Thesis Ermina

Embed Size (px)

Citation preview

  • 8/9/2019 Thesis Ermina

    1/194

    ARISTOTLE UNIVERSITY OF THESSALONIKI AND

    E´ COLE POLYTECHNIQUE FE´ DE´ RALE DE

    LAUSANNE

    MASTER THESIS

    NUMERICAL

    SIMULATIONS OF THE

    APOLLO 4 REENTRY

    TRAJECTORY

     A thesis submitted in fulfillment of the requirements

    for the degree of Master of Mechanical engineering

     Author’s name:

    Ermioni Papaopo!"o!

    Supervisors: 

    Dr. Penelope Leylandi!hil "aner#i

    $lise %ay 

    La!#ann$% S!i##$% Mar&' ()*+

  • 8/9/2019 Thesis Ermina

    2/194

  • 8/9/2019 Thesis Ermina

    3/194

    Acknowledgment

    &

    During this pro#ect there have been numerous people that contributed time and thoughts

    in order the present 'or! to be fulfilled. My than!s are addressed to:

    Dr. Penelope Leyland( 'ho allo'ed me to 'or! on this pro#ect as a member of the )nterdis*

    ciplinary Aerodynamics +roup ,)A+- and her dedication and help throughout the pro#ect.

    My colleagues and friends( i!hil "aner#i( for his supervision and moral support( i! +e*

    uns( /eremy Mora*Monteros( $lise %ay( 0leg 1otsur( +ennady Plyushchev( for the every 

    day support and the good times 'e spent in and out of the office and Angelo 2asagrande

    for his support and patience.

    Special than!s should be addressed to my supervisor in +reece( Prof. Anestis ).1alfas( for

    giving me this opportunity to do my Master’s thesis in $P%L and for his constant control

    and support for this pro#ect.

  • 8/9/2019 Thesis Ermina

    4/194

  • 8/9/2019 Thesis Ermina

    5/194

    Abstra

    3

    Sample return capsules( as the Apollo 2ommand Module have been 'idely used to ad*

     vance the !no'ledge and planning of manned lunar and planetary return missions. Suchreentry vehicles undergo e4treme thermal conditions( caused by shoc!*heated air during

    their super*orbital atmospheric re*entry. Such e4treme conditions can result in failure of 

    the aeroshell structure and loss of important payload. 5his technological challenge is ad*

    dressed by the use of ablative thermal protection systems ,5PS-( 'hich dissipate the heat

    a'ay from the vehicles front 'all via ablative products release into the boundary layer.

     Additionally( such velocity and temperature magnitudes during reentry conditions intro*

    duce significant radiative heat loads( filling the shoc! layer 'ith radiators that react 'ith

    the ablative species in#ected by the capsule 'all.

    5herefore( accurate numerical modeling techniques are required( so that the thermophys*

    ical( thermochemical environment of a reentry capsule can be successfully reproduced

    and predicted. 5he present 'or! aims to numerically rebuild certain significant tra#ectory 

    points( containing the pea! heating points of the Apollo 6 terrestrial re*entry. 5his re*

    quires the coupling of the resolved flo'*field 'ith radiative and ablative effects in order

    to accurately predict the convective and radiative heat flu4 for each tra#ectory point. 5he

    results 'ill be compared to previous calculations and e4isting flight data.

    5he numerical simulations are performed in 7D thermal non*equilibrium 'ith a compress*ible e4plicit avier*Sto!es solver( coupled to a radiation database and a thermal material

    response code to implement the ablative effects. 5he calculations are performed also in &D(

    using a commercial implicit avier*Sto!es solver. 5he results 'ill be used to reproduce

    the capsules tra#ectory and verify the accuracy of the associated Modeling 5ools.

  • 8/9/2019 Thesis Ermina

    6/194

  • 8/9/2019 Thesis Ermina

    7/194

    Conten

    8

    A&,no-"$.m$n/# iii

    A0#/ra&/ 1

    Con/$n/# 1ii

    Li#/ o2 Fi.!r$# 3i

    Li#/ o2 Ta0"$# 31

    1 In/ro!&/ion *

    9.9 5he Arc Pro#ect........................................................................................................... 99.7 eentry flight missions............................................................................................... 9

    9.&  Applied 5ools........................................................................................................................7

    9.6 Scope and 0vervie' of the present dissertation............................................................7

    I T'$or 5

    2 T'$or$/i&a" 6a&,.ro!n 7

    7.9 ypersonic %lo'*fields........................................................................................................8

    7.9.9 Stagnation flo'*field properties...........................................................................8

    7.9.7 5he shoc!*standoff distance.................................................................................;

    7.7  Aerothermodynamics of hypersonic flights.....................................................................;

    7.7.9 Stagnation region flo'*field and thermodynamic state..................................<

    7.& )nvestigation of eentry Shoc! Layers...........................................................................97

    7.6 5he Apollo 2ommand Module Mission.........................................................................9&

    3 E8!a/ion# an M$/'o# *7

    &.9 2ompressible avier*Sto!es equations...........................................................................98

    &.7 )mplemented equations.....................................................................................................

