181 natural fractures logged have a true dip of greater than 35 degrees. The majority of inclined features were identified in MS Unit 2 and MS Unit 3, from the Salina Formation F Unit to the bottom Collingwood Member of the Cobourg Formation. The shales overlying the repository horizon (MS Unit 3) contained the highest inclined to total fracture ratio. It should be noted that no inclined fractures were recorded in the Cobourg Formation in either DGR-5 or DGR-6. Only one inclined feature, which was a healed fracture in DGR-6, was recorded below the Cobourg Formation. The remaining fractures noted in the Cobourg Formation and below (MS Unit 4 and MS Unit 5) are relatively horizontal and assumed to be fractures along bedding planes or other sedimentological features.

4.2 Acoustic Televiewer Fracture Logging

Analysis of acoustic televiewer (ATV) images of borehole walls provides an additional source of information on occurrence and orientation of fractures in DGR-5 and DGR-6. Structural ATV logging (Geofirma Engineering Ltd., 2011b) included all minor, major, continuous and filled fractures - the results are summarized in Table 2.

Table 2 Summary of Natural Fractures in DGR-5 and DGR-6 Based on ATV Fracture Logging

Mechano-Stratigraphic Unit DGR-5 DGR-6

Total # of Fractures 1

Inclined Fractures 2

Total # of Fractures 1

Inclined Fractures 2

MS-2 – Upper and Middle Silurian Shales, Dolostones and Anhydrites 258 4 174 21

MS-3 – Lower Silurian and Upper Ordovician Shales and Dolostones 58 10 30 11

MS-4 – Middle Ordovician Cobourg Formation 0 0 1 0

MS-5 – Middle Ordovician Sherman Fall and Deeper Formations 0 0 0 0

Notes: 1 - fractures include; minor, major, continuous and filled fractures, as identified on the ATV logs 2 - inclined fractures are considered to have a true dip of greater than 35 degrees.

Page 14: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 10

In total, 14 of 316 fractures in DGR-5 are inclined features, compared to 32 of 205 fractures in DGR-6. The variation in number of fractures identified in DGR-5 versus DGR-6 in MS Unit 2 may be attributed to the presence of numerous gypsum and anhydrite veins and the relatively poor quality of the borehole walls in Upper Silurian strata and subsequent difficulty identifying distinct fracture features on the borehole wall. Overall, ATV fracture identification is similar to the results of core logging, especially in the rock with smoother borehole walls (MS Unit 3, MS Unit 4 and MS Unit 5). Most notable is the lack of inclined features within MS Unit 4 and MS Unit 5, which represent the Cobourg Formation and underlying Ordovician limestone formations.

ATV fracture logging results versus core logging results is further discussed in Section 5 - Data Quality and Use.

4.3 Fracture Analysis

Fracture analysis provides important rock mass quality parameters including the orientation of major joint sets, discontinuity spacing, as well as the evaluation of the fracture qualities such as roughness and infilling characteristics. This section provides an overview of the major joint sets identified based on the results of DGR-5 and DGR-6 core logging and provides estimation of the joint set attitude and spacing. Qualitative fracture characteristics are included with the summary tables in Appendix A.

Fracture orientation measurements collected from core logging are presented on contoured, lower hemisphere polar plots, in order to identify significant joint sets. The plots were produced using DIPS Version 5.107 software with Terzaghi (1965) correction applied to account for sampling bias. The pole cluster boundaries given in red represent the area for which all poles are used in calculating the weighted average joint set orientation and discontinuity spacing. In addition to representative contoured plots provided in this section, un-weighted polar plots presenting individual poles for DGR-5 and DGR-6 are included in Appendix C.

4.3.1 MS Unit 2: Upper and Middle Silurian Shales, Dolostones and Anhydrites

A total of 216 fractures from the Upper and Middle Silurian shales, dolostones and anhydrite units of DGR-5 and DGR-6 are presented in Figure 7.

Figure 7 Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in

MS Unit 2.

Page 15: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 11

The polar plot suggests the presence of two major fracture sets. The first, and most pronounced, is the horizontal fracture set representative of bedding joints. The other set, MS Unit 2, Set #2 is representative of a near vertical set of fractures, striking north-south. The arithmetic average weighted fracture set orientation, including number of occurrences and average discontinuity spacing is presented in Table 3.

Table 3 Natural Fracture Set Orientations in MS Unit 2

Number of Occurrences

Dip (Degrees)

Dip Direction (Degrees)

Average Discontinuity Spacing (m)

MS Unit 2, Set #1 155 4 305 2.8 MS Unit 2, Set #2 24 88 82 6.8

Miscellaneous 37 -- -- --

4.3.2 MS Unit 3: Lower Silurian and Upper Ordovician Shales and Dolostones

A total of 101 fractures from the Lower Silurian and Upper Ordovician shales were logged in DGR-5 and DGR-6 and are presented in Figure 8. The polar plot suggests the presence of two major fracture sets, with a third minor fracture set. The two major fracture sets include a near horizontal bedding plane set and an east-west trending near vertical set. Fracture set #3 is sub-vertical and has a northeast-southwest strike. The average weighted fracture set orientations, including number of occurrences and average discontinuity spacing is presented in Table 4.

Figure 8 Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in MS Unit 3.

Page 16: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 12

Table 4 Natural Fracture Set Orientations in MS Unit 3

Number of Occurrences

Dip (Degrees)

Dip Direction (Degrees)

Average Discontinuity Spacing (m)

MS Unit 3, Set #1 39 2 309 9.6 MS Unit 3, Set #2 15 85 193 11.5 MS Unit 3, Set #3 16 87 317 6.8

Miscellaneous 31 -- -- --

4.3.3 MS Unit 4: Middle Ordovician Cobourg Formation

A total of seven fractures were noted in the Cobourg Formation, all from DGR-5, and are presented in Figure 9. No natural fractures were recorded in the Cobourg Formation in DGR-6. The only fracture set present is approximately horizontal and likely represents the discontinuities along the bedding plane. The average weighted fracture set orientation, including number of occurrences and average discontinuity spacing is presented in Table 5.

