28
461 Towards an integrated seasonal forecasting system for South America C. A. S. Coelho, D. B. Stephenson, M. Balmaseda (*), F. J. Doblas-Reyes (*) and G. J van Oldenborgh (**) Department of Meteorology, University of Reading, (*) ECMWF and (**) KNMI Submitted for publication in the Journal of Climate 22/06/2005

Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

461

Towards an integratedseasonal forecasting system

for South America

C. A. S. Coelho, D. B. Stephenson,M. Balmaseda (*), F. J. Doblas-Reyes (*)

and G. J van Oldenborgh (**)

Department of Meteorology,University of Reading,

(*) ECMWFand (**) KNMI

Submitted for publication in the Journal of Climate

22/06/2005

Page 2: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Series: ECMWF Technical Memoranda

A full list of ECMWF Publications can be found on our web site under:http://www.ecmwf.int/publications/

Contact: [email protected]

c�

Copyright 2005

European Centre for Medium-Range Weather ForecastsShinfield Park, Reading, RG2 9AX, England

Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is notto be reprinted or translated in whole or in part without the written permission of the Director. Appropriatenon-commercial use will normally be granted under the condition that reference is made to ECMWF.

The information within this publication is given in good faith and considered to be true, but ECMWF acceptsno liability for error, omission and for loss or damage arising from its use.

Page 3: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

Abstract

This studyproposesan integratedseasonalforecastingsystemfor producingimprovedandwell-calibratedprobabilisticrainfall forecastsfor SouthAmerica.Theproposedsystemhastwo components:a) anempir-ical modelthatusesPacific andAtlantic seasurfacetemperatureanomaliesaspredictorfor SouthAmeri-canrainfall; andb) a multi-modelsystemcomposedof threeEuropeancoupledocean-atmospheremodels.Three-monthleadaustralsummerrainfall predictionsproducedby thecomponentsof thesystemareinte-grated(i.e. combinedandcalibrated)usinga Bayesianforecastassimilationprocedure.Theobjective cal-ibrationandcombinationof empiricalandmulti-modelcoupledpredictionsmakesthis a first steptowardsan integratedforecastingsystemfor issuingSouthAmericanseasonalforecasts. The skill of empirical,coupledmulti-modelandintegratedforecastsobtainedwith forecastassimilationis assessedandcompared.This comparisonrevealsthatthesimplemulti-modelensembleof thecurrentgenerationof coupledmodelshascomparablelevel of skill to thatobtainedusinga simplifiedempiricalapproach.As for mostregionsofthe globe,seasonalforecastskill for SouthAmericais low. However, whenempiricalandcoupledmulti-modelpredictionsarecombinedandcalibratedusingforecastassimilation,moreskillful integratedforecastsareobtainedthanwith eitherempiricalor coupledmulti-modelpredictionsalone. Both the reliability andresolutionof the probability forecastshave beenimproved by forecastassimilationin several regionsofSouthAmerica. The tropicsand the areaof southernBrazil, Uruguay, ParaguayandnorthernArgentinahavebeenfoundto bethetwo mostpredictableregionsof SouthAmericaduringtheaustralsummer. Skill-ful SouthAmericanrainfall forecastsaregenerallyonly possibleduring El Nino or La Nina yearsratherthanin neutralyears.

1 Introduction

SouthAmericanseasonalforecastsare currently producedwith either empirical (statistical)or physically-derived dynamicalmodels(seebrief literaturereview in section2). It is noteworthy, however, that seasonalforecastsprovidedby severaldifferentsourcesmaybeof no practicalusefor end-users.This is becauseend-usersareusuallyinterestedin asinglewell-calibratedforecastof theeventof their interest.Providing afinite setof forecastsfrom differentmodelswill notalwayshelpthedecisionmakingprocessof theend-user. Conversely,a singlewell-calibratedprobability forecastthat incorporatesall availablemodelpredictioninformationmaybemorebeneficialfor end-users.Theneedof anobjective methodfor combiningdifferentpiecesof availableforecastinformationin SouthAmericahasrecentlybeenrecognisedby Berri andAntico (2005). This paperaddressesandproposesa solutionfor this problemby objectively producinga singleintegrated(i.e. combinedandcalibrated)forecastof seasonalrainfall for SouthAmericathat gatherspredictioninformationfrom fourdifferentsources(threecoupledocean-atmospheremodelsandanempiricalmodel).

Goodquality seasonalforecastsarefundamentalfor local governmentsto plan their actionsin orderto mini-mize humanandeconomicallossesthat may be causedby anomalousclimateeventssuchasthoseobservedduringEl Nino-SouthernOscillation(ENSO)episodes.In SouthAmericatheseforecastsareusefulfor civil de-fence,agricultural,fisheryandwaterresources(reservoir management)planning.Brazil, thelargestandmostpopulatedcountryof SouthAmerica,producesmore than90% of its electricity from hydropower stations1,emphasisingtheneedfor goodquality seasonalrainfall forecasts.Theprovision of improvedseasonalrainfallforecastscould help the Brazilian governmentto betterplan its managementactionsin orderto have a moreefficient controlof its nationalelectricityproductionprogram.

Figure1ashows thetotalannualmeanrainfall for SouthAmerica.Figure1b shows themeanrainfall in australsummerdefinedhereasNovember-December-January(NDJ). Thesefiguresshow that a large amountof the

1For moreinformationseehttp://www.ons.org.br

TechnicalMemorandumNo. 461 1

Page 4: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

0

800

1000

1200

1600

2000

2500

5000

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Na) Annual mean

0

200

400

600

800

1000

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Nb) NDJ mean

0

50

100

200

300

400

500

600

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Nc) Annual standard deviation

0

50

100

150

200

250

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Nd) NDJ standard deviation

Figure 1: a) Total annualmeanrainfall. b) Total November-December-Januarymeanrainfall. c) Annualtotal standarddeviation. d) November-December-Januarytotal standard deviation. Units are in millimetres. Climatological referenceis 1948-2001.

2 TechnicalMemorandumNo. 461

Page 5: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

total annualrainfall falls duringtheaustralsummer, which definesthewet seasonfor of mostSouthAmerica.TropicalandsouthernSouthAmericahave thelargestannualandaustralsummerrainfall variability (Fig. 1c-d). Althoughgoodquality dry seasonforecastsmaybeasimportantaswet seasonforecastsfor somesectors,wet seasonforecastsareof most relevancefor electricity generation.This study focusseson predictionsofNovember-December-Januarytotal rainfall for SouthAmericaproducedwith initial conditionsof thefirst dayof theprecedingAugust(i.e. 3-monthlead). Thesearethe longestleadaustralsummerpredictionsthatwereavailablefor investigationfrom theEuropeanUnionfundedprojectentitledDevelopmentof aEuropeanMulti-modelEnsemblesystemfor seasonalto inTERannualprediction(DEMETER2) (Palmeretal. 2004).Therefore,all resultsshown in thispaperare3-monthleadforecastsfor November-December-January. Three-monthleadtraditionalaustralsummerDecember-January-February forecastscouldnot beexaminedbecauseDEMETERsimulationshave only beenproducedfour timeseachyear, startingon thefirst dayof February, May, AugustandNovember.

SouthAmericais aregionwith strongatmosphericteleconnectionslinkedto ENSO(WallaceandGutzler1981;Trenberthetal. 1998).Becauseof theseteleconnections,thereis promisingskill in seasonalforecastsfor someregionsof SouthAmerica.Figure2 showsLa NinaandEl Ninocompositesof australsummerSouthAmericanrainfall. Thesefiguresillustrate regions strongly affectedduring ENSO events(shadedareas). During LaNinayears,positive anomaliesareobserved in northernSouthAmericaandnegative anomaliesareobservedin southern/southeastern SouthAmerica. This patternis reversedduringEl Nino years.Seasonalforecastsintheseregionshave somepredictive skill, aswill bediscussedin moredetail later.

YearsLa Nina 1964/65,1970/71,1971/72,1973/74,1974/75,1975/76,

1983/84,1984/85,1988/89,1995/96,1998/99,1999/00,2000/01

Neutral 1959/60,1960/61,1961/62,1962/63,1966/67,1967/68,1978/79,1980/81,1981/82,1985/86,1989/90,1993/94,

1996/97,2001/02El Nino 1963/64,1965/66,1968/69,1969/70,1972/73,1976/77,

1977/78,1979/80,1982/83,1986/87,1987/88,1990/91,1991/92,1992/93,1994/95,1997/98

Table 1: La Nina, neutral and El Nino years occurred during 1959-2001as definedby the ClimatePredictionCenter(http://www.cpc.noaa.gov/).