    9

  • 8/9/2019 Thesis Ermina

    8/194

    Con/$n/# Con/$n/#

     viii

    &.7.9  A4isymmetric 7D flo's* 5'o temperature thermodynamic model . . 9

  • 8/9/2019 Thesis Ermina

    9/194

    Conten

    <

    6.7.7.7 eat flu4 calculations.........................................................................39

    6.7.7.& adiation 2alculations.......................................................................3&

    6.7.& 5ra#ectory points comparison.............................................................................3<

    6.7.6  @alidation of the results......................................................................................>76.7.6.9 Semi*empirical correlations....................................................................>7

    6.7.6.7 "ertin.....................................................................................................>&

    6.7.6.& %ay*iddel.............................................................................................>&

    6.7.6.6 Martin....................................................................................................>6

    6.7.6.3 5auber*Sutton......................................................................................>6

    6.7.6.> esults Discussion..............................................................................>3

    Con/$n/# Con/$n/#

    IIIN!m$ri&a" Sim!"a/ion# in +D 97

    5 Sim!"a/ion# in +D 9:

    3.9 +eneral Procedure.............................................................................................................><

    3.9.9 Protocol...................................................................................................................8?

    3.7 Pre*processing........................................................................................................... 89

    3.7.9 +eometry 2onfiguration.............................................................................. 89

    3.7.7 Mesh +eneration........................................................................................... .......87

    3.7.7.9 %ore*"ody ..............................................................................................87

    3.7.7.7  hole "ody ..........................................................................................8;

    3.& %ore*"ody Simulations......................................................................................................;3

    3.&.9 2%DBB Simulations..................................................................................... ;>

    3.&.9.9  @iscous %lo'* Perfect gas model.....................................................;>

    3.&.9.7 eal 3*species equilibrium gas model.............................................;;

    3.&.9.& eal 3*species non*equilibrium gas model....................................

  • 8/9/2019 Thesis Ermina

    10/194

    Con/$n/# Con/$n/#

     viii

    3.&.7.9 $quilibrium gas model.......................................................................

    3.6  hole "ody Simulations................................................................................................9?<

    3.6.9 $quilibrium gas model..................................................................................... .9?<

    3.6.7 5hermal on*$quilibrium gas model............................................................99&

    IV Con&"!#ion **5

    6 Con&"!#ion# an R$&omm$na/ion# **7

    >.9 2onclusions.............................................................................................................. 998>.7 ecommendations.................................................................................................. 99;

    6i0"io.rap' *(*

  • 8/9/2019 Thesis Ermina

    11/194

    99

    A Con/o!r# +D Sim!"a/ion# *

  • 8/9/2019 Thesis Ermina

    12/194

  • 8/9/2019 Thesis Ermina

    13/194

    99

    List of Figures

    7.9 )llustration of the aerothermodynamic processes occurring in the shoc! layer 

    and on the surface of a re*entry capsule at pea! heating conditions( ta!en from

    C&6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9?

    7.7 )llustration of the chemical !inetic processes along the stagnation streamline

    of an atmospheric reentry vehicle( ta!en from C&6...........................................................99

    7.& 5he Apollo 2ommand Module geometry( caption ta!en from C7;................................96

    7.6 5he distinguished flo' regions observed in front of the reentry blunt face of  

     Apollo 6( ta!en from C&&.......................................................................................................96

    7.3 5he distinguished flo' regions observed in front of the reentry blunt face of  

     Apollo 6( ta!en from C79........................................................................................................93

    &.9 5he control volume method scheme. %or the present case it is assumed that

    δy n Eδy s E Fy/7 and δ x e Eδ x w E Fx/7....................................................................... 76

    &.7 5he schematic representation of the definition of adiative intensity .......................... .&>

    &.& Schematic of tangent*slab calculation domain along lines of cells on a multi*

     bloc! grid...................................................................................................................................&;

    &.6 $4ample of a radiation sub*grid on a simple 7D a4isymmetric grid..............................&<

    &.3 $4ample of mapping of the radiation sub*grid onto the 2%D grid.................................69

    6.9 "loc!ing of the domain of the Apollo 6 fore*body for a viscous case( 'ith and

     'ithout ablation............................................................................................................ ...........68

    6.7 Meshing of the domain for an inviscid and a viscous flo' calculation..........................6;

    6.&  @elocity profile along the stagnation line( 57( investigation of ablation effects

    and diffusion model.......................................................................................................................6<

    6.6 5emperature profile along the stagnation line( 57( investigation of ablation 

    effects and diffusion model....................................................................................................3?