Figure 9 Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in

MS Unit 4.

Table 5 Natural Fracture Set Orientations in MS Unit 4

Number of Occurrences

Dip (Degrees)

Dip Direction (Degrees)

Average Discontinuity Spacing (m)

MS Unit 4, Set #1 7* 11 19 2.5 Miscellaneous 0 -- -- --

Note: * = all fracture occurrences in DGR-5

Page 17: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 13

4.3.4 MS Unit 5: Middle Ordovician Sherman Fall and Deeper Formations

Ten fractures were noted below the Cobourg Formation and the results are presented in Figure 10. Similar to the results of MS Unit 4, the only fracture set present is approximately horizontal and likely represents the discontinuities along the bedding plane. The average weighted fracture set orientation, including number of occurrences and average discontinuity spacing is presented in Table 6.

Figure 10 Contoured Equal Area Polar Plot of All Natural Fractures from DGR-5 and DGR-6 in MS Unit 5.

Table 6 Natural Fracture Set Orientations in MS Unit 5

Number of Occurrences

Dip (Degrees)

Dip Direction (Degrees)

Average Discontinuity Spacing (m)

MS Unit 5, Set #1 9 17 56 7.6 Miscellaneous 1 -- -- --

5 Data Quality and Use

Results of oriented core logging of DGR-5 and DGR-6 core described in this Technical Report are based on data collected following the general requirements of the Intera DGR Project Quality Plan and TP-09-01. The results presented in this Technical Report are suitable for assessing general trends with respect to fracture set orientation in the vicinity of the Bruce DGR site and will assist in the development of regional- and site-scale geological and geomechanical models of the site.

There is inherent uncertainty with data obtained from core logging. This includes identification of the reference line on the core, field measurements of alpha and beta angles, as well as measurement of borehole trend and plunge. The reference line was identified by a combination of using the bedding plane ellipsoid as well as the

Page 18: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 14

Reflex ACT Core Orientation Instrument as outlined in TP-09-01. In general, it was observed that the reference line obtained by identifying the upper edge of the bedding ellipse was comparable to the result of the core orientation instrument, thus providing some degree of confidence in the orientation reference. Human error is introduced with respect to the collection alpha and beta measurements, although this is considered relatively minor. Error associated with the borehole orientation is also considered to be minor; however there may have been some magnetic interference due to nearby power lines, grounding grids (railroad tracks), and inherent in-situ rock properties.

To evaluate the degree of uncertainty in calculated true dip and true dip direction results and estimation of fracture set orientation, the core logging data presented in this Technical Report were compared to the independent results of on-site core logging completed by Hatch Mott MacDonald (HMM, 2010) as well as the structural results assembled from borehole acoustic televiewer (ATV) logging.

5.1 Comparison with Hatch Mott MacDonald On-Site Core Logging

Table 7 presents the results of Geofirma core logging compared to corresponding Hatch Mott MacDonald (HMM) on-site core logging. The majority of fractures correspond well with HMM data. True dip measurements correlate especially well, with less than 5 degrees difference associated with most orientation measurements. The true dip direction measurements were slightly more variable, with differences of 10-30 degrees noted in most cases.

Table 7 On-Site Core Logging Comparison Geofirma Fracture Orientation Corresponding HMM Orientation 1

Formation Depth (mLBGS) True Dip / Dip Direction (Degrees)

Depth (mLBGS) 2 True Dip / Dip Direction (Degrees)

DGR-5 Georgian Bay 657.75 85/183 657.80 89/220 Georgian Bay 659.62 87/193 659.60 85/210 Georgian Bay 660.02 85/183 660.00 89/210 Georgian Bay 661.05 5/202 661.06 13/20 Blue Mountain 676.18 85/202 676.19 86/200 Blue Mountain 677.30 89/297 677.50 88/296 Blue Mountain 685.25 83/233 685.29 80/231 Blue Mountain 692.35 82/223 692.35 85/200 Blue Mountain 699.45 74/203 699.90 77/200 Collingwood 700.44 86/151 700.48 87/150 DGR-6 Blue Mountain 693.82 41/223 693.72 37/221 Blue Mountain 694.86 84/145 694.24 86/342 Blue Mountain 695.91 76/312 695.65 84/293 Blue Mountain 697.41 84/317 697.30 73/334 Blue Mountain 697.42 74/333 697.55 77/337 Blue Mountain 703.11 54/154 703.07 73/176 Blue Mountain 703.19 76/197 703.23 73/176

Notes: 1 - Hatch Mott MacDonald, 2010. Deep Geologic Repository Project – Technical Memorandum, Trip Reports from DGR-5 and DGR-6 Borehole Investigations, Rev.00, March. 2 - Presented HMM DGR-6 depths are corrected by -3 metres from HMM reported depths to account for depth adjustments made following drilling completion.

Page 19: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 15

5.2 Comparison with ATV Logging

Results of acoustic televiewer logging from DGR-5 and DGR-6 are presented on Figures 11 and 12 for MS Unit 2 and MS Unit 3, respectively. Terzaghi correction has been applied to each polar plot to account for sampling biases. Figure 11 presents only inclined fractures (greater than 35 degrees) because the large number near horizontal features overshadow any steeply dipping fracture sets. Only one fracture was identified in DGR-5 and DGR-6 by ATV logging from MS Unit 4 and 5 (see Table 2), therefore polar plots are not presented.

Figure 11 Contoured Equal Area Polar Plot of Inclined Fractures Identified in ATV Structural Logging from DGR-5 and DGR-6 in MS Unit 2.

The results of ATV data from MS Unit 2 suggest the presence of one or two sets of steeply dipping fracture sets, striking roughly north-south, in addition to a set of near horizontal fractures (not plotted) that represent bedding partings and/or sedimentological features. Polar plots produced using core logging data (see Figure 7, Section 4.3.1) showed a similar trend, with one set of dominant fractures that is horizontal and another set striking north-south and sub-vertical. Figure 12, which presents ATV structural data for MS Unit, clearly shows that there is one dominant horizontal set (bedding related) with two sub-vertical sets striking east-west. Only one fracture (horizontal) was observed on the ATV logs in the Cobourg Formation and below (MS Units 4 and 5), which is consistent with field core logging.