Climatemodelpredictionsusuallyproducedatcoarse2 � 5��� 2 � 5� resolutionarenotableto (andarenotexpectedto) simulatetheobserved climateperfectly. This problemis furtheraggravatedby the lack of comprehensiveobservationaldatasetsto initialise themodelsappropriatelyandthelack of a completephysicalunderstandingof the climate system. All this limitations contribute for uncertaintiesin climate predictionsand thereforecalibrationagainstpastobservationsis required.Toourknowledge,nostudieshavebeenpublishedwith theaimof improving thequalityof SouthAmericaphysically-derivedclimatemodelseasonalpredictionsby statisticalcalibrationbasedon pastobservations. Most previous studies(e.g. Cavalcantiet al. 2002; Marengoet al.2003;Moura andHastenrath2004) investigatedthe ability of atmosphericgeneralcirculationmodelsforcedwith observed seasurfacetemperaturein simulatingclimatologicalfeaturessuchasthe annualandseasonal

2For moreinformationaboutthis projectreferto http://www.ecmwf.int/research/demeter

TechnicalMemorandumNo. 461 3

Page 6: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5N

-10

-10

10

10

10 0

0

00

0

0

-10

a) La Nina

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5N

10

10

0

20

0

0

0

0

0

0

-10

-10

-10

-20

10

b) El Nino

Figure2: November-December-Januarya) La Nina andb) El Ninocompositesfor thoseyears listedin Table1. Compos-

itesaregivenby thequantityc ��� y�y 1 100%, where y� is themeanNovember-December-Januaryrainfall of La Nina

andEl Nino years of Table1 andy is the1948-2001meanNovember-December-Januaryrainfall. Regionswith positiveanomalies(i.e. y� � y) havethequantityc � 0. Regionswith negativeanomalies(i.e. y��� y) havethequantityc � 0.

cyclesof rainfall for someregionsof SouthAmerica.Thesestudieshave identifiedsystematicforecasterrors,yet have not suggestedapproachesfor correctingtheseerrorssoasto improve theforecasts.Theerrorsarisefrom acombinationof factorssuchasthechaoticevolutionof theatmosphere,errorsin theinitial conditionsofthemodel,anderrorsin modelformulation/parameterisation. ThisstudyusesaBayesianapproachfor statisticalcalibrationof coupledmodelSouthAmericanrainfall seasonalpredictions.

We presenta new integratedrainfall seasonalforecastingsystemfor SouthAmericathatconsistsof anempir-ical modelanda coupledmulti-modelensemblepredictionsystem.IntegratedforecastsareproducedusingaprobabilisticBayesianforecastassimilationprocedure(Coelho2005;Stephensonet al. 2005). AppendixAprovidesmoreinformationaboutBayesianforecastassimilation.Thisprocedureallows theproductionof well-calibratedreliableprobabilityestimatesof rainfall by statisticallycorrectingmodelerrorsbasedonpasthistoryof predictionsand observations. It also allows the combinationof forecastsproducedby different sources,andis usedherefor combiningbothempiricalandcoupledmulti-modelpredictions.Theresultingcombinedandcalibratedforecastsaresummarizedby themeanandthevarianceof a normal(Gaussian)distribution ateachgrid point. Seasonalaveragesof rainfall over several regionsof SouthAmericaarefound to beclosetofollowing anormaldistribution (seeFig. 3).

A particularaim of this studyis to answerthequestionof whetheror not forecastsproducedby theproposedintegratedsystemarebetterthanthoseproducedby a simpleempiricalmodelor by the simplemulti-modelensemblealone. In order to addressthesequestions,the skill of predictionsproducedby eachindividualcomponentof theproposedintegratedsystemis comparedto theskill of theintegratedforecasts.

4 TechnicalMemorandumNo. 461

Page 7: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

Section2 reviews thecurrentstateof SouthAmericanrainfall seasonalforecastingandintroducesthe ideaofcombiningall availablepredictioninformationin orderto producethebestpossibleestimateof thefuturelikelyclimateconditions.Section3 briefly introducesanddescribesthetwo componentsof theproposedintegratedsystem.Section4 describeshow predictionsareobjectively combinedandcalibratedin theproposedintegratedsystem.Theskill of combinedandcalibratedforecastsof theintegratedsystemaswell asempiricalandmulti-modelensemblepredictionsaloneareassessedandcomparedin section5. Finally, section6 concludesthepaperwith asummaryof themajorfindingsandadiscussionof possiblefutureareasof research.

2 Review of South American rainfall seasonal forecasting

Severalstudieshaveusedatmosphericgeneralcirculationmodelsforcedwith observedseasurfacetemperaturesto simulateseasonalrainfall over SouthAmerica(e.g. Follandet al. 2001;Cavalcantiet al. 2002;Marengoet al. 2003; Moura andHastenrath2004). Thesestudieshave demonstratedthat atmosphericmodelshavesomepredictive skill whenforecastingrainfall in the tropical region of SouthAmericaandover thesouthernpartof Brazil, Uruguay, ParaguayandnortheasternArgentina.All otherareasof SouthAmericashowedpoorpredictive skill. They all foundthat forecastskill is highly conditionedon thepresenceof ENSOevents,withneutralyearshaving lesspredictive skill. Both tropical SouthAmerica and the southernregion of Brazil,Uruguay, ParaguayandnortheasternArgentinahave strongENSOsignals(Fig. 2).

Studiesby Pezziet al. (2000),Follandet al. (2001),GreischarandHastenrath(2000)andMartis et al. (2002)have developedempiricalmodelsthatrelateobservedrainfall to seasurfacetemperatureover theAtlantic andPacific oceansaswell as the meridionalsurfacewind componentover the tropical Atlantic. Thesemodelshave beenusedto predictseasonalrainfall over thesouthandnortheastregionsof Brazil andtheNetherlandsAntilles. Empiricalmodelshavebeenprimarily developedfor theseregionsbecauseof thehigherpredictabilityof theseregionscomparedto theotherareasof SouthAmerica(Cavalcantiet al. 2002;Marengoet al. 2003).Empirically basedrainfall predictionsfor thenortheastregion of Brazil areskillful during theperiodMarch-April-May, which is the rainy seasonfor mostpartsof this region (GreischarandHastenrath2000; Follandet al. 2001;Moura andHastenrath2004). The empiricalpredictionsof Pezziet al. (2000)for the southofBrazil aregenerallylessskillful thanthepredictionsfor thenortheastregion of Brazil, andEl Nino yearswerefound to bemorepredictablethanneutralandLa Ninayears.It is worth noticing,however, that themajorityof thesestudiesproduceddeterministicforecasts.Very little effort hasbeenput into producingprobabilisticrainfall seasonalforecastsfor SouthAmerica,emphasizingthatthis is anareaof researchthatdeservesfurtherattention.Thispaperproducesprobabilisticrainfall seasonalforecastsfor SouthAmerica.

The comparative skill of physically-derived dynamicalandempirically basedseasonalpredictionsof SouthAmericanrainfall hasnot beenfully explored,andfurther systematiccomparisonsaredesirable(Moura andHastenrath2004). Only a few comparisonstudies(Folland et al. 2001; van Oldenborgh et al. 2005; andMoura andHastenrath2004), focussingon rainfall forecastsfor SouthAmericahave beencarriedout. VanOldenborgh et al. (2005)concludedthatphysically-derived dynamicalpredictionsslightly outperformempir-ical predictionsover tropical SouthAmerica,northeastBrazil andUruguayin December-January-February.Follandetal. (2001)andMouraandHastenrath(2004)focussedonrainfall forecastsfor thenortheastof Brazilandconcludedthatphysically-deriveddynamicalpredictionsdo notoutperformempiricallybasedpredictions.Theirconclusionsarein accordancewith othercomparativeskill assessmentstudiesfor othertargetregionsout-sideSouthAmerica(e.g. Barnstonet al. 1999;Andersonet al. 1999). Section5 of this paperwill contributeto this skill comparisonexercise.We comparetheskill of an empiricalmodelthatusesobserved Pacific andAtlantic seasurfacetemperatureanomaliesto predictSouthAmericanaustralsummerrainfall anomalies,withthe skill of 3-monthleadaustralsummerrainfall anomaliespredictionsproducedby a coupledmulti-modelensemblefor theperiod1959-2001.Theempiricalmodeldevelopedin thisstudydiffersfrom thoseof previous

TechnicalMemorandumNo. 461 5

Page 8: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

studies(GreischarandHastenrath2000;Pezzietal. 2000;Follandetal. 2001;MouraandHastenrath2004)inthatit predictsrainfall anomaliesfor theentireSouthAmericancontinent,while thepreviousstudiesfocussedonly on specificsub-regions.

Combiningthepredictionsfrom thesetwo approachescanhelpyield betterforecastsof futureclimate.TheIn-ternationalResearchInstitutefor ClimatePrediction(IRI) subjectively combinesphysically-deriveddynamicalandempirically basedseasonalpredictionsfor several continentalregions(Barnstonet al. 2003). Objectivecombinationhasstill notbeenimplementedoperationallyby any seasonalclimatepredictioncentre.Thisstudydemonstratesan objective forecastassimilationschemefor combiningphysically-derived coupledmodelandempiricallybasedpredictionsof SouthAmericanrainfall anomalies.Theskill of integratedforecastsobtainedwith forecastassimilationis shown to exceedtheskill of eachindividual predictionapproach.

3 Empirical and coupled model predictions

3.1 Empirical prediction model

SouthAmerica is borderedby the Pacific andAtlantic oceans.Surfaceconditionsof thesetwo oceansarepotentialsourcesof predictabilityfor SouthAmericanclimate(MouraandShukla1981;Mechosoet al. 1990;Marengo1992;NobreandShukla1996;Diaz et al. 1998;Uvo et al. 1998;BarrosandSilvestri2002;Coelhoetal. 2002;PeagleandMo 2002amongothers).Thesestudieshave identifiedregionsof SouthAmericawhererainfall is sensitive to seasurfacetemperatureanomaliesin the Pacific andAtlantic oceans.This sectionex-ploits theserelationshipsby usinga laggedregressionempiricalmodelbasedonmaximumcovarianceanalysis(MCA) (vonStorchandZwiers1999)– sometimesreferredto assingularvaluedecomposition(SVD).Thisem-pirical modelusesMay-June-July(MJJ)Pacific andAtlantic seasurfacetemperatureanomalies(140oE-10oE;15oN-60oS)aspredictorsfor SouthAmericanrainfall anomaliesof thefollowing November-December-Januaryduring 1959-2001.The previous seasonMay-June-Julyis usedfor consistency with the initial conditionsofthe first day of August that are usedby the threeDEMETER coupledmodelshereinvestigatedto predictNovember-December-Januaryrainfall (seesection3b). In this way both empiricalandcoupledmodelsuseinitial conditionsobserved up until the last day of July. Seasurfacetemperatureanomalieswere obtainedfrom ERA-40reanalysis(ECMWF 40 yearsreanalysisproject,Uppalaet al. 2005). ERA-40providesglobalanalysisof variablesfor theatmosphereandland for theperiod1958-2001.More informationis availableathttp://www.ecmwf.int/research/era/.Precipitationanomalieswereobtainedfrom the50-year1950-2001globalmonthlyprecipitationreconstructionover land(PREC/L)version1.0dataset3 (Chenetal 2002),whichis basedon gaugeobservations. Thesedatasetshave beenchosenbecausethey areamongthemostcompletewith thelongestrecordsavailablefor climateresearch.