    6.3 Species mass fractions along the stagnation streamline( 57( ablative viscous flo' 39

    6.> 2onductive and Diffusive heat flu4 for the viscous non*ablation case( second  

    tra#ectory point.........................................................................................................................37

  • 8/9/2019 Thesis Ermina

    14/194

    Li#/ o2 Fi.!r$# Li#/ o2 Fi.!r$#

    6.8 2onvective heat flu4 for the viscous non*ablation case( second tra#ectory point. 

    2omparison of diffusion models......................................................................................... ..37

    6.; Spectral and integrated heat flu4( pea! radiative heating point( tangent slab

    radiation transport model......................................................................................................36

    6.< Spectral heat flu4( pea! radiative heating point( tangent slab radiation trans*

    port model. Divided spectra into specific important regions of the 'avelength

    range...........................................................................................................................................33

    6.9? Spectral heat flu4( pea! radiative heating point( tangent slab radiation trans*

    port model( ablation included...............................................................................................3>

    6.99 Spectral heat flu4 in 'avelength range 7??*97?? nm( pea! radiative heating

    point( comparison of ablation and no*ablation cases.......................................................38

    6.97 adiative divergence along stagnation streamline( Pea! radiative heating point( 

    5angent slab radiation transport model..............................................................................3;

    6.9& 2onductive and adiative heat flu4es for 'avelength range ,?.?3*9.7 µm- along

     'all surface( Pea! radiative heating point...........................................................................3;

    6.96 @elocity profiles for the t'o tra#ectory points( viscous flo' 'ith and 'ithout 

    ablation............................................................................................................................ >?

    6.93 5emperature profiles for the t'o tra#ectory points( viscous flo' 'ith and 'ith*

    out ablation...............................................................................................................................>?

    6.9> 2onvective eat flu4 along 'all surface( 2onstant Le'is umber diffusion  

    model( viscous flo' 'ithout ablation...................................................................................>9

    6.98 2onductive eat flu4 along 'all surface( amsha'*2hang diffusion model( vis*

    cous flo': )nvestigation of tra#ectory points heating and ablation effects.....................>9

    6.9; Ma4imum 2onductive and radiative heat flu4es ,for 'avelength range C?.7*

    9.7 µm- for the three tra#ectory points( amsha'*2hang model( viscous flo'  

     'ithout ablation.......................................................................................................................>7

    3.9 5he geometry profile of the Apollo 2ommand Module .....................................................89

    3.7 5he geometry of the Apollo 6 front*body and the flo' domain around it .....................87

    3.& 5he geometry of the Apollo 6 entire body and the flo' domain around it . . . 8&

    3.6 5he geometry of the Apollo 6 flo' domain and the individual parts as divided

    in according to the boundary surfaces.................................................................................8&3.3 5he bloc!ing of the Apollo 6 fluid domain.........................................................................86

    3.> 5he mesh generation of the Apollo 6 fluid domain...........................................................83

    3.8 5he &4&4& determinant quality chec! results for the above bloc!ing.............................8>

    3.; 5he mesh of the front*body as used for the SM" solver...............................................88

    3.< 5he mesh of the front*body as used for the 2%DBB solver.............................................88

    3.9? )nvestigation of convergence independence of mesh.........................................................8;

    3.99 5he geometry of the Apollo 6 flo' domain as configured in )2$M ...............................8<

    3.97 %irst split of bloc!ing...............................................................................................................8<

    3.9& 0*grid splits of the bloc!ing..................................................................................................;?

  • 8/9/2019 Thesis Ermina

    15/194

    9&

    Li#/ o2 Fi.!r$# Li#/ o2 Fi.!r$#

    3.96 Deletion of unnecessary bloc!s..............................................................................................;9

    3.93 2reation of ne' he4a bloc!s for the bac!*flo' part of the domain from e4isting

    surfaces......................................................................................................................................;7

    3.9> %inal vie' of the bloc!ing......................................................................................................;&

    3.98 5he mesh of the 'hole*body case........................................................................................;6

    3.9; 5he &4&4& determinant quality chec! results for the bloc!ing for the 'hole*  

     body case...................................................................................................................................;6

    3.9< 2onvergence criteria for perfect gas model.........................................................................;>

    3.7? Pressure and temperature field for perfect gas model......................................................;8

    3.79 Mach number and velocity field for perfect gas model.....................................................;8

    3.77 2onvergence criteria for 3*species real gas model in equilibrium..................................;;

    3.7& Pressure and velocity contour levels for real 3*species gas model in equilibrium ;<

    3.76 Mach number contours and chec! of the grid’s suitability for this case ........................;<

    3.73 5emperature fieldG 3 species equilibrium gas model.........................................................