Page 20: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 16

Figure 12 Contoured Equal Area Polar Plot of Fractures Identified in ATV Structural Logging from DGR-5 and DGR-6 in MS Unit 3.

6 Conclusions

Oriented core logging identified 153 natural fractures in DGR-5 and 181 natural fractures in DGR-6. The majority of the fractures were recorded in the Upper and Middle Silurian shales, dolostones and anhydrites (MS Unit 2) and the Lower Silurian and Upper Ordovician shales and dolostones (MS Unit 3). There were very few natural fractures identified in the Cobourg Formation (MS Unit 4), and none had a true dip of greater than 35 degrees. The rock quality below the proposed DGR host formation (i.e., MS Unit 5) was similar, with only ten bedding fractures observed and only one healed inclined fracture logged.

Fracture analysis completed using the results of oriented core logging from DGR-5 and DGR-6 provide a meaningful data set to approximate the orientation of significant fracture sets at the Bruce nuclear site. It is clear that near horizontal fracture sets, which are representative of bedding partings or other sedimentological features, are dominant in every mechano-stratigraphic unit. The analysis suggests the presence of sub-vertical fracture sets in MS Unit 2 (striking north-south) and two sets in MS Unit 3, which strike east-west and northeast-southwest. There is no evidence of any significant sub-vertical fracture sets in the Cobourg Formation and below (MS Unit 4 and 5, respectively).

The results of the oriented core logging program provide a preliminary estimate of the orientation of major fracture sets in the strata underlying the Bruce nuclear site. The results compare reasonably well with independent on-site core logging as well as structural geophysical analysis using borehole wall images.

Page 21: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Technical Report: Oriented Core Logging of DGR-5 and DGR-6 Revision 0 Doc ID: TR-09-09

April 8, 2011 17

7 References

Armstrong, D. K. and T. R. Carter, 2006. An Updated Guide to the Subsurface Paleozoic Stratigraphy of Southern Ontario, Ontario Geological Survey, Open File Report 6191, 214 p.

Geofirma Engineering Ltd., 2011a. Technical Report: Drilling, Logging and Sampling of DGR-5 and DGR-6, TR-09-01, Revision 0, April 6, Ottawa.

Geofirma Engineering Ltd., 2011b. Technical Report: Borehole Geophysical Logging in DGR-5 and DGR-6, TR-09-03, Revision 0, April 7, Ottawa.

Hatch Mott MacDonald, 2010. Deep Geologic Repository Project – Technical Memorandum, Trip Reports from DGR-5 and DGR-6 Borehole Investigations, Rev.00, March.

Intera Engineering Ltd., 2011. Descriptive Geosphere Site Model, Deep Geologic Repository, Bruce Nuclear Site, Report DGR-TR-2011-24, R000, Ottawa.

Intera Engineering Ltd., 2010a. Test Plan for DGR-5 and DGR-6 Drilling and Casing Installation, TP-08-20, Revision 3, April 26, Ottawa.

Intera Engineering Ltd., 2010b. Test Plan for DGR-5 and DGR-6 Core Sampling and Distribution for Laboratory Testing, TP-09-02, Revision 2, April 26, Ottawa.

Intera Engineering Ltd., 2009a. Test Plan for DGR-5 and DGR-6 Core Photography and Logging, TP-09-01, Revision 0, July 14, Ottawa.

Intera Engineering Ltd., 2009b. Project Quality Plan, DGR Site Characterization, Revision 4, August 14, Ottawa.

Intera Engineering Ltd., 2009c. Technical Report: 2D Seismic Survey of the Bruce Site, TR-07-15, Revision R0, February 2, Ottawa.

Intera Engineering Ltd., 2008. Phase 2 Geoscientific Site Characterization Plan, OPG’s Deep Geologic Repository for Low and Intermediate Level Waste, Report INTERA 06-219.50-Phase 2 GSCP-R0, OPG 00216-PLAN-03902-00002-R00, April, Ottawa.

Intera Engineering Ltd., 2006. Geoscientific Site Characterization Plan, OPG’s Deep Geologic Repository for Low and Intermediate Level Waste, Report INTERA 05-220-1, OPG 00216-REP-03902-00002-R00, April, Ottawa.

Rocscience Inc., 2008. DIPS version 5.107 – Graphical and Statistical Analysis of Orientation Data. www.rocscience.com, Toronto.

Terzaghi, R., D., 1965. Sources of error in joint surveys, Geotechnique, Vol. 15, pp. 287-304.

Page 22: TR 09 09 Oriented Core Logging of DGR 5 6 R0

APPENDIX A

Natural Fracture Logging

Table A.1 – Summary of Natural Fractures in DGR-5

Table A.2 – Summary of Natural Fractures in DGR-6

Page 23: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.1 - Summary of Natural Fractures in DGR-5