A simplewayto predictaSouthAmericanrainfall anomalyy usesmultivariatelinearregressiononthepreced-ing seasurfacetemperatureanomalyz:

y � M � z � z0 ��� εT (1)

wherey is a q-dimensionalvector, z is a p-dimensionalvector, z0 is a p-dimensionalbiasvector, M is a p � pmatrix of parametersand εT is a (multivariate)normally distributed error with zero meanand q � q errorcovariancematrix T. Theequationcanbewrittenasthefollowing probabilitymodel:

y � z � N � M � z � z0 ��� T ��� (2)

3Availableat ftp://ftp.ncep.noaa.gov/pub/precip/50yr/gauge/2.5deg

6 TechnicalMemorandumNo. 461

Page 9: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

wherethestandardstatisticalsymbol’ � ’ denotes“given” (conditionalupon)and � N ��� � means(multi-variate)normallydistributed.

Thenormalityassumptionis generallyvalid for seasonalrainfall anomalies.Figure3ashows theYule-Kendallskewnessstatisticsfor seasonalmeanrainfall anomalies.This statisticsprovidesa resistantmeasureof asym-metryof thedistribution andis definedas

γ � y0� 25 � 2y0 � 5 � y0� 75

y0� 75 � y0� 25� (3)

wherey0 � 25, y0 � 5 andy0� 75 arethe lower quartile,themedianandtheupperquartileof y, respectively. Severalregions of SouthAmerica have γ closeto zero, indicating that seasonalmeanrainfall anomaliesfor theseregionsarecloselyapproximatedby a normaldistribution. Thenormalityassumptionsubstantiallysimplifiesbothmodellingandparameterestimation.

ThematricesM andT andthebiasvectorz0 canbeobtainedusingordinaryleastsquaresestimation:

M � SyzS� 1zz (4)

T � Syy � SyzS� 1zz ST

yz (5)

z0 � ��� y � zMT � M � MTM � � 1 (6)

whereSzz is the � p � p� covariancematrix of seasurfacetemperatureanomalies,Syy is the � q � q� covariancematrix of rainfall anomalies,andSyz is the � q � p� cross-covariancematrix. Overbarsdenotetime meansof yandz, XT denotesthetransposeof matrix X andX � 1 the inverseof matrix X. Thecommonperiodof rainfallandseasurfacetemperatureanomaliesusedfor estimationin thisstudyis 1959-2001(n � 43summers).

Reliableparameterestimationis difficult becauseof thelargedimensionalityof griddeddatasets(e.g. p=2761grid pointsof seasurfacetemperatureanomaliesover thePacificandAtlantic andq=312grid pointsof rainfallanomaliesover SouthAmerica)andthestrongdependency betweenvaluesat neighbouringgrid points. Poorconditioningof matricessuchasSzzmakesparameterestimationunreliable.Thisproblemcanbecircumventedusingmultivariatedimensionreductiontechniquesto reducethe dimensionalityof the datasets. Insteadofconsideringgrid point variables,onecanprojectthedataontoa smallsetof leadingspatialpatternsto obtaina small numberof indices. In theexamplepresentedhere,MCA hasbeenusedto extract leadingco-varyingmodesof seasurfacetemperatureandrainfall anomalies.SeeStephensonet al. (2005)for anexplanationofotherdimensionalreductiontechniquesthatcanbeusedto improve parameterestimation.A largenumberofMCA modeshave beenretainedandtested.It wasfoundthatMCA with 6 modesgave thebestcross-validatedforecastresults,which arehereaftershown in this paper. Thefirst 6 modesaccountfor 84.8%of thesquaredcovariancebetweenseasurfacetemperatureandrainfall anomalies.Figure4 shows the squaredcovariancefraction(SCF)asa functionof thenumberof modesfor theMCA betweenseasurfacetemperatureandrainfallanomalies.This figure revealsthat theSCFdropsmonotonicallyuntil 6 modes.After 6 modesa very smallamountof thesquaredcovarianceis accountedfor by eachadditionalMCA mode.

Figure5 shows correlationmaps(spatialpatterns)andtheexpansioncoefficients(timeseries)of thefirst modeof theMCA analysisbetweentheseasurfacetemperatureanomaliesover thePacific andAtlantic oceansand

TechnicalMemorandumNo. 461 7

Page 10: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Na)Observation

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Nb) CNRM

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Nc) ECMWF

85W 75W 65W 55W 45W 35W57.5S

47.5S

37.5S

27.5S

17.5S

7.5S

2.5N

12.5Nd) UKMO

Figure3: November-December-January1959-2001Yule-Kendallskewnessstatisticsγ of rainfall anomalies.a) Observa-tions,b) CNRM,c) ECMWFandd) UKMO coupledmodelpredictions.

8 TechnicalMemorandumNo. 461

Page 11: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

10

20

30

40

50

60

Mode

SC

F (

%)

Figure 4: Squaredcovariancefractionasa functionof thenumberof modesfor theMCA betweenobservedMay-June-July seasurfacetemperatureandobservedNovember-December-JanuarySouthAmericarainfall anomaliesfor theperiod1959-2001.Thefirst6 modesaccontfor 84.8% of thecovariancebetweenobservedseasurfacetemperatureandobservedrainfall anomalies.

theSouthAmericanrainfall anomaliesovertheperiod1959-2001.Correlationmapsareobtainedby correlatingtheexpansioncoefficient time seriesof onefield (e.g. rainfall) with theobservedgrid point valuesof theotherfield (e.g. seasurfacetemperature).Correlationswith magnitudegreaterthan0.3 arestatisticallysignificantat the5% level usinga two-sidedStudent’s t-test. This first modeaccountsfor a largeamount(51.5%)of thesquaredcovariancebetweenseasurfacetemperatureandrainfall. Theseasurfacetemperaturepattern(Fig. 3a)shows basin-widecorrelationsin theequatorialPacific relatedto ENSO.Warm(El Nino) yearsareevidentaspositive peaksin thetimeseriesof Fig. 5c andcold (La Nina)yearsareevidentby minimain thesetimeseries.Therainfall pattern(Fig. 5b) hasnegative correlationsover northernSouthAmericaandpositive correlationsover southernBrazil, Uruguay, Paraguay, northernArgentinaandEcuador. This figurerevealsa dipolepatternthatduringEl Nino yearsis marked by deficit of rainfall in northernSouthAmericaandexcessof rainfall insouthernBrazil, Uruguay, ParaguayandnorthernArgentina.During La Ninayearsthis patternis reversed.Asimilar ENSOpatternto Fig. 5 hasbeenidentifiedby Ropelewski andHalpert(1987;1989),Kiladis andDiaz(1989)andPeagleandMo (2002)andis in accordancewith theENSOcompositesshown in Fig. 2. Thesecondandthethird MCA modes(notshown) accountfor 14.7%and7.2%of thesquaredcovariance,respectively, andrelateseasurfacetemperaturevariability in the Atlantic oceanandrainfall over SouthAmerica. The secondmodehaspositive correlationbetweenseasurfacetemperaturesin theequatorialAtlantic andrainfall over thenortheastregion of Brazil. The third modepositively relatesseasurfacetemperaturesover a large areaof theAtlantic with rainfall over centralandnorthwesternSouthAmerica.

Theempiricalpredictions(EMP)areperformedasfollows:

1. To avoid artificial skill, themodelparametersareestimatedfor eachsummerusingonly datafor all the

TechnicalMemorandumNo. 461 9

Page 12: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

-0.9 -0.6 -0.3 -0.2 0.2 0.3 0.6 0.9

a) SST: Mode 1 SCF: 51.5% b) Precipitation

1960 1965 1970 1975 1980 1985 1990 1995 2000-40

-20

0

20

40

year

Firs

t MC

A m

ode

c) Time series r= 0.84

SST (MJJ)Prec (NDJ)

Figure 5: First MCA modebetweenMJJ seasurfacetemperature anomaliesandNDJ SouthAmericarainfall anomaliesfor the period 1959-2001.Thesquaredcovariancefraction (SCF),which indicatesthe percentage of the total squaredcovariancebetweenMJJ seasurfacetemperature anomaliesand NDJ SouthAmericarainfall anomaliesexplainedbythis mode, is 51.5%. a) seasurfacetemperature (SST)correlationpattern.b) Rainfall correlationpattern.c) Expansioncoefficients(timeseries)of SST(dashedline) andrainfall (solid line). Thecorrelationr betweenthesetwo timeseriesisindicatedin panelc.

10 TechnicalMemorandumNo. 461

Page 13: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

othersummers(cross-validation).

2. Time meansare subtractedfrom the n � 1 seasurfacetemperatureand rainfall observationsto makeanomaliesstoredin a � n � 1 � q� datamatrixY anda � n � 1 � p� datamatrixZ, respectively.

3. An SVD analysisis performedof the matrix YTZ to determinethe leadingMCA modesU andV inYTZ � UΣVT .

4. A multivariateregressionof thek-leadingMCA rainfall andseasurfacetemperaturemodesis performedin orderto estimateM, z0, andT.