  • 8/9/2019 Thesis Ermina

    16/194

    Li#/ o2 Fi.!r$# Li#/ o2 Fi.!r$#

    3.3? Pressure and density field( 3*species thermal non*equilibrium gas model...................9?3

    3.39 5emperature field( 3*species gas model in thermal and chemical non*equilibrium 9?3

    3.37 2omparison of the residuals graphs for t'o SM" cases 'ith different Mach  

    numbers....................................................................................................................................9?8

    3.3& Pressure field( 3*species gas model in equilibrium for different Mach*number 

    cases..........................................................................................................................................9?;

    3.36 esiduals for t'o time integration modes for the non*equilibrium cases in 2%DBB9?<

    3.33 Pressure( density and Mach*number field( real equilibrium gas model.........................99?

    3.3>  @elocity field( real equilibrium gas model..........................................................................99?

    3.38 5emperature field( 3*species equilibrium gas model........................................................999

    3.3; Species distributions( 3*species equilibrium gas model case..........................................997

    3.3< Pressure( density and Mach*number field( real equilibrium gas model.........................99&

     A.9 Pressure and temperature field for perfect gas model.......................................................9 A.7 Mach number and velocity field for perfect gas model ......................................................7

     A.& IB for the perfect gas model case................................................................................. 7

     A.6 Pressure and temperature field............................................................................................. ..&

     A.3 Mach number and velocity field..............................................................................................&

     A.> Surface parameters.....................................................................................................................6

     A.8 Species distributions for the 3 species equilibrium case....................................................3

     A.; Pressure and temperature field...............................................................................................>

     A.< Mach number and velocity field....................................................................................... .......8

     A.9? Surface parameters.....................................................................................................................8 A.99 Species distributions for the 3 species non*equilibrium case............................................;

     A.97 Pressure and temperature field...............................................................................................<

     A.9& Mach number and velocity field..............................................................................................<

     A.96 Surface parameters....................................................................................................... ...........9?

     A.93 Species distributions for the 99 species equilibrium case..................................................99

     A.9> Pressure and temperature field.............................................................................................97

     A.98 @elocity field.................................................................................................................... 9&

     A.9; Surface parameters...................................................................................................................9&

     A.9< Species distributions for the 99 species non*equilibrium case.........................................

    96

  • 8/9/2019 Thesis Ermina

    17/194

    List of Tables

    7.9 5he Apollo 2ommand Module tra#ectory points to be numerically rebuilt . . . 9>

    &.9 Symbols e4planation of avier*Sto!es equations...............................................................9<

    &.7 2hemical reactions considered in Par!’s 7??9 model.......................................................&9

    6.9 2omparison results for the convective and radiative heat flu4es for the Apollo

    6 front body ...............................................................................................................................>3

    3.9 5he results for the quality chec! concerning the &4&4& determinant.............................8>

    3.7 5he results for the quality chec! concerning the &4&4& determinant............................;6

    3.& Summary of the basic results from the 2%DBB simulations............................................

  • 8/9/2019 Thesis Ermina

    18/194

  • 8/9/2019 Thesis Ermina

    19/194

    9

    Chater !

    Introduction

    1.1 T'$ Ar& Pro;$&/

    5he present 'or! describes the contribution of )A+ ,)nterdisciplinary Aerodynamics

    +roup-  at $P%L to the $uropean pro#ect called A2: JAblation*adiation couplingJ.

    5his study   is led by a consortium composed of the )nterdisciplinary Aerodynamics

    +roup of the  $cole Polytechnique %ederale de Lausanne( the $uropean Aerospace

    esearch $stablish*  ment 2)A( the )S )nstitute of the Hniversity of Stuttgart( an

    e4perienced Aerospace  SM$( %+$( together 'ith subcontractors: the Hniversity of

    Kueensland ,Australia-( a 'ell  !no'n e4pert on ablation modelling( Dr. +. Duffa as a

    consultant( and AS5)HM*St.