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

Lucas Formation (22.2-33.8 mLBGS)Amherstburg Formation (33.8-83.2 mLBGS)Bois Blanc Formation (83.2-134.8 mLBGS)Bass Islands Formation (134.8-184.0 mLBGS)Salina Formation - G Unit (184.0-192.5 mLBGS)Salina Formation - F Unit (192.5-235.2 mLBGS)DGR-5 1 207.98 80 160 206 65 16 38 Smooth AnhydriteDGR-5 1 208.29 80 230 206 65 20 3 Smooth --DGR-5 1 208.96 80 200 206 65 16 13 Smooth AnhydriteDGR-5 1 209.26 70 180 206 65 6 25 Smooth --DGR-5 1 209.49 85 180 206 65 21 26 Smooth AnhydriteDGR-5 3 214.01 90 0 201 65 25 21 Undulating --DGR-5 6 223.12 60 200 199 66 11 264 Smooth --DGR-5 6 223.80 60 190 199 66 8 240 Smooth --DGR-5 6 223.86 60 190 199 66 8 240 Smooth --DGR-5 6 224.03 60 190 199 66 8 240 Smooth --DGR-5 6 224.17 60 200 199 66 11 264 Smooth --DGR-5 6 224.21 60 200 199 66 11 264 Smooth --DGR-5 6 224.48 60 200 199 66 11 264 Rough --DGR-5 6 224.99 60 200 199 66 11 264 Smooth --DGR-5 7 228.69 70 200 199 66 9 326 Smooth --DGR-5 8 228.90 15 270 199 66 77 295 Healed --DGR-5 8 229.02 70 180 199 66 5 18 Rough --DGR-5 8 229.89 14 50 199 66 89 247 Smooth --DGR-5 8 229.96 70 180 199 66 5 18 Smooth --DGR-5 8 230.12 25 350 199 66 89 9 Smooth --DGR-5 8 230.16 80 180 199 66 15 18 Smooth --DGR-5 8 230.34 70 180 199 66 5 18 Smooth --DGR-5 8 230.83 10 300 199 66 88 140 Rough --DGR-5 9 232.95 60 180 199 66 7 199 Smooth --DGR-5 9 233.33 60 0 199 66 54 19 Rough --DGR-5 9 233.62 60 0 199 66 54 19 Rough --DGR-5 9 233.73 60 0 199 66 54 19 Rough --DGR-5 9 233.85 60 0 199 66 54 19 Rough --DGR-5 9 234.25 60 0 199 66 54 19 Smooth --DGR-5 9 234.40 60 0 199 66 54 19 Smooth Anhydrite

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 1 of 5

Page 24: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.1 - Summary of Natural Fractures in DGR-5

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-5 10 235.13 50 180 199 67 17 199 Smooth AnhydriteSalina Formation - E Unit (235.2-256.2 mLBGS)DGR-5 10 235.66 60 180 199 67 7 199 Rough --DGR-5 10 236.21 60 180 199 67 7 199 Rough --DGR-5 10 236.71 75 180 199 67 9 18 Rough --DGR-5 10 236.85 75 180 199 67 9 18 Rough --DGR-5 10 236.93 75 180 199 67 9 18 Rough AnhydriteDGR-5 10 237.27 60 180 199 67 7 199 Smooth AnhydriteDGR-5 11 238.40 10 20 199 67 79 219 Rough --DGR-5 11 238.72 60 180 199 67 7 199 Rough --DGR-5 11 238.96 55 180 199 67 12 199 Smooth --DGR-5 11 239.65 90 0 199 67 23 19 Rough --DGR-5 11 239.87 90 0 199 67 23 19 Smooth --DGR-5 11 240.04 90 0 199 67 23 19 Rough --DGR-5 11 240.69 10 30 199 67 81 228 Smooth --DGR-5 12 241.30 30 90 199 67 63 96 Rough --DGR-5 12 242.12 90 0 199 67 23 19 Rough --DGR-5 13 246.35 90 270 199 67 24 19 Smooth --DGR-5 13 246.49 90 270 199 67 24 19 Smooth --DGR-5 14 247.96 65 190 200 67 5 268 Smooth --DGR-5 14 248.27 65 190 200 67 5 268 Smooth --DGR-5 14 248.75 65 180 200 67 2 200 Smooth --DGR-5 14 249.62 70 180 200 67 4 19 Smooth --DGR-5 14 249.75 70 180 200 67 4 19 Smooth --DGR-5 15 250.82 90 0 200 68 23 20 Smooth --DGR-5 16 254.43 60 90 200 68 37 77 Smooth --Salina Formation - D Unit (256.2-257.3 mLBGS)Salina Formation - C Unit (257.3-271.2 mLBGS)Salina Formation - B Unit (271.2-319.0 mLBGS)DGR-5 38 315.81 60 270 201 66 38 326 Smooth --DGR-5 39 318.86 70 180 202 66 5 21 Smooth AnhydriteSalina Formation - A Unit (319.0-408.0 mLBGS)DGR-5 41 326.27 65 180 202 67 2 202 Gouge --DGR-5 46 340.42 20 55 203 67 85 73 Healed --DGR-5 46 340.48 20 60 203 67 83 78 Healed --DGR-5 52 358.59 15 70 203 67 84 88 Rough --DGR-5 53 361.50 40 355 204 67 73 19 Rough --

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 2 of 5

Page 25: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.1 - Summary of Natural Fractures in DGR-5

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-5 53 361.98 80 10 204 67 33 27 Partially healed --DGR-5 55 367.70 75 180 204 67 9 23 Rough AnhydriteDGR-5 55 368.32 80 160 204 67 15 38 Rough AnhydriteDGR-5 55 368.38 20 45 204 67 87 65 Healed AnhydriteDGR-5 55 368.56 20 45 204 67 87 65 Healed AnhydriteDGR-5 55 369.49 65 190 204 67 5 272 Smooth AnhydriteDGR-5 57 374.91 85 175 204 67 19 25 Rough --DGR-5 59 379.52 75 190 204 67 9 6 Smooth --DGR-5 59 380.66 5 140 204 67 68 160 Rough AnhydriteDGR-5 59 381.21 30 305 204 67 75 336 Smooth AnhydriteDGR-5 59 381.29 60 200 204 67 12 265 Rough --DGR-5 63 389.31 15 60 204 68 87 80 Healed Anhydrite, HydrocarbonsDGR-5 64 391.97 10 60 204 69 90 262 Healed AnhydriteDGR-5 65 395.58 75 170 204 69 7 46 Rough --DGR-5 65 395.75 75 170 204 69 7 46 Rough Anhydrite, HydrocarbonsDGR-5 65 397.17 65 35 204 69 44 44 Healed AnhydriteGuelph Formation (408.0-413.7 mLBGS)DGR-5 69 409.17 20 50 204 69 85 70 Healed AnhydriteDGR-5 70 411.92 45 50 204 69 61 62 Rough Calcite, pyriteDGR-5 70 412.26 70 0 204 69 42 24 Rough --DGR-5 70 412.28 40 0 204 69 71 24 Rough --Goat Island Formation (413.7-433.0 mLBGS)DGR-5 72 417.29 57 190 204 70 14 227 Rough --DGR-5 72 418.79 86 120 204 70 19 35 Rough --Gasport Formation (433.0-442.8 mLBGS)DGR-5 79 437.75 79 190 204 70 10 12 Rough --DGR-5 79 438.37 85 260 204 70 20 9 Smooth --DGR-5 80 442.42 5 320 204 70 80 163 Rough --Lions Head Formation (442.8-445.3 mLBGS)DGR-5 80 443.03 20 85 204 70 73 102 Healed --DGR-5 80 443.42 30 20 204 70 79 41 Rough --Fossil Hill Formation (445.3-447.8 mLBGS)DGR-5 82 447.78 15 70 204 70 83 90 Healed --Cabot Head Formation (447.8-473.0 mLBGS)DGR-5 82 449.08 72 160 204 70 7 87 Smooth HaliteDGR-5 83 451.17 20 175 204 70 51 197 Slickensides --DGR-5 83 452.04 25 335 204 70 84 1 Smooth --