5. TheestimatedquantitiesM, z0, andT arethenusedto predicttherainfall anomaliesfor theremovedyearusingtheseasurfacetemperatureanomaliesavailablefor thatyear.

3.2 Coupled multi-model ensemble predictions

An ensembleforecastof an individual coupledmodelsamplesuncertaintiesin the initial conditionsusedtoproducethe forecast. Uncertaintiesin the model formulationarenot sampledby this single-modelensem-ble approach.However, differentmodelsusedifferentnumericalandparameterisationschemesto representmathematicallythe samephysicalprocesses.The multi-modelensemble,consistingof ensemblepredictionsproducedby differentclimateresearchinstitutions,helpssampleuncertaintiesdueto modelformulation.

Themulti-model forecastingsystemusedhereconsistsof the threestate-of-the-artEuropeancoupledocean-atmospheremodelslisted in Table2. Thesemodelswererun aspart of the DEMETER projectat ECMWF(Palmeret al. 2004; Hagedornet al. 2005) to producemulti-modelensemblehindcasts(i.e. retrospectiveforecastsproducedafter the eventsareobserved) for the period1959 to 2001(43 years). In fact a total ofseven coupledmodelswererun in DEMETER.The reasonfor usingonly predictionsof the threemodelsofTable2 is becausethey producedthelongesttimeseriesof hindcasts.Thecoupledmodelswererun four timesper year, startingon the 1st day of February, May, August and Novemberat 00:00 GMT. A nine memberensembleforecastwasmadefor eachcoupledmodelfor thefollowing six months.Wind stressandseasurfacetemperatureperturbationswere usedto generatethe ensemblemembersfor eachmodel. Atmosphericandland-surfaceinitial conditionsweretakenfrom theERA-40reanalysis.All modelpredictionswerebi-linearlyinterpolatedonto the same2 � 5��� 2 � 5� grid. More detailsof the experimentsaredescribedin Palmeret al.(2004)andHagedornetal. (2005).

Institution Acronym CountryMeteo-France(CentreNationaldeRecherchesMeteorologiques) CNRM France

EuropeanCentrefor Medium-RangeWeather ECMWF InternationalForecasts organisation

UnitedKingdomMet Office UKMO U.K.

Table2: ThreeEuropeancoupledocean-atmospheremodelsusedfor producingseasonalforecastsfor SouthAmerica.

The27memberensembleof thethreecoupledmodelsof Table2 is usedhereto producepredictionsof australsummerrainfall for SouthAmerica. Thesepredictionsareobtainedby computingthe ensemblemeanandvarianceof all membersof the ensembleand are referredto as coupledmulti-model ensemblepredictions(ENS)or simplymulti-modelpredictions.

TechnicalMemorandumNo. 461 11

Page 14: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

4 Calibration and combination of forecasts

Theobjective forecastassimilationprocedureof Coelho(2005)andStephensonet. al. (2005)is usedhereforthecalibrationandcombinationof SouthAmericanrainfall anomalypredictionsproducedby:� thethreeDEMETERcoupledmodelslistedin Table2; and� theempiricalmodelof section3a.

A usefulfeatureof forecastassimilationis that it allows predictedpatternsto be shiftedspatiallyin ordertocorrectfor modelbiasesin coupledmodelpredictions.In otherwords,theprocedureaccountsfor inter-gridpointdependencies,whereasthecombinationmethodsusedbyRajagopalanetal. (2002),MasonandMimmack(2002)andRobertsonet al. (2005)areperformedat grid points individually. AppendixA summarisestheforecastassimilationprocedure.

Threedifferentforecastexperimentshave beenproducedwith forecastsassimilation:� Integratedforecastsproducedwith prior distribution estimatedusingrainfall observationsover thecalibra-tion period1959-2001;andusingempiricalpredictionsin additionto coupledmodelpredictionsin theforecastassimilationprocedure.In otherwords,thematrix of forecastsusedin forecastassimilationconsistedof pre-dictionsof thethreeDEMETERcoupledmodelsin additionto empiricalmodelpredictions(seeAppendixAfor furtherdetails)� Integratedforecastswith empiricalprior producedwith empiricalpredictionsasestimatesof theprior distri-bution;andonly thethreeDEMETERcoupledmodelpredictionsareusedin theforecastassimilationprocedure� Coupledmodelintegrated forecastsproducedwith prior distribution estimatedusing rainfall observationsover the calibrationperiod1959-2001;andonly the threeDEMETER coupledmodelpredictionsareusedintheforecastassimilationprocedure.Notethattheseforecastsdo not incorporateempiricalpredictions.

Thesecondandthird experimentsabove have beenperformedassensitive testsfor thefirst experiment.Thesecondexperimentwasdesignedto checkwhetheror not theuseof empiricalpredictionsasestimatesfor theprior distribution could provide betterquality forecaststhanintegratedforecastsof the first experiment.Thethird experimentaimedto checkif theexclusionof empiricalpredictionsof thefirst experimentwould impactin gainor lossof forecastskill. Resultsindicatethat integratedforecastsobtainedin thefirst experimenthaveslightly betterskill thanthe forecastsof the othertwo experiments.For this reasononly integratedforecastsof the first experimentwill be shown anddiscussedhereafter. Theseforecastsare referredto as integratedforecasts(INT).

5 Forecast skill

This sectionassessestheskill of australsummerrainfall forecasts.Both deterministicandprobabilisticskillmeasuresarepresented.Theskill of integratedforecastsobtainedwith forecastassimilationis comparedto theskill of bothcoupledmulti-modelensemblepredictionsandempiricalpredictionspreviouslydefinedin section3.

Figure6 shows observed australsummerrainfall anomaliesduring1982/83,1988/89and1998/99(first row),andthe forecastanomaliesfor thesethreeyearsproducedby the empiricalmodel(secondrow), the coupledmulti-model ensemble(third row) and the integratedsystem(fourth row). The spatialcorrelationbetweenthe observed andthe forecastanomaliesis shown in the bottomright handcornerof Figs. 6d-l. Empiricalpredictionsareableto reproducethe observed patternof negative anomaliesin northernSouthAmericaand

12 TechnicalMemorandumNo. 461

Page 15: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

positive anomaliesin southernBrazil during1982/83(Fig. 6d)anda reversepatternduring1988/89(Fig. 6e).In 1998/99the empiricalmodelfailed to successfullyreproducetheobserved pattern(Fig. 6f). The coupledmulti-modelpredictionwasable to reproducethe observed patternof negative anomaliesin northernSouthAmericaandpositive anomaliesin costalPeruandEcuadorduring1982/83,but failedto reproducethepatternof positive anomaliesobserved in southernBrazil (Fig. 6g). In 1988/89the coupledmulti-modelpartiallyreproducedthe observed patternof positive anomaliesin northernSouthAmericaandnegative anomaliesinsouthernBrazil (Fig. 6h). In 1998/99,asfor theempiricalprediction(Fig. 6f), thecoupledmulti-modelfailedtoreproducetheobservedpattern(Fig. 6i). Whenempiricalandcoupledmulti-modelpredictionswerecombinedandcalibratedwith forecastassimilation,muchbetterintegratedforecastswereobtained.Integratedforecasts(Figs.6j-l) arein betteragreementwith theobservations(Figs. 6a-c). Integratedforecastfor 1982/83have aspatialcorrelationof 0.66 (Fig. 6j), which is larger thanthe valuesof 0.37and0.58 obtainedfor empiricalandcoupledmulti-modelpredictions,respectively (Figs. 6d and6g). Theintegratedforecastfor 1988/89havea spatialcorrelationof 0.42(Fig. 6k), which is larger thanthevalueof 0.33of theempiricalprediction(Fig.6e)andslightly smallerthatthevalueof 0.44of thecoupledmulti-modelprediction(Fig. 6h). Note,however,thattheintegratedforecastreproducesmuchbettertheobservednegative anomaliesin southernBrazil thanthecoupledmulti-modelprediction. Integratedforecastfor 1998/99have a spatialcorrelationof 0.24 (Fig. 6l),which is muchlargerthanthevaluesof 0.05obtainedfor empiricalandcoupledmulti-modelpredictions(Figs.6f and6i).

Figure7 shows Brier score(Brier 1950)mapsandits reliability andresolutioncomponentsfor empirical(firstrow), multi-model(secondrow) andintegratedforecasts(third row) for theperiod1959-2001.SeeAppendixB for definition andfurther informationaboutthe Brier scoreandits decomposition.The Brier scoreis forthebinaryeventdefinedby negative seasonalmeanrainfall anomalies.Thetropical region, in northernSouthAmerica,andthesubtropics(southernBrazil, Uruguay, ParaguayandnorthernArgentina)arethemostskillfulregionswith Brier scoreslessthan0.25(Figs. 7a,7d and7g). Interestingly, thesetwo regionshave theYule-Kendallskewnessstatisticsof rainfall anomaliescloserto zerothantheotherregionsof SouthAmerica(Fig.3). This suggeststhat forecastskill for the other regions of SouthAmerica might be improved if anotherdistribution,differentfrom themulti-variatenormaldistribution, is usedin theforecastassimilationprocedure.As previously discussed,the tropical andsoutheasternSouthAmericaareinfluencedby ENSO.Figs. 7a,7dand7g suggestthat mostof the skill of SouthAmericanrainfall predictionsis ENSOderived in accordancewith Figs. 5 and10, which show thatmostof thepredictabilityof SouthAmericanaustralsummerrainfall isENSO-related.