    5his pro#ect addresses the ablation*radiation coupling for high speed reentry and the phys*

    ical phenomena that are induced by hypersonic flight conditions: ablation and radiation

    over a thermal protection system ,5PS-. 5herefore( both testing pro#ects in ma#or $uro*

    pean plasma 'ind tunnels and coupling simulations are led simultaneously( based on and

    compared 'ith data obtained from past $arth return missions. 5his particular contribu*

    tion of )A+ deals 'ith the radiation*ablation*flo'*field numerical coupled simulation of 

    the reentry of the Apollo 2ommand Module.

    1.2 R$$n/r 2"i.'/ mi##ion#

    5he e4ploration of space and the ma#or aerospace industry advancements have been

    achieved through numerous pro#ects of un*manned flights( 'ith the use of command mod*

    ules( aeroshell capsules. 5hese capsules( as the Apollo 2ommand Module( are basically 

    test*probes for the actual manned aircrafts( such as the case of the Apollo program( or

    they are merely used for flight*testing of ne'ly designed equipment and technologies and

  • 8/9/2019 Thesis Ermina

    20/194

    *

  • 8/9/2019 Thesis Ermina

    21/194

  • 8/9/2019 Thesis Ermina

    22/194

    *

  • 8/9/2019 Thesis Ermina

    23/194

    Par/ I

    T'$or

  • 8/9/2019 Thesis Ermina

    24/194

  • 8/9/2019 Thesis Ermina

    25/194

    8

    Chater "

    Theoretical#ackground

    "his #hapter starts with the literat$re re%iew &or 'ypersoni# Fli(hts in (eneral) re&ers to

    some testin( &a#ilities &or hypersoni# &lows and explains thoro$(hly the physi#al 

     phenomena  o##$rrin( d$rin( an atmospheri# re*entry+ It with the important in&ormation

    &or the ,pollo  test*&li(ht+

    2.1 Hp$r#oni& F"o-=2i$"#

     A flo'*field 'here the Mach number is far greater than 9 ,conventionally the threshold isconsidered to be M ≥ 3-:

    M EU∞

    ∞α∞

    ,7.9-

    is defined as a ypersonic %lo'*field and is characteri=ed by certain physical phenomena

    occurring in the shoc! and boundary layer of the flo' in front of the reentering bodies.

    igh speed reentry velocities lead to a strong shoc! 'ave upstream of the vehicle 'hich

    strongly modifies the state of the fluid behind it. 5he internal thermodynamic energy of 

    the free*stream fluid particles is small 'hen compared 'ith the !inetic energy of the free

    stream C6. As the Mach number is increased( the flo' density increases progressively( so

    the shoc! layer created by the strong bo' shoc! over the blunt nose becomes thinnerG the

    detachment distance bet'een the 'all boundary and the shoc! 'ave is really small.

    2.1.1 S/a.na/ion 2"o-=2i$" prop$r/i$#

    )n the stagnation region in front of the capsule’s nose the free stream passes through the

    normal portion of the bo' shoc! 'ave and decelerates isentropically to the point near the

    surface of the body( 'hich constitutes the edge condition for the thermal boundary layer

  • 8/9/2019 Thesis Ermina

    26/194

    ;

    at the stagnation point. the pressure and the heating rate at the stagnation point are

    useful reference values for characteri=ing hypersonic flo's.

  • 8/9/2019 Thesis Ermina

    27/194

    (< T'$or$/i&a" 6a&,.ro!n (-( 'hich for a

    sphere* cone model( the ratio ∆ ( 'here F is the shoc!*standoff distance and is the nose

    radius( is given: FE?.96&exp

    R

     

    &.76

    M 2,7.7-

    2.2 A$ro/'$rmonami o2 'p$r#oni& 2"i.'/#

    )n hypersonic flights( the directional velocity of the fluid particles is much larger than the

    fluctuation velocities of the molecules of the flo'. 5hus( the flo' !inetic energy before the

     bo' shoc! is much larger than the internal thermodynamic energy of fluid particles. )n

    atmospheric reentry conditions( i.e. high altitudes and hypersonic speeds three physical

    phenomena affect the aerothermodynamic state of the flo' in the shoc! layer C7:

    ❼  @iscous interactions:

    5he viscous interactions bet'een the viscous boundary layer and the inviscid unaf*

    fected flo'*field are caused by the large amount of !inetic energy in the boundary 

    layer. 5hese viscous interactions affect the thic!ness of boundary layer( δ:

    2

    δ≈ √ ∞ ,7.&-Re

    ( 'hich in hypersonic speeds( 'here M∞ is e4tremely high( can be so thic! that it

    practically merges 'ith the shoc! 'ave( forming a merged shoc! layer( and( thus

    affecting the non*viscous part of the flo' ,outside of the boundary layer-.