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 3 of 5

Page 26: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.1 - Summary of Natural Fractures in DGR-5

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

Manitoulin Formation (473.0-486.6 mLBGS)Queenston Formation (486.6-560.6 mLBGS)DGR-5 97 487.40 15 350 203 71 87 193 Smooth HaliteDGR-5 97 488.57 20 220 203 71 57 249 Smooth HaliteDGR-5 99 494.90 30 280 203 71 65 312 Rough --DGR-5 99 495.42 30 230 203 71 50 264 Smooth HaliteDGR-5 100 497.06 30 190 203 71 42 216 Rough HaliteDGR-5 101 501.85 20 350 203 71 89 13 Healed HaliteDGR-5 105 512.05 78 180 203 72 7 22 Smooth --DGR-5 105 512.75 15 240 203 72 67 268 Smooth HaliteDGR-5 109 524.04 73 200 203 72 7 311 Smooth HaliteDGR-5 115 542.40 15 240 203 72 67 268 Smooth --DGR-5 120 557.92 73 175 203 72 2 77 Smooth HaliteGeorgian Bay Formation (560.6-653.3 mLBGS)DGR-5 121 561.20 20 315 203 72 84 340 Smooth HaliteDGR-5 125 573.00 80 200 203 73 9 358 Smooth --DGR-5 128 582.00 15 60 203 73 84 80 Smooth HaliteDGR-5 128 583.10 5 50 203 73 85 253 Smooth HaliteDGR-5 128 583.32 90 180 203 73 18 23 Rough --DGR-5 129 586.46 5 0 203 73 79 203 Smooth --DGR-5 130 587.76 80 40 203 73 26 38 Smooth --DGR-5 130 589.39 65 10 203 73 42 29 Smooth --DGR-5 131 592.70 50 195 203 73 24 227 Smooth --DGR-5 135 603.66 15 280 203 73 79 306 Smooth HaliteDGR-5 135 605.30 5 40 203 73 82 243 Smooth HaliteDGR-5 135 605.46 15 280 203 73 79 306 Smooth HaliteDGR-5 135 605.53 5 50 203 73 85 253 Smooth HaliteDGR-5 138 614.14 60 325 202 73 45 358 Smooth HaliteDGR-5 138 614.58 60 210 202 73 18 259 Closed --DGR-5 140 619.39 70 190 202 73 5 253 Smooth HaliteDGR-5 148 645.20 80 140 202 74 11 59 Smooth --Blue Mountain Formation (653.3-699.9 mLBGS)DGR-5 153 657.75 10 340 203 74 85 183 Smooth HaliteDGR-5 153 659.62 12 350 203 74 87 193 Smooth HaliteDGR-5 153 659.82 10 340 203 74 85 183 Smooth HaliteDGR-5 153 660.02 10 340 203 74 85 183 Smooth --DGR-5 154 661.05 70 180 202 75 5 202 Smooth --

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 4 of 5

Page 27: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.1 - Summary of Natural Fractures in DGR-5

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-5 159 676.18 10 0 202 75 85 202 Smooth HaliteDGR-5 159 677.30 3 275 202 75 89 297 Smooth HaliteDGR-5 162 685.25 5 30 203 76 83 233 Smooth --DGR-5 165 692.35 5 20 203 76 82 223 Smooth CalciteDGR-5 167 699.45 3 180 203 77 74 203 Smooth --Cobourg Formation - Collingwood Member (699.9-708-7 mLBGS)DGR-5 168 700.44 4 310 202 77 86 151 Smooth --DGR-5 168 701.09 80 180 202 77 4 21 Rough --DGR-5 168 703.34 78 210 202 77 7 315 Rough CalciteDGR-5 169 703.76 82 200 203 77 7 356 Rough --DGR-5 169 704.07 80 180 203 77 4 22 Rough --DGR-5 169 704.48 90 0 203 77 13 23 Healed --DGR-5 169 704.94 90 0 203 77 13 23 Healed --DGR-5 169 705.25 82 130 203 77 10 61 Smooth --DGR-5 169 705.94 90 0 203 77 13 23 Smooth --Cobourg Formation - Lower Member (708.7-736.5 mLBGS)DGR-5 174 721.49 90 0 203 77 13 23 Rough CalciteDGR-5 175 722.04 90 0 203 77 13 23 Smooth --DGR-5 175 722.97 90 0 203 77 13 23 Smooth --DGR-5 177 728.6 90 0 203 77 13 23 Smooth --DGR-5 177 729.07 90 0 203 77 13 23 Smooth --DGR-5 179 735.16 80 220 203 77 9 332 Rough --DGR-5 179 736.48 83 165 203 77 7 39 Rough --Sherman Fall Formation (736.5-766.5 mLBGS)DGR-5 180 737.10 80 220 203 77 9 332 Smooth --DGR-5 180 738.21 78 170 203 77 3 83 Rough --DGR-5 180 738.43 90 0 203 77 13 23 Rough --DGR-5 180 738.82 90 0 203 77 13 23 Rough CalciteDGR-5 180 739.99 90 0 203 77 13 23 Rough --DGR-5 185 752.56 90 0 203 77 13 23 Smooth --Kirkfield Formation (766.5- mLBGS)

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 5 of 5

Page 28: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.2 - Summary of Natural Fractures in DGR-6