The comparisonof Brier scoremapsof Figs. 7a and7d revealsthat empiricalandmulti-modelpredictionshave similar level of skill. Integratedforecastsobtainedwith forecastassimilationhave improved skill overboth empiricalandmulti-modelpredictionsalone(Fig. 7g). Integratedforecasts(Fig. 7g) have larger areaswith Brier scoresbelow 0.25thanempirical(Fig. 7a)andcoupled-model(Fig. 7d) predictions.Additionally,integratedforecastsalsoshow predictiveskill overthesouthof thenortheastregionof Brazil,whereasempiricalandcoupled-modelforecastshavepoorpredictive skill over this region. Theimprovedpredictive skill obtainedwith the integratedsystemis mainly dueto improvementsin the reliability of the forecasts(Figs. 7b, 7eand7h), althoughimprovementsin the resolutionof the forecastsarealsonoticedin tropical SouthAmericaandsouthernBrazil (Figs.7c,7f and7i).

Figure8 shows the meananomalycorrelationcoefficient (ACC) for La Nina, neutralandEl Nino yearsoc-curredduring 1959-2001(listed in Table1) andall (1959-2001)years. The ACC of eachyear is given by

TechnicalMemorandumNo. 461 13

Page 16: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

a) 1982/83 (OBS) b) 1988/89 (OBS) c) 1998/99 (OBS)

d) 1982/83 (EMP)

0.37

e) 1988/89 (EMP)

0.33

f) 1998/99 (EMP)

0.05

g) 1982/83 (ENS)

0.58

h) 1988/89 (ENS)

0.44

i) 1998/99 (ENS)

0.05

j) 1982/83 (INT)

0.66

k) 1988/89 (INT)

0.42

l) 1998/99 (INT)

0.24

Figure6: Austral summerrainfall anomalies(mm)for 1982/83,1988/89and1998/99.Observations(first row),empiricalforecasts(secondrow),coupledmulti-modelensembleforecasts(third row) andintegratedforecasts(fourth row).

14 TechnicalMemorandumNo. 461

Page 17: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

a) Brier score (EMP) b) Reliability (EMP) c) Resolution (EMP)

d) Brier score (ENS) e) Reliability (ENS) f) Resolution (ENS)

g) Brier score (INT) h) Reliability (INT) i) Resolution (INT)

Figure 7: Brier scoresfor thebinary eventdefinedby negativeseasonalmeanrainfall anomaliesand its reliability andresolutioncomponentsfor empirical(first row),ensemble(secondrow) andintegrated(third row) forecasts.Brier scoresarefor austral summerforecatsfor theperiod1959-2001.Thereliability andresolutioncomponentswereestimatedusing10equallyspacedprobabilitybinsfrom0 to 1.

TechnicalMemorandumNo. 461 15

Page 18: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

0.0

0.05

0.10

0.15

0.20

0.25

0.30

AC

C

La Nina Neutral El Nino 1959-2001

INT

ENS

EMP

Figure8: Meanaustral summeranomalycorrelationcoefficient(ACC)for empirical(EMP),coupledmulti-modelensem-ble (ENS)andintegrated(INT) forecastsof La Nina, neutral, El Nino years (listed in Table1) andall 1959-2001years.Thevertical solid lineson thetop of thewhitebars indicatethe95% confidenceinterval for themeanACC of empiricalforecasts,which were obtainedusinga bootstrap resamplingprocedure(Wilks 1995,section5.3.2).

thecorrelationbetweentheobservedandthepredictedspatialanomalypattern(Jolliffe andStephenson2003,their section6.3.1). The moststriking featureof Fig. 8 is the little magnitudeof themeanACC (inferior to0.3). This illustratesthat australsummerSouthAmericanrainfall forecastskill is low. La Nina andEl Ninoyearshave highermeanACC thanneutralyears,indicatingthatpredictionsfor ENSOyearsaremoreskillfulthanpredictionsfor neutralyears. Note, however, that predictionsfor El Nino yearsaremoreskillful thanpredictionsfor La Nina years. El Nino andLa Nina integratedforecastsobtainedwith forecastassimilationshow an increasein themeanACC comparedto empiricalandmulti-modelpredictions.This is becausefore-castassimilationhasshiftedmodelpredictedpatternstowardsobservedpatterns.Neutralyearshave very littlemeanACC, indicatingthat rainfall anomaliesof theseyearsarehardlypredicted.ThehigherpredictabilityofENSOyearscomparedto neutralyearssupportstheargumentthatmostof theskill of australsummerSouthAmericanrainfall forecastsis ENSOderived. The vertical solid lines on the top of the white barsof Fig. 8indicatethe95%confidenceinterval for themeanACCof empiricalpredictions.Theseintervalswereobtainedusinga bootstrapresamplingprocedureasdescribedin section5.3.2of Wilks (1995). MeanACCsthat arewithin the rangeof valuesof the 95% confidenceinterval of the meanACC of empiricalpredictionscannotbe considereddifferentfrom the meanACC of empiricalpredictionsfrom the statisticalpoint of view at the5% significancelevel. This meansthatempiricalandmulti-modelpredictionshave similar level of skill whenforecastingrainfall of La Ninayearsandtheall (1959-2001)years.

16 TechnicalMemorandumNo. 461

Page 19: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

6 Conclusions

Thisstudyhasaddressedpredictabilityof australsummermeanSouthAmericanrainfall by proposinganinte-gratedseasonalforecastingsystemfor SouthAmerica. Theproposedintegratedsystemhastwo components:a) anempiricalmodelthatusesPacific andAtlantic seasurfacetemperatureanomaliesaspredictorfor SouthAmericanrainfall, andb) a multi-modelcoupledsystemcomposedby ECMWF, CNRM andUKMO models.ThesemodelsconstitutetheoperationalEuropeanmulti-modelseasonalforecastingsystem,which is hostedatECMWF. Empirical andcoupledmodelpredictionswerecombinedandcalibratedusinga Bayesianforecastassimilationprocedure(Coelho2005;Stephensonet al. 2005)in orderto producea singleintegratedproba-bilistic forecast.Theobjective calibrationandcombinationof empiricalandmulti-modelcoupledpredictionsproposedheremakes this a first steptowardsan integratedforecastingsystemfor issuingSouthAmericanseasonalforecasts.

The proposedintegratedsystemcould feasiblybe implementedat any operationalweatherservicein SouthAmerica(e.g.theCentrefor WeatherPredictionandClimateStudies(CPTEC),in Brazil). Theproposedsystemcanbe expandedby the inclusionof CPTECcoupledmodelpredictionsin additionto ECMWF, CNRM andUKMO coupledmodelpredictionsin themulti-modelsystem.However, thefeasibility of theimplementationof sucha new systemdependson the establishmentof internationalcooperationbetweenCPTEC,ECMWF,CNRM andUKMO aswell asotherSouthAmericanweatherservices.Theinitial stepsfor this implementationhave recentlybeengivenwith theapproval of theEUROBRISA projectproposal(A Euro-BrazilianInitiativefor Improving SouthAmericanseasonalforecasts)by ECMWF Council members. As part of this projectECMWF, CNRM,UKMO andCPTECwill producerealtimeseasonalforecasts,whichwill beintegratedusingtheBayesianforecastassimilationprocedurefor producinga singleprobabilisticforecastfor SouthAmerica.A numberof appliedgovernmentalactivities that dependon seasonalforecastinformation (e.g. electricitygenerationandagriculture)areplannedwithin EUROBRISA. Suchan integratedsystemcould beusedasanadditionaltool for producingobjective probabilisticclimateforecastsduringregionalclimateoutlookforums,which areregularly sponsoredby theWorld MeteorologicalOrganization.A similar approachcouldbeof usein otherregionsof theworld (e.g.NorthAmerica).

In order to answerthe questionof whetheror not forecastsproducedby the proposedintegratedsystemarebetterthan thoseproducedby a simple empiricalmodel or by the simple multi-modelensemblealone,theskill of empirical,coupledmulti-modelandintegratedforecastsobtainedwith forecastassimilationhasbeenassessedandcompared.This comparisonrevealedthat whenseasonallyforecastingSouthAmericanaustralsummerrainfall at 3-monthlead-timethecurrentgenerationof coupledmodelshascomparablelevel of skillto thoseobtainedusinga simplifiedempiricalapproach.Thesameconclusionholdsfor shorter(e.g.1-month)leadtimes(Coelhoet al. 2005).This resultis in agreementwith findingsof previouscomparisonstudies(e.g.Follandet al. 2001;Moura andHastenrath2004). This implies that both empiricalandcoupledmodelpre-dictionsarecomparableto eachother. However, whenempiricalandcoupledmulti-modelforecastshave beencombinedandcalibratedwith forecastassimilationmoreskillful integratedforecaststhaneitherempiricalorcoupledmulti-modelspredictionsalonehavebeenobtained.This resultdemonstratesthatforecastassimilationcanbeusedfor improving thequality of SouthAmericanseasonalpredictions.Theresultingintegratedfore-castshave beenshown to have improvedBrier scorescomparedto bothempiricalandthesimplemulti-modelpredictionover someregionsof SouthAmerica. Forecastassimilationimproved both the reliability andres-olution of the predictionsin tropical SouthAmerica. SoutheasternSouthAmerica– an importantregion forSouthAmericanhydroelectricityandcrop yield production– andthe northeastregion of Brazil alsohadthereliability of thepredictionsimproved. Recentresultsdemonstratethat forecastassimilationis alsousefulforlocaldownscalingof rainfall andriver flow anomaliesfor southeasternSouthAmerica(work in progress).