    ❼ Lo' density flo':

     At the atmospheric reentry altitudes the flo's density is so lo' that the distance

     bet'een particles is too big to appro4imate the gas as a continuum. 5hus( imple*

    mentation of the !inetic theory is required to describe the fluid state.

    ❼ igh* temperature flo':

    1inetic energy of the high speed flo' is dissipated by the influence of friction 'ithin

    the boundary layer. 5he loss of !inetic energy through the shoc! is transformed

    into internal thermodynamic energy and creates a pea! of temperature behind the

    shoc!. 5his viscous dissipation results in temperatures high enough to e4cite the

     vibrational energy of the atmospheric molecules and cause dissociation( and even

    ioni=ation 'ithin the gas( both in the boundary and the shoc! layer. 5hus( the

    shoc! and boundary layers of hypersonic flo's are chemically reacting. )f 'e con*

    sider the atmospheric air a mi4ture 'ith a composition of N2, O2, NO, O and N (

    M

  • 8/9/2019 Thesis Ermina

    28/194

    at certain levels of temperature the follo'ing changes in the state of the mi4ture

    can appear: 5hese so*called igh*temperature effects ,or real*gas effects- induce

    T 7???K Dissociation ofO2  O 2 → 7 O 

    T >6???K N2 → 7N N2BO2 → 7N ONBO→N O+ B

    e− T >

  • 8/9/2019 Thesis Ermina

    29/194

    absorbers( so that the coupling bet'een ablation and radiation cannot be ignored C9;.

    %or a better understanding( Fi($re 21  describes the overall processes occurring during

    reentry and Fi($re 22  describes the chemical !inetic processes occurring in the shoc! and

     boundary layer of an reentering vehicle. 5PS design is mainly based on numerical tools.

     A coupled approach bet'een the solid domain and the fluid one has to be lead as they 

    have both a strong thermal( physical( and chemical impact on each other.

    Fi.!r$ ( )llustration of the aerothermodynamic processes occurring in the shoc! layerand on the surface of a re*entry capsule at pea! heating conditions( ta!en from C&6

    2onvective heating consists of the effects of conduction and diffusion in the shoc! layer.

    )t is considered to be the sum of the conductive heat flu4 in'ards and out'ards of the

    surface 'all( 'hich is purely the result of temperature difference in the flo'*field and dif*

    fusive heating( 'hich results from the enthalpy in#ected in the flo'*field by the pyrolysis

    and char ablative products.

    0n the other hand( radiative heating is highly dependent on the composition of the at*

    mospheric gas. )t mainly consists of the radiative heat flu4 created from the ioni=ation

    and vibrational e4citation of the atmospheric molecules( 'hich is transferred to'ards the

  • 8/9/2019 Thesis Ermina

    30/194

    Fi.!r$ ( )llustration of the chemical !inetic processes along the stagnation streamlineof an atmospheric reentry vehicle( ta!en from C&6

    surface 'all( and the re*radiation( the radiative emission e4erted from the reentry body. 

    Sutton C&

  • 8/9/2019 Thesis Ermina

    31/194

    (< T'$or$/i&a" 6a&,.ro!n (

  • 8/9/2019 Thesis Ermina

    32/194

    layers during reentry. 5he operation of a shoc! tube includes a shoc! being driven di*

    rectly through the test gas at pressures and velocities encountered in super*orbital flight.

    Spectral measurements can be made of the radiation emitted in the shoc! layerG from the

    shoc! frame*of*reference( the post*shoc! rela4ation phenomena encountered in flight along

    the stagnation streamline are e4actly replicated C7>.

    5he computational modelling of radiating shoc! layers requires the numerical solution of 

    an appropriate set of governing equations. ypersonic flo'*fields in the continuum regime

    are 'ell described by the compressible avier*Sto!es equations( 'hereas in the flo' regimes

    that the mean free path of the molecules becomes comparable to the characteristic scale of 

    the flo'( statistical methods such as the Monte*2arlo method should be applied. )n order

    the numerical simulations to be accurate enough( a lot of 'or! has put on thermochemical

    non*equilibrium modelling( 'ith the latest advances in this area to propose the use of acombination of "olt=mann distributions and !inetic modelling. 0n the other hand( the

    radiation modelling is affected by: ,9- the internal state populations of chemical species(

    ,7- the spectral distribution of the electromagnetic energy and ,&- the transport of the

    electromagnetic energy through the plasma. More details about the numerical modelling

    tools applied are discussed in chapter &. N$meri#al re$ild and sim$lation of 'ea!ly ion*

    i=ed gases over reentry vehicles has been successfully performed for numerous missions(

    including FIRE C&8( C77( Apollo Command Module C7

  • 8/9/2019 Thesis Ermina

    33/194

    (< T'$or$/i&a" 6a&,.ro!n (

  • 8/9/2019 Thesis Ermina

    34/194

    orbital speed for a test case 'ith an ablative heat shield. 5he obtained measurements(

    including pressure distribution and convective and radiative heating 'ere conducted 'ith

    the use of pressure transducers( radiometers and surface*mounted calorimeters located at

    the pitch lane and at various rays around the command module( as it is depicted in Fi($re

    2! .