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

Lucas Formation (16.9-37.0 mLBGS)Amherstburg Formation (37.0-87.1 mLBGS)Bois Blanc Formation (87.1-145.3 mLBGS)Bass Islands Formation (145.3-193.3 mLBGS)Salina Formation - G Unit (193.0-203.0 mLBGS)Salina Formation - F Unit (203.0-249.1 mLBGS)

DGR-6 1 215.04 40 20 89 60 79 284 Healed AnhydriteDGR-6 2 216.84 70 170 89 60 11 287 Smooth --DGR-6 3 218.90 60 95 90 60 40 321 Smooth --DGR-6 3 219.01 65 35 90 60 53 287 Smooth --DGR-6 3 219.15 65 35 90 60 53 287 Smooth --DGR-6 3 219.95 70 80 90 60 39 302 Smooth --DGR-6 3 220.15 80 255 90 60 29 249 Smooth Iron stainingDGR-6 3 220.68 50 80 90 60 53 322 Smooth AnhydriteDGR-6 3 221.36 40 270 90 60 57 202 Rough --DGR-6 4 221.94 70 15 89 60 50 275 Smooth --DGR-6 4 222.55 80 130 89 60 25 287 Undulating --DGR-6 4 223.69 82 135 89 60 25 282 Undulating --DGR-6 7 227.47 80 110 89 60 29 289 Rough --DGR-6 7 228.25 85 140 89 60 27 276 Rough --DGR-6 9 232.44 65 130 89 60 23 325 Smooth --DGR-6 9 232.52 60 240 89 60 29 205 Smooth --DGR-6 9 233.18 70 210 89 60 16 230 Smooth --DGR-6 10 236.18 80 30 90 60 39 277 Undulating --DGR-6 10 237.23 90 0 90 60 30 270 Smooth --DGR-6 12 242.59 60 170 90 60 5 355 Undulating AnhydriteDGR-6 12 243.04 60 130 90 60 25 338 Undulating AnhydriteDGR-6 12 243.33 60 145 90 60 18 344 Undulating AnhydriteDGR-6 12 243.43 60 180 90 60 1 180 Smooth --DGR-6 13 244.63 60 180 90 60 1 180 Smooth --DGR-6 13 244.73 70 220 90 60 20 227 Undulating --DGR-6 13 245.07 65 180 90 60 6 269 Undulating --DGR-6 13 245.12 62 170 90 60 6 333 Undulating --DGR-6 13 245.19 60 130 90 60 25 338 Undulating AnhydriteDGR-6 13 245.25 70 170 90 60 11 288 Smooth AnhydriteDGR-6 13 245.37 60 170 90 60 5 355 Smooth AnhydriteDGR-6 13 245.59 65 200 90 60 11 217 Smooth Anhydrite

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 1 of 6

Page 29: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.2 - Summary of Natural Fractures in DGR-6

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-6 13 245.75 60 180 90 60 1 180 Undulating AnhydriteDGR-6 13 246.12 60 175 90 60 3 357 Smooth AnhydriteDGR-6 13 246.4 70 200 90 60 13 238 Smooth AnhydriteDGR-6 13 246.63 55 180 90 60 6 90 Undulating AnhydriteDGR-6 13 246.72 55 180 90 60 6 90 Undulating AnhydriteDGR-6 13 246.84 55 180 90 60 6 90 Undulating AnhydriteDGR-6 13 246.96 55 180 90 60 6 90 Undulating AnhydriteDGR-6 14 247.12 50 180 89 60 10 89 Smooth AnhydriteDGR-6 14 247.13 55 0 89 60 65 269 Smooth AnhydriteDGR-6 14 247.92 55 180 89 60 6 89 Smooth --DGR-6 14 248.28 50 210 89 60 20 161 Smooth --DGR-6 14 248.47 60 190 89 60 5 183 Smooth --

Salina Formation - E Unit (249.1-298.5 mLBGS)DGR-6 14 249.12 70 160 89 60 13 300 Smooth AnhydriteDGR-6 15 252.23 75 210 90 60 19 245 Smooth --DGR-6 15 252.27 20 0 90 60 80 90 Smooth PyriteDGR-6 17 257.16 70 230 90 60 23 226 Smooth AnhydriteDGR-6 17 258.26 82 180 90 60 23 269 Undulating --DGR-6 17 258.44 70 150 90 60 16 308 Smooth --DGR-6 18 260.68 70 180 90 60 11 269 Smooth --DGR-6 20 265.84 70 180 90 60 11 269 Smooth AnhydriteDGR-6 20 265.93 70 180 90 60 11 269 Smooth --DGR-6 21 269.99 75 170 90 60 16 279 Smooth --DGR-6 22 271.51 60 180 90 60 1 180 Undulating --DGR-6 22 271.83 60 180 90 60 1 180 Undulating AnhydriteDGR-6 22 272.46 60 180 90 60 1 180 Smooth AnhydriteDGR-6 22 273.64 60 180 90 60 1 180 Undulating AnhydriteDGR-6 23 274.96 0 0 89 60 60 89 Smooth --DGR-6 23 276.1 70 180 89 60 11 268 Smooth --DGR-6 23 276.95 10 350 89 60 71 78 Smooth --DGR-6 24 278.39 90 180 89 60 31 269 Smooth --DGR-6 24 278.41 50 180 89 60 10 89 Smooth --DGR-6 27 287.77 60 180 89 60 1 180 Smooth --DGR-6 28 290.86 90 0 89 60 30 269 Smooth --DGR-6 28 291.31 60 310 89 60 54 240 Smooth --DGR-6 29 293.26 90 0 90 60 30 270 Smooth --DGR-6 29 293.53 90 0 90 60 30 270 Smooth --

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 2 of 6

Page 30: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.2 - Summary of Natural Fractures in DGR-6

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-6 29 294.16 80 0 90 60 41 270 Smooth --DGR-6 29 294.71 90 0 90 60 30 270 Smooth --DGR-6 29 295.08 80 260 90 60 30 249 Smooth --DGR-6 29 295.52 90 0 90 60 30 270 Smooth --DGR-6 30 298.15 80 0 90 60 41 270 Smooth --