ThetropicsandsouthernBrazil,Uruguay, ParaguayandnorthernArgentinahavebeenfoundto bethetwo most

TechnicalMemorandumNo. 461 17

Page 20: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

predictableregionsof SouthAmerica. SouthAmericanrainfall is generallyonly predictablein ENSOyearsratherthanin neutralyears,which exhibit very little skill. It is worth stressingthat theskill of australsummerSouthAmericanrainfall predictionsproducedwith thecurrentgenerationof coupledandempiricalmodelsisstill low (c.f. valuesof meanACC lessthan0.3). This suggeststhata largeamountof researchis still requiredin orderto improve thequalityof thesepredictions.

It would beinterestingin thefutureto extendthemethodusedherefor combiningandcalibratingpredictionsto non-normallydistributeddataandto dealwith weatherandclimateextremes.Theuseof non-normaldis-tributionsmight improve forecastskill over thoseregionsof SouthAmericawherethe normalityassumptionis not strictly valid. Non-stationarityof climatecanalsoaffect forecastcalibration.Thedevelopmentof moregeneralisedmethodscapableof dealingwith non-stationarytime seriesmight alsohelp to improve forecastskill. Model selectionprior to thecombinationof predictionsmight alsohelpto improve forecastskill.

Acknowledgements

We wish to thank Prof. D. L. T. Andersonand Dr. T. N. Palmer, who kindly provided the ECMWF cou-pledmodelhindcastsusedin this research.CASCwassponsoredby ConselhoNacionaldeDesenvolvimentoCientıfico e Tecnologico (CNPq) process200826/00-0.FJDR was supportedby DEMETER (EVK2-1999-00024).

Appendix

A Bayesian forecast assimilation

Forecastassimilation(Coelho2005andStephensonetal. 2005)is baseduponBayesianupdatingof prior infor-mationwhennew informationbecomesavailable(Bayes1763).If onehasafirst guessof theprior distributionp � y� of a particularvariableof forecastinteresty (e.g. rainfall) andadditional(new) predictioninformationx thenbecomesavailable (e.g. an ensembleof predictions),then it is possibleto updatep � y� to obtain theposteriorconditionedprobabilitydensityfunction p � y � x� by makinguseof Bayes’theorem

p � y � x� � p � y� p � x � y�p � x� � (7)

The distribution of climate model ensemblepredictionsgives an estimateof p � x� . However, one is reallyinterestedin theposteriordistribution p � y � x� not p � x� . Becauseof uncertaintiesin modelformulationandininitial conditions,climatepredictionsin modelspacedeviateawayfrom thetrueevolution in observationspace.Modelpredictionsx shouldthenbeconsideredasproxy informationthatcanbeusedto infer theprobabilityoffutureobservablesy (Glahn2004;Stephensonet al. 2005;Jollife andStephenson2005). To make inferenceaboutfutureobservablesoneneedsaprobabilitymodelthatcangivetheprobabilityp � y � x� of futureobservablequantitiesy whenprovidedwith modelpredictiondatax, suchasthemodelof Eqn.7.

Unrealisticpredictionsmaybedueto biaseslinked to weaknessof themethodusedfor ensemblegeneration(Atger 2003). Hence,calibrationby inflation of the ensemblespreadis often performedin orderto improveforecastreliability (e.g. Hamill andColucci1998;von Storch1999). Reliability refersto thecorrespondencebetweentheforecastprobabilityof aneventandtherelativefrequency of theeventconditionedupontheforecastprobability (Jolliffe andStephenson2003). Reliability is a measureof forecastuncertaintycorrectnessand

18 TechnicalMemorandumNo. 461

Page 21: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

assessesthecalibrationof theforecasts.Forecastskill dependsontheability to discriminatebetweenobservableoutcomes,whichis known asforecastresolution(Jolliffe andStephenson2003).SeeAppendixB for additionalinformationaboutforecastreliability andresolution.In summary, a goodforecastingsystemshouldbeabletoproducereliableforecastsandalsodiscriminatebetweendifferentobservedsituations.

The likelihood p � x � y� is an essentialingredientin the Bayesianforecastassimilationupdatingprocedure.Itcaneasilybeestimatedby regressionof pastmodelpredictionsx on pastobservationsy. However, asfor theempiricalmodelof section3a,becauseof thelargedimensionalityof griddeddatasetscomparedto thenumberof independentforecastsandthedependency betweenvaluesat neighbouringgrid points,multi-variatelinearregressionof a few MCA leadingmodeshasbeenapplied.

As describedin Coelhoet al. (2004),Coelhoet al. (2003),Coelho(2005)andStephensonet al. (2005),theBayesianprocedureusedto performforecastassimilationhasthreemainingredients:a)estimatetheprior dis-tribution p � y� ; b) modellingof thelikelihoodfunction p � x � y� ; andc) useof Bayestheoremto find theposteriordistribution p � y � x� from p � x� andp � x � y� . For simplicity, it hasbeenassumedthatbothprior andlikelihooddis-tributionsaremulti-variatenormal(Gaussian),leadingto amulti-variatenormalposteriordistribution. Analysisof skewnessγ reveal that this assumptionis generallyacceptablefor observed andpredictedSouthAmericanseasonalrainfall anomalies.Several regionsof SouthAmericahave observed andpredictedseasonalrainfallskewnesscloseto zeroandthereforearenot very far from following anormaldistribution (Fig. 3).

The full equationsof themulti-variatenormalmodelusedhereto performBayesianforecastassimilationaregiven in Coelho(2005)andStephensonet al (2005). All resultspresentedherewereobtainedwith thecross-validation“leave oneout” method(Wilks 1995,section6.3.6). The matrix of predictionsneededto performforecastassimilationin the first experimentof section4 (Integrated forecasts) wascomposedby modelpre-dictionsof thethreeDEMETERcoupledmodelsof Table1 andempiricalmodelpredictionsproducedby themodel introducedin section3a. For the second(Integrated forecastswith empirical prior) and third (Cou-pledmodelintegratedforecasts) experimentsof section4 thematrix of predictionsneededto performforecastassimilationwascomposedby modelpredictionsof thethreeDEMETERcoupledmodelsof Table1.

For the first andthird experimentof section4, the prior distribution p � y� wasestimatedusingthe meanandcovarianceof rainfall observationsover thecalibrationperiod1959-2001.For thesecondexperimentof section4 empiricalpredictionswereusedasestimatesfor theprior distribution p � y� . Becauseof thebetterquality oftheforecastsobtainedin thefirst experimentwhencomparedto theothertwo experiments,only resultsof thefirst experimentareshown anddiscussedhere. The first threeleadingmodesof theMCA betweenobservedandmodelpredictionsof SouthAmericanrainfall anomalieswereusedin theforecastassimilationprocedureof thefirst experiment.A largenumberof modeswasretainedandtested.Forecastassimilationwith 3 modesgave thebestcross-validatedforecastresults.Thesethreemodesaccountfor 87.8%of thesquaredcovariancebetweenobservedandpredictedrainfall. Figure9 shows theSCFasa functionof thenumberof modes.Thisfigure revealsthat the SCFdropsmonotonicallyuntil 3 modes. After 3 modesa very small amountof thesquaredcovarianceis accountedfor by eachadditionalMCA mode.

Figure10 shows correlationmaps(spatialpatterns)andtheexpansioncoefficients(time series)of the leadingmodeof theMCA betweenobservedandmodelpredictedSouthAmericanrainfall anomalies.Correlationmapsareobtainedby correlatingthepredictiontimeseriesof expansioncoefficientswith theobservedandpredictedgrid point valuesof eachmodel.Correlationswith magnitudegraterthan0.3arestatisticallysignificantat the5% level usinga two-sidedStudent’s t-test. The leadingmodeaccountsfor 77.7%of thesquaredcovariancebetweenobservedandpredictedrainfall. Thepatternof observedrainfall (Fig. 10a) shows a similar patterntotherainfall patternof thefirst MCA modeof Fig. 5b, which is relatedto ENSO.Thecorrelationbetweenthe

TechnicalMemorandumNo. 461 19

Page 22: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

10

20

30

40

50

60

70

80

Mode

SC

F (

%)

Figure9: Squaredcovariancefractionasa functionof thenumberof modesfor theMCAbetweenobservedandpredictedaustral summerSouthAmericanrainfall anomaliesfor theperiod1959-2001.

expansioncoefficients(time series)of observedrainfall of thefirst MCA mode(solid line in Fig. 10f) andtheexpansioncoefficients(time series)of observed rainfall of thefirst MCA modeof Fig. 5c (solid line) is 0.98.Thiscorrelationis statisticallysignificantat the1%level usinga two-sidedStudent’s t-test.

Figures10b-eshow correlationmaps(spatialpatterns)of thepredictionsproducedby the four modelsinves-tigatedhere(CNRM, ECMWF, UKMO andEMP). The spatialstructureof thesepatterns(Figs 10b-e)whencomparedto the observed pattern(Fig. 10a) provides an indicationof the ability of thesemodelsto repro-ducetheobserved rainfall. Themagnitudeof thecorrelationsof Figs10b-egivesanindicationof theweightsattributed to eachmodel in the forecastassimilationprocedure.The four modelsareable to reproducetheobservednegative correlationsover centralnorthernSouthAmerica,althoughtheareaof negative correlationsin the threecoupledmodelsis muchlarger thanobserved. Thepatternof positive correlationin northwesternSouthAmerica,nearEcuador, is capturedby theECMWF, UKMO andEMP models,whereasCNRM fails toreproducethis feature.All four modelsareableto capturethesignof positive correlationsin southernBrazil,Uruguay, ParaguayandnorthernArgentina,althoughthe locationof the maximumcorrelationdoesnot per-fectly matchtheobservations.Thesecondandthethird MCA modesaccountfor 6.2%and3.9%of thesquaredcovariancebetweenobserved andpredictedrainfall anddo not resembleany previously publishedmodeofclimatevariability (not shown).