    Fi.!r$ ( 5he distinguished flo' regions observed in front of the reentry blunt face of 

     Apollo 6( ta!en from C79

    5he radiometer used for the measurements 'as embedded 'ithin the ablating 5PS( and

    the interaction of the ablation products 'ith the optics 'as a concern. o'ever( post flight

    inspection revealed an absence of carbon deposits on the radiometer 'indo'. 5herefore( it

    is unli!ely that there 'as a strong concentration of carbon bearing species in the radiome*

    ter cavity. 5he gas 'ithin the radiometer cavity 'as most li!ely dominated by molecular

    hydrogen. 5he absorption properties of molecular hydrogen over the 'avelength rangetransmitted by the quart= 'indo' are lo'. As such( absorption in the radiometer cavity 

    is neglected for the purposed of this rebuild. 5he radiometer 'as mounted on the fore*

     body( at a distance of 9.&( Par! C7

  • 8/9/2019 Thesis Ermina

    35/194

    5his equivalent sphere is also used for the 7D calculations of the present pro#ect( in order

    for the comparison of the results 'ith the results achieved by Par! and other correlations

    to be made successfully.

    5he radiative flu4 'as obtained from flight data and 'as numerically rebuilt at three alti*

    tudes of the tra#ectory in previous 'or!s C&> and C76.33> 3.?38Density ,kg/m3-

     @elocity ,km/s-

    9.8& · 

    9?−4&.69 · 9?−4

    9?.7373.?9 · 9?−4

     all 5emperature ,1-   7&?? 73?? 733?

    %light ecorded adiative

    )ntensity ,?.7 − 6µm- ,W cm−2sr−1- 9?.3 73.? 9>.?

    Ta0"$ ( 5he Apollo 2ommand Module tra#ectory points to be numerically rebuilt

  • 8/9/2019 Thesis Ermina

    36/194

    98

    Chater %

    E&uations and Methods

    "his #hapter re&ers to the (o%ernin( e$ations o& the &low*&ield n$meri#al modellin( &or 

    'ypersoni# &ields and real (ases and the n$meri#al methods applied &or the

    dis#reti4ation  and sol$tion o& the set o& e$ations+ Finally) the #hemi#al models and 

    heatin( transport   models applied in the present work are shortly dis#$ssed+ Emphasis

    is (i%en on the models  implemented in order to set $p a #ase in the &low*&ield sol%er 

    $sed &or the 2D #al#$lations)   Eilmer3 and &or the 3D #al#$lations) $sin( the 2 

    #ommer#ial does) CFD++ and  NSMB+ "he  (eneral pro#ed$re to r$n a sim$lation on

     Eilmer3 is analy4ed in Chapter ) whereas the  pro#ed$re &or the 3D #ases is dis#$ssed 

    in Chapter !+

    3.1 Compr$##i0"$ Na1i$r=S/o,$# $8!a/ion#

    During atmospheric reentry( the fluid flo' is compressible( as the fluid density varies due

    to compressible phenomena induced in the flo'*field by the strong bo' shoc! 'ave in

    front of the capsule’s face. 5he evolution of a compressible hypersonic flo' is described

     'ith the compressible avier*Sto!es equations. 5his set of partial differential equations is

    derived by applying the continuity equation to conserved quantities of mass( momentum

    and energy of the mi4ture. According to the thermodynamic model implemented( therecan be more than one energy and mass continuity equations. 5he generic differential form

    of the continuity equation is e4pressed as:

    ∂φB F E N ,&.9-

    ∂t

    ( 'hereφis the conserved quantity( Fis a vector describing the flu4 of φand N is a source

    term describing the creation and destruction of φ.