Salina Formation - D Unit (298.5-299.5 mLBGS)Salina Formation - C Unit (299.5-308.4 mLBGS)

DGR-6 31 301.82 70 260 90 60 33 231 Rough AnhydriteSalina Formation - B Unit (308.4-337.7 mLBGS)

DGR-6 35 312.62 20 180 90 60 40 90 Rough --DGR-6 37 318.71 85 0 90 60 36 270 Smooth --DGR-6 38 322.82 15 280 90 60 82 196 Smooth AnhydriteDGR-6 41 329.75 65 195 91 60 9 223 Smooth --DGR-6 42 332.94 80 140 91 60 24 287 Undulating --DGR-6 42 334.46 60 175 91 60 3 358 Smooth --DGR-6 42 335.17 55 160 91 60 12 17 Smooth --DGR-6 42 335.37 0 180 91 60 60 91 Rough ClayDGR-6 43 337.29 60 180 91 60 1 180 Smooth --

Salina Formation - A Unit (337.7-427.3 mLBGS)DGR-6 45 341.04 60 180 91 60 1 180 Smooth --DGR-6 45 341.35 60 180 91 60 1 180 Smooth --DGR-6 45 341.50 60 180 91 60 1 180 Smooth --DGR-6 45 341.83 60 180 91 60 1 180 Smooth --DGR-6 45 341.95 60 180 91 60 1 180 Smooth --DGR-6 45 342.03 60 180 91 60 1 180 Smooth PyriteDGR-6 45 342.12 60 180 91 60 1 180 Smooth --DGR-6 45 341.87 20 330 91 60 84 62 Healed --DGR-6 45 342.22 60 180 91 60 1 180 Smooth --DGR-6 46 343.94 60 180 91 60 1 180 Smooth --DGR-6 46 344.14 0 90 91 60 90 1 Smooth AnhydriteDGR-6 47 344.82 60 180 91 60 1 180 Undulating ClayDGR-6 47 345.37 60 180 91 60 1 180 Undulating --DGR-6 47 346.12 0 0 91 60 60 91 Healed AnhydriteDGR-6 47 346.58 60 180 91 60 1 180 Undulating --DGR-6 47 346.74 60 180 91 60 1 180 Smooth ClayDGR-6 48 347.70 60 180 91 60 1 180 Rough AnhydriteDGR-6 49 351.76 85 270 91 60 31 261 Rough Anhydrite

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 3 of 6

Page 31: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.2 - Summary of Natural Fractures in DGR-6

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-6 52 358.21 60 180 91 60 1 180 Rough AnhydriteDGR-6 52 359.65 60 180 91 60 1 180 Rough AnhydriteDGR-6 53 361.50 40 0 91 60 80 271 Healed AnhydriteDGR-6 53 361.56 40 0 91 60 80 271 Healed AnhydriteDGR-6 53 361.73 40 0 91 60 80 271 Healed AnhydriteDGR-6 53 361.76 40 0 91 60 80 271 Healed AnhydriteDGR-6 57 372.45 60 180 91 60 1 180 Smooth --DGR-6 60 377.13 10 200 91 60 53 116 SlickensidesDGR-6 61 378.80 20 320 91 60 87 53 Healed Calcite, PyriteDGR-6 61 378.85 25 80 91 60 74 339 Healed --DGR-6 62 383.69 70 200 91 60 13 239 Smooth --DGR-6 62 384.03 70 200 91 60 13 239 Smooth --DGR-6 67 398.55 45 190 91 61 18 115 Smooth --DGR-6 68 399.82 30 180 91 61 31 91 Healed Anhydrite, HydrocarbonsDGR-6 68 401.13 30 355 91 61 89 266 Healed Anhydrite, HydrocarbonsDGR-6 68 401.16 30 355 91 61 89 266 Healed Anhydrite, HydrocarbonsDGR-6 68 401.22 30 355 91 61 89 266 Healed Anhydrite, HydrocarbonsDGR-6 71 410.55 20 180 91 62 42 91 Healed AnhydriteDGR-6 72 413.87 20 0 91 62 83 91 Rough AnhydriteDGR-6 73 417.05 30 0 91 63 87 271 Healed AnhydriteDGR-6 73 417.13 30 0 91 63 87 271 Healed Anhydrite

Guelph Formation (427.3-431.5 mLBGS)Goat Island Formation (431.5-452.2 mLBGS)

DGR-6 79 435.05 70 240 91 63 24 223 Rough --DGR-6 80 438.02 90 0 91 63 27 271 Rough --

Gasport Formation (452.2-461.0 mLBGS)DGR-6 86 456.10 20 0 92 64 85 92 Healed CalciteDGR-6 86 456.25 20 0 92 64 85 92 Healed Calcite

Lions Head Formation (461.0-465.0 mLBGS)DGR-6 89 464.99 90 180 93 64 27 273 Smooth --

Fossil Hill Formation (465.0-467.9 mLBGS)Cabot Head Formation (467.9-493.6 mLBGS)

DGR-6 90 468.09 14 240 92 64 65 160 Smooth HaliteDGR-6 90 468.24 90 180 92 64 27 272 Smooth --DGR-6 90 468.98 70 180 92 64 7 271 Smooth --DGR-6 92 473.26 60 220 92 65 19 185 Smooth HaliteDGR-6 95 481.09 70 180 92 65 6 271 Rough --

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 4 of 6

Page 32: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.2 - Summary of Natural Fractures in DGR-6

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-6 95 482.08 90 180 92 65 26 272 Rough --DGR-6 96 484.31 90 180 92 66 26 272 Smooth --DGR-6 97 486.04 90 180 92 66 25 272 Rough --DGR-6 99 490.43 70 180 93 67 4 272 Smooth --DGR-6 100 492.99 90 180 92 67 24 272 Rough --DGR-6 100 493.55 70 180 92 67 4 271 Smooth --