Finally, it is noteworthy thatforecastassimilationhassomeadvantagesandsomepotentialdisadvantages:

Advantagesof forecastassimilation� produceswell-calibratedprobabilityforecasts� ableto dealwith ensemblepredictions

20 TechnicalMemorandumNo. 461

Page 23: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

a) Observation b) CNRM c) ECMWF d) UKMO e) EMP

1960 1965 1970 1975 1980 1985 1990 1995 2000-40

-20

0

20

40

60

year

Firs

t MC

A m

ode

f) Time series r= 0.87

ForecastObservation

Figure 10: Correlationpatternsof thefirst MCA modebetweenobservedandpredictedaustral summerSouthAmericarainfall anomaliesfor the period 1959-2001.TheSCFis 77.7%. a) Observation.b) CNRM.c) ECMWF. d) UKMO.e) EMP f) Expansioncoefficients(timeseries)of observedrainfall (solid line) andpredictedrainfall of thefour models(dashedline). Thecorrelationr betweenthesetwo timeseriesis indicatedin panelf.

TechnicalMemorandumNo. 461 21

Page 24: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

ableto dealwith multi-modelpredictions preservesspatialstructurepresentin thedatasets allows spatialpatternsto beshifted/corrected

Potentialdisadvantagesof forecastassimilation needfor datareductionto beableto estimateregressionparameters relationshipscanchangewith time (stability) needto re-computecalibrationequations(regression)eachtime theforecastingsystemchanges

B Brier score

The skill of forecastprobabilitiespk for the event pk ! Pr " yk # canbe assessedusing the Brier score(Brier1950)givenby

BS ! 1n

n

∑k$ 1

" pk % ok # 2 & (8)

wheretheindex k denotesanumberingof then forecast/observationpairs,Pr " E # denotestheprobabilityof theeventE, andok is thecorrespondingbinaryobservation(i.e.,ok ! 1 whentheeventyk hasoccurredandok ! 0whentheeventyk hasnotoccurred).

TheBrier score(BS) is analogousto themeansquarederror, but insteadof averagingsquareddifferencesbe-tweenpairsof forecastandobservedvalues,it averagesthesquareddifferencesbetweenpairsof forecastprob-abilities pk andthesubsequentbinaryobservationsok. TheBrier scorecantake valuesin therange0 ' BS' 1.TheBrier scoreis negatively oriented,with perfectforecastexhibiting BS ! 0. Therefore,thesmallertheBrierscorethebetteris thequalityof theforecast.

Following Murphy (1973),theBrier score(Eqn.8) canbeexpressedasthesumof threecomponents:

BS ! 1n

I

∑i $ 1

Ni " pi % oi # 2( )+* ,-reliability.

% 1n

I

∑i $ 1

Ni " oi % o# 2( )+* ,-resolution.

/o " 1 % o#( )+* ,-uncertainty.

(9)

whereNi is thenumberof timeseachprobability forecastpi is usedin thesetof forecastsbeingverified. The

total numberof forecast/event pairsn is simply the sumof thesecounts: n ! I∑

i $ 1Ni, whereI is the number

of discreteforecastvaluespi . For eachprobability pi, depictedby the I allowable forecastvalues,thereisa relative frequency oi of the observed event. Sincethe observed event is dichotomous,a singleconditionalrelative frequency definesthe conditionaldistribution of observationsgiven eachforecastpi . The subsamplerelative frequency, or conditionalaverageobservation,is givenby

oi ! p " o1 0 pi #�! 1Ni

∑k 1 Ni

ok& (10)

whereok ! 1 if theeventoccursfor thekth forecast/eventpairandok ! 0 if it doesnotoccur, andthesummationis overonly thosevaluesof k correspondingto occasionswhentheforecastpi wasissued.Similarly, theoverall(unconditional)relative frequency, or sampleclimatology, of theobservationsis givenby

o ! 1n

n

∑k $ 1

ok 2 (11)

22 TechnicalMemorandumNo. 461

Page 25: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

More accurateforecastsarecharacterizedby smallvaluesof Brier score.Therefore,theforecasterwould aimfor thereliability componentof theBrier scoreto beassmallaspossible,andtheresolutioncomponentto beaslarge(in theabsolutesense)aspossible.Theuncertaintycomponentdependsonly onthesampleclimatologicalrelative frequency o, andis notaffectedby theforecasts.

The reliability componentsummarizesthe calibration,or conditionalbias,of the forecasts. It consistsof aweightedaverageof thesquareddifferencesbetweentheforecastprobabilitiespi andtherelative frequenciesof theforecasteventin eachsubsamplei. For perfectlyreliableforecaststhesubsamplerelative frequency oi isexactly equalto theforecastprobability pi in eachsubsample.Therelative frequency of theforecastevent oishouldbesmallwhenpi ! 0 is forecast,andshouldbelargewhenpi ! 1 is forecast.Whenpi ! 0 2 5, oi shouldbenear0 2 5. For reliable,or well-calibratedforecasts,all thesquareddifferencesin thereliability componentoftheBrier scorewill benearzero,andtheir weightedaveragewill besmall.

The resolutioncomponentsummarizesthe ability of the forecaststo discernsubsamplerelative frequenciesforecastsoi from theobserved overall sampleclimatologyrelative frequency o. The forecastprobabilitiespido not appearexplicitly in this term, yet it still dependson the forecaststhroughthe sorting of the eventsmakingupthesubsamplerelative frequency oi . Theresolutioncomponentis aweightedaverageof thesquareddifferencesbetweenoi ando. Thus,if theforecastssort theobservationsinto subsampleshaving substantiallydifferentrelative frequenciesoi thantheoverall sampleclimatologyo, theresolutiontermwill belarge.This isa desirablesituation,sincethe resolutioncomponentis subtractedin theBrier scoredecompositionequation.Conversely, if the forecastssort theeventsinto subsampleswith very similar event relative frequenciesoi , thesquareddifferencesin the summationof the resolutionterm will be small. In sucha situationthe forecastsresolve theeventonly weakly, andtheresolutioncomponentwill besmall.

The uncertaintycomponentdependsonly on the variability of the observations,andis not influencedby theforecasts.It hasminimaat zerowhentheclimatologicalprobability o is eitherzeroor one,anda maximumof0.25wheno ! 0 2 5. Theuncertaintyin the forecastingsituationis small (closeto zero)whentheeventbeingforecastalmostalwayshappens(o closeto 1) or whentheeventbeingforecastalmostneverhappens(o closeto0). In suchsituation,alwaysforecastingtheclimatologicalprobabilityo will givegenerallygoodresults.Whentheclimatologicalprobability is closeto 0.5,thereis substantiallymoreuncertaintyinherentin theforecastingsituation,andtheuncertaintycomponentof theBrier scoreis commensuratelylarger.

REFERENCES

Anderson,J.L., H. vandenDool, A. Barnston,W. Chen,W. Stern,andJ.Ploshay, 1999:Present-daycapabili-tiesof numericalandstatisticalmodelsfor atmosphericextratropicalseasonalsimulationandprediction.Bull.Am.Meteorol. Soc., 80, 1349–1361.

Atger, F., 2003:Spatialandinterannualvariability of thereliability of ensemble-basedprobabilisticforecasts:Consequencesfor calibration.Mon. Wea.Rev., 131, 1509–1523.

Barnston,A. G., M. H. Glantz,andY. He,1999:Predictive skill of statisticalanddynamicalclimatemodelsinSSTforecastsduringthe1997-98El Nino episodeandthe1998La Ninaonset.Bull. Am. Meteorol. Soc., 80,217–243.

Barnston,A. G., S. J. Mason,L. Goddard,D. G. DeWitt, andS. E. Zebiak,2003: Multimodel ensemblinginseasonalclimateforecastingat IRI. Bull. Am.Meteorol. Soc., 84, 1783–1796.

Barros,V. andG. E. Silvestri, 2002: The relationbetweenseasurfacetemperatureat the subtropicalsouth-centralPacificandprecipitationin southeasternSouthAmerica.J. Climate, 15, 251–267.

Bayes,T., 1763:An essaytowardssolvingaproblemin thedoctrineof chances.PhilosophicalTransactionsoftheRoyalSocietyof London, 53, 370–418.

TechnicalMemorandumNo. 461 23

Page 26: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

Berri, G. J.andP. L. Antico, 2005:Seasonalprecipitationforecastsfor thesoutheastof SouthAmerica.Evalu-atingthefirst fiveyears.CLIVARExchanges, 10, 17;25–27.

Brier, G. W., 1950:Verificationof forecastsexpressedin termsof probability. Mon. Wea.Rev., 78, 1–3.

Cavalcanti, I. F. A., J. A. Marengo,P. Satyamurty, C. A. Nobre, I. Trosnikov, J. P. Bonatti, A. O. Manzi,T. Tarasova, L. P. Pezzi,C. D’Almeida, G. Sampaio,C. C. Castro,M. B. Sanches,andH. Camargo, 2002:Globalclimatologicalfeaturesin asimulationusingtheCPTEC-COLAAGCM. J. Climate, 15, 2965–2988.

Chen,M., P. Xie, J. E. Janowiak, andP. A. Arkin, 2002: Global landprecipitation:A 50-yr monthlyanalysisbasedon gaugeobservations.J. Hydrometeorol., 3, 249–266.

Coelho,C. A. S., 2005: Forecastcalibration and combination: Bayesianassimilationof seasonalclimatepredictions. Ph.D.thesis,Departmentof Meteorology, Universityof Reading,178pp.