Manitoulin Formation (493.6-507.9 mLBGS)DGR-6 101 495.96 80 180 92 67 14 271 Smooth --DGR-6 102 498.36 90 0 92 68 23 272 Smooth --DGR-6 102 498.57 90 0 92 68 23 272 Smooth --DGR-6 103 501.69 80 180 91 68 13 270 Smooth --DGR-6 104 504.76 90 0 91 68 23 271 Rough --DGR-6 104 504.93 65 180 91 68 4 91 Smooth Halite

Queenston Formation (507.9-583.1 mLBGS)DGR-6 111 522.96 65 180 89 68 4 89 Smooth --DGR-6 112 527.36 5 80 89 67 90 347 Smooth --DGR-6 112 528.61 10 40 89 67 83 128 Smooth --DGR-6 113 528.98 55 180 89 66 11 89 Smooth, Slickensides --DGR-6 117 538.69 10 350 88 67 78 78 Healed --DGR-6 117 538.84 0 0 88 67 67 89 Smooth --

Georgian Bay Formation (583.1-684.7 mLBGS)DGR-6 137 593.71 10 40 87 66 82 126 Smooth --DGR-6 137 594.84 10 20 87 66 78 107 Smooth HaliteDGR-6 137 595.03 10 30 87 66 80 117 Smooth --DGR-6 143 608.17 20 300 85 63 85 210 Smooth --DGR-6 143 608.37 20 320 85 63 89 47 Smooth --DGR-6 144 613.70 50 40 82 63 63 289 Smooth HaliteDGR-6 145 615.20 40 240 81 63 42 166 Rough Iron stainingDGR-6 149 626.59 55 300 77 60 56 219 Rough --DGR-6 151 633.47 20 120 75 59 58 360 Smooth, Slickensides --DGR-6 151 633.51 30 190 75 59 30 92 Smooth, Slickensides --DGR-6 151 633.63 30 200 75 59 33 108 Smooth, Slickensides --DGR-6 160 651.18 5 280 75 57 89 356 Smooth HaliteDGR-6 160 651.20 5 20 75 57 65 97 Smooth --DGR-6 160 652.08 45 110 75 57 44 329 Smooth HaliteDGR-6 161 654.56 20 85 75 57 76 329 Smooth HaliteDGR-6 161 655.16 5 250 75 57 76 150 Smooth Halite

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 5 of 6

Page 33: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Table A.2 - Summary of Natural Fractures in DGR-6

Borehole Core Run

Fracture Depth

(mLBGS)Alpha

(degrees)Beta

(degrees)

Average Borehole Azimuth

(degrees)

Average Borehole Plunge

(degrees)True Dip (degrees)

True Dip Direction (degrees) Roughness Infilling

DGR-6 161 655.81 15 100 75 57 73 344 Smooth HaliteDGR-6 170 680.28 40 60 75 57 71 299 Smooth Halite

Blue Mountain Formation (684.7-738.3 mLBGS)DGR-6 175 693.82 75 290 75 57 41 232 Smooth HaliteDGR-6 175 694.86 5 70 75 57 84 145 Smooth HaliteDGR-6 175 695.56 30 140 75 57 39 12 Smooth HaliteDGR-6 175 695.91 30 70 75 57 76 312 Smooth HaliteDGR-6 176 697.41 20 70 75 57 84 317 Smooth HaliteDGR-6 176 697.51 20 90 75 57 74 333 Smooth HaliteDGR-6 178 703.11 25 240 75 57 54 154 Smooth --DGR-6 178 703.19 30 290 75 57 76 197 Smooth Iron stainingDGR-6 178 703.34 25 300 75 57 84 202 Smooth Iron stainingDGR-6 179 705.54 35 230 75 57 40 153 Rough Halite

Cobourg Formation - Collingwood Member (738.3-746.1 mLBGS)Cobourg Formation - Lower Member (746.1-780.2 mLBGS)Sherman Fall Formation (780.2-814.7 mLBGS)DGR-6 212 807.02 35 175 73 57 23 62 Rough HaliteKirkfield Formation (814.7-870.5 mLBGS)DGR-6 218 823.04 30 180 73 57 28 73 Smooth --DGR-6 218 823.63 30 180 73 57 28 73 Smooth --DGR-6 229 857.30 50 0 73 58 73 253 Healed --Coboconk Formation (870.5-897.2 mLBGS)Gull River Formation (897.2- mLBGS)

Prepared by: SNGReviewed by: MAMTR-09-09_Fracture Tables_Appendix.xlsx 6 of 6

Page 34: TR 09 09 Oriented Core Logging of DGR 5 6 R0

APPENDIX B

Sample Fracture Photographs

Figure B.1 Bedding Fracture Photographs

Figure B.2 Inclined Fracture Photographs

Page 35: TR 09 09 Oriented Core Logging of DGR 5 6 R0

DGR-5, Core Run 120, 557.92 mLBGS (Queenston Fm.) DGR-5, Core Run 140, 619.39 mLBGS (Georgian Bay Fm.)

DGR-6, Core Run 57, 372.45 mLBGS (Salina A Unit) DGR-6, Core Run 99, 490.49 mLBGS (Cabot Head Fm.)

Figure B.1, TR-09-09: Sample Bedding Plane Fractures

Page 36: TR 09 09 Oriented Core Logging of DGR 5 6 R0

DGR-5, Core Run 80, 442.42 mLBGS (Gasport Fm.) DGR-5, Core Run 101, 501.85 mLBGS (Queenston Fm.)

DGR-6, Core Run 161, 655.16 mLBGS (Georgian Bay Fm.) DGR-6, Core Run 175, 694.86 mLBGS (Blue Mountain Fm.)

Figure B.2, TR-09-09: Sample Inclined Fractures

Page 37: TR 09 09 Oriented Core Logging of DGR 5 6 R0

APPENDIX C

Polar Plots (Core Logging)

Figure C.1 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 2.

Figure C.2 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 3.

Figure C.3 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 4.

Figure C.4 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 5.

Page 38: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Figure C.1 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 2.  

Figure C.2 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 3.  

 

Page 39: TR 09 09 Oriented Core Logging of DGR 5 6 R0

Figure C.3 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 4.  

 Figure C.4 Equal area polar plot of all natural fractures from DGR-5 and DGR-6 in MS Unit 5.