Coelho,C. A. S.,S.Pezzulli,M. Balmaseda,F. J.Doblas-Reyes,andD. B. Stephenson,2003:Skill of coupledmodelseasonalforecasts:A Bayesianassessmentof ECMWF ENSOforecasts.EuropeanCentre for Medium-Range WeatherForecastsTechnicalMemorandumnumber426, 16pp.

— 2004:Forecastcalibrationandcombination:A simpleBayesianapproachfor ENSO.J. Climate, 17, 1504–1516.

Coelho,C. A. S.,D. B. Stephenson,F. J.Doblas-Reyes,andM. Balmaseda,2005:Frommulti-modelensemblepredictionsto well-calibratedprobabilityforecasts:Seasonalrainfall forecastsoverSouthAmerica1959-2001.CLIVARExchanges, 10, 14–20.

Coelho,C. A. S.,C. B. Uvo, andT. Ambrizzi, 2002:Exploringthe impactsof thetropicalPacific SSTon theprecipitationpatternsover SouthAmericaduringENSOperiods.Theor. Appl. Climatol., 71, 185–197.

Diaz, A. F., C. D. Studzinski,andC. R. Mechoso,1998: RelationshipsbetweenprecipitationanomaliesinUruguayandSouthernBrazil andseasurfacetemperaturein the Pacific andAtlantic oceans.J. Climate, 11,251–271.

Folland,C. K., A. W. Colman,D. P. Rowell, andM. K. Davey, 2001:Predictabilityof NortheastBrazil rainfallandreal-timeforecastskill, 1987-98.J. Climate, 14, 1937–1958.

Glahn,B., 2004:Discussionof verificationconceptsin ForecastVerification:A Practitioner’s Guidein Atmo-sphericScience.WeatherandForecasting, 19, 769–775.

Greischar, L. andS.Hastenrath,2000:Therainy seasonsof the1990sin NortheastBrazil: Real-timeforecastsandverification.J. Climate, 13, 3821–3826.

Hagedorn,R., F. J. Doblas-Reyes,andT. N. Palmer, 2005: The rationalebehindthe successof multi-modelensemblesin seasonalforecasting.Part I: Basicconcept.Tellus, In press.

Hamill, T. andS. J. Colucci, 1998: Verificationof Eta-RSMensembleprobabilisticprecipitationforecasts.Mon. Wea.Rev., 126, 711–724.

Jolliffe, I. N. andD. B. Stephenson,2003:ForecastVerification:A practitioner’s guidein atmosphericscience.Wiley andSons, Firstedition.240pp.

Jolliffe, I. T. andD. B. Stephenson,2005:Responseof thebookeditorsto BobGlahn’sDiscussionof Verifica-tion Conceptsin ForecastVerification:A Practitioner’s Guidein AtmosphericScience.WeatherandForecast-ing, In press.

Kiladis, G. N. andH. F. Diaz,1989:Globalclimateanomaliesassociatedwith extremesin theSouthernOscil-

24 TechnicalMemorandumNo. 461

Page 27: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

lation. J. Climate, 2, 1069–1090.

Marengo,J.,1992: Interannualvariability of surfaceclimatein theAmazonbasin. Int. J. Climatol., 12, 853–863.

Marengo,J.A., I. F. A. Cavalcanti,P. Satyamurty, I. Trosnikov, C.A. Nobre,J.P. Bonatti,H. Camargo,G.Sam-paio,M. B. Sanches,A. Manzi,C. A. C. Castro,C. D’Almeida, L. P. Pezzi,andL. Candido,2003:Assessmentof regional seasonalrainfall predictabilityusingtheCPTEC/COLAatmosphericGCM. Clim. Dynamics, 21,459–475.

Martis, A., G. J. van Oldenborgh, andG. Burgers,2002: Predictingrainfall in the Dutch Caribbean– MorethanEl Nino. Int. J. Climatol., 22, 1219–1234.

Mason,S.J. andG. M. Mimmack,2002:Comparisonof somestatisticalmethodsof probabilisticforecastingof ENSO.J. Climate, 15, 8–29.

Mechoso,C. R., S.W. Lyons,andJ.A. Spahr, 1990:Theimpactof seasurfacetemperatureanomalieson therainfall over NortheastBrazil. J. Climate, 3, 812–826.

Moura,A. D. andS.Hastenrath,2004:Climatepredictionfor Brazil’sNordeste:Performanceof empiricalandnumericalmodelingmethods.J. Climate, 17, 2667–2672.

Moura,A. D. andJ.Shukla,1981:On thedynamicsof droughtsin northeastBrazil: Observations,theoryandnumericalexperimentswith generalcirculationmodel.J. Atmos.Sci., 38, 2653–2675.

Murphy, A. H., 1973:A new vectorpartitionof theprobabilityscore.J. Appl. Meteorol., 12, 595–600.

Nobre,P. andJ.Shukla,1996:Variationsof seasurfacetemperature,wind stress,andrainfall over thetropicalatlanticandsouthamerica.J. Climate, 9, 2464–2479.

Paegle, J. N. andK. C. Mo, 2002: Linkagesbetweensummerrainfall variability over SouthAmericaandseasurfacetemperatureanomalies.J. Climate, 15, 1389–1407.

Palmer, T. N., A. Alessandri,U. Andersen,P. Cantelaube,M. Davey, P. Delecluse,M. Deque, E. Diez, F. J.Doblas-Reyes,H. Feddersen,R. Graham,S. Gualdi,J.-F. Gueremy, R. Hagedorn,M. Hoshen,N. Keenlyside,M. Latif, A. Lazar, E. Maisonnave, V. Marletto, A. P. Morse, B. Orfila, P. Rogel, J.-M. Terres,and M. C.Thomson,2004: Developmentof a EuropeanMulti-Model EnsembleSystemfor Seasonalto Inter-AnnualPrediction(DEMETER).Bull. Am.Meteorol. Soc., 85, 853–872.

Pezzi,L., V. Ubarana,and C. Repelli, 2000: Forecastand performanceof a statisticalregional model forseasonalclimatepredictionin SouthernBrazil. Rev. Bras.Geof., 18, 129–146.

Rajagopalan,B., U. Lall, andS. E. Zebiak,2002: Categorical climate forecaststhroughregularizationandoptimalcombinationof multiple GCM ensembles.Mon. Wea.Rev., 130, 1792–1811.

Robertson,A. W., L. Upmanu,S. E. Zebiak,andL. Goddard,2005: Improvedcombinationof multiple atmo-sphericGCM ensemblesfor seasonalprediction.Mon. Wea.Rev., In press.

Ropelewski, C. F. andM. S.Halpert,1987:Globalandregionalscaleprecipitationpatternsassociatedwith ElNino/SouthernOscillation.Mon. Wea.Rev., 115, 1606–1626.

— 1989: Precipitationpatternsassociatedwith high index phaseof SouthernOscillation. J. Climate, 2, 268–284.

Stephenson,D. B., C. A. S. Coelho,F. J. Doblas-Reyes,andM. Balmaseda,2005: ForecastAssimilation: Aunifiedframework for thecombinationof multi-modelweatherandclimatepredictions.Tellus, 57, 253–264.

TechnicalMemorandumNo. 461 25

Page 28: Towards an integrated seasonal forecasting system for South America · 2015-10-29 · Towards an integrated seasonal forecasting system for South America total annual rainfall falls

Towardsanintegratedseasonalforecastingsystemfor SouthAmerica

Trenberth,K. E.,G. W. Branstator, D. Karoly, A. Kumar, N.-C.Lau,andC. Ropelewski, 1998:ProgressduringTOGA in understandingandmodelingglobalteleconnectionsassociatedwith tropicalseasurfacetemperatures.J. Geophys.Res., 107, 14291–14324.

Uppala,S.M., K. P. W., A. J.Simmons,U. Andrae,V. daCostaBechtold,M. Fiorino,J.K. Gibson,J.Haseler,A. Hernandez,G. A. Kelly, X. Li, K. Onogi,S.Saarinen,N. Sokka,R. P. Allan, E. Andersson,K. Arpe,M. A.Balmaseda,A. C. M. Beljaars,L. Beljaars,J. van de Berg, N. Bidlot, S. Bormann,S. Caires,F. Chevallier,D. A., M. Dragosavac,M. Fisher, M. Fuentes,R. Jenne,M. A. P., J.Mahfouf,J.Morcrette,N. A. Rayner, R. W.Saunders,A. Simon,A. Sterl,K. E. Trenberth,A. Untch,D. Vasiljevic, P. Viterbo,andJ.Woollen,2005:TheERA-40Reanalysis.Bull. Am.Meteorol. Soc., Submitted.

Uvo, C. R. B., C. A. Repelli,S.E. Zebiak,andY. Kushnir, 1998:On therelationshipsbetweentropicalPacificandAtlantic SSTin northeastBrazil monthlyprecipitation.J. Climate, 13, 287–293.

vanOldenborgh, G. J.,M. A. Balmaseda,L. Ferranti,T. N. Stockdale,andD. L. T. Anderson,2005: Did theECMWF seasonalforecastmodeloutperformastatisticalmodelover thelast15 years?J. Climate, In press.

von Storch,H., 1999:On theuseof inflation in statisticaldown-scaling.J. Climate, 12, 3505–3506.

von Storch,H. andF. W. Zwiers,1999:StatisticalAnalysisin ClimateResearch.Cambridge University Press,ISBN 0521450713.484pp.

Wallace,J. M. andD. S. Gutzler, 1981: Teleconnectionsin thegeopotentialheightfield during theNorthernHemispherewinter. Mon. Wea.Rev., 109, 785–812.

Wilks, D. S., 1995: Statisticalmethodsin the atmosphericsciences:An introduction. AcademicPress, firstedition.467pp.

26 TechnicalMemorandumNo. 461