    ∇ · 

  • 8/9/2019 Thesis Ermina

    37/194

    9;

    5he conserved quantities to be applied to $quation &.9  'hen deriving the compressible

    avier Sto!es equations are dependent on the degree of thermochemical non*equilibrium

    to be considered. %or a gas in thermochemical equilibrium( the conserved quantities are

  • 8/9/2019 Thesis Ermina

    38/194

    +< E8!a/ion# an M$/'o# +

  • 8/9/2019 Thesis Ermina

    39/194

    +

  • 8/9/2019 Thesis Ermina

    40/194

    3.2 Imp"$m$n/$ $8!a/ion#

    %or an a4isymmetric flo'field case( the avier*Sto!es equations can be summari=ed in a  

    compact form as follo's:

    ∂→− U

    →− →− −→ →−  

     here:

    →− 

      ρ

    ∂t

    B ∇ .,Fi −F% - E Q ,&.;-

    ❼ U E ρ→− v

     : the conservative variables

     ρE

     ρ

    →− v

    →− 

    ❼ Fi E

     ρ→− 

    v∧→− 

    vB pI

     

    : the non*viscous flu4 vector  ρ→− v H

    − 

    →− 

     J

    −→ ❼ F% E

     

    ττ .→ − v

    ωO

     : the viscous flu4 vector

    →− QE

      ρ→ 

    − 

     f

      : the source term

     ρ→−  f .→− v

    ('here the symbols used are summari=ed in &.9

     v  @elocity vector vE ,u, v,

    w-  p Pressure

     ρ Density 

     f $4ternal force vector

    τ  @iscous stress tensor:τEµr · , ρ v⊗v- B · , ρv⊗v-"

    l Bη · vI

    µ Dynamic @iscosity 

    ν 1inematic viscosity 

    H 5otal enthalpy 

    E 5otal energy 

    Ta0"$ + Symbols e4planation of avier*Sto!es equations

    "he sym1ol ⊗ de&ines a tensor prod$#t) i+e+ ,u⊗v-i5 Euiv 5 

    ∇ ∇ ∇ 

  • 8/9/2019 Thesis Ermina

    41/194

    3.2.1 A3i#mm$/ri& (D 2"o-#= T-o /$mp$ra/!r$ /'$rmonami& mo$"  "he

    &ollowin( se#tion re&ers to the &orm$lation o& the #ode &or ,xisymmetri# "wo*Dimensional  

    &lows $sin( &inite*rate #hemistry and m$lti*spe#ies (as) in the way that the e$ations are  

    &ormed &or the Eilmer3 #ode+

  • 8/9/2019 Thesis Ermina

    42/194

    +< E8!a/ion# an M$/'o# +

  • 8/9/2019 Thesis Ermina

    43/194

    +

  • 8/9/2019 Thesis Ermina

    44/194

    5he viscous contribution F% for a t'o*temperature model is as follo's:

     

    ?

     τ xx 

     τ

    ?

    τ

    xy  

    τF% E      

    i +   P j ,&.97-

    yx        yy      τ xx u x Bτyx uy Bq x

      τ xyu x Bτyyuy Bqy

    q x)%e

     J x)s

    qy)%e

     Jy)s

    ere( τrefers to the a4isymmetric viscous stresses components( qdenotes the heat*flu4

    and Jis the diffusion flu4. )n order to apply the operator*splitting integration approach(

     'hich is used in the $ilmer& code( the vector of source terms is separated into geometric(

    chemical !inetic( thermal energy e4change and radiation contributions:

    QEQ(eom+ BQ#hem+ BQtherm+ BQrad+ ,&.9&-

    Q(eom is the source term for a4isymmetric geometries:

     

      

       , p−τ(eom+

       

    ?

    77 - A xy/V

    ?

    ,&.96-

    ere( A xy is the pro#ected area of the cell in the ,4(y- plane.

    Q#hem is the chemistry source term:

               N mol 

    ?

    M ion

    ,&.93-

    ),

    N6 C ),

    EC  5 

     5   

    MsωO s

     

     

     Q E  

    ?

    ?

    ?

    #hem+ 

    ?

    ?

    ?

    i  B N

  • 8/9/2019 Thesis Ermina

    45/194

    ere( N6 C is the vibration*chemistry energy e4change source term( NEC is the electron*

    chemistry energy e4change source term( Ms is the molecular 'eight and ωO s is the

    mass production source term. Qtherm is the thermal energy e4change source term:

  • 8/9/2019 Thesis Ermina

    46/194

     

       

           N mol 

    ?

    M spe#ies

    ,&.9>-

    ),

    6 " ),

    E"  5 

     5   

    ?

    ere( N6 " is the vibration*translation energy e4change source term( NE" is the electron* 

    translation energy e4change source term. Qrad is the radiation source term:

     

    ?

               

    ,&.98-

       −∇ .qrad    

    −∇ .q   rad

    ?

    +

  • 8/9/2019 Thesis Ermina

    47/194

    5he inviscid component of the flu4es(Fi ( becomes:

  • 8/9/2019 Thesis Ermina

    48/194

    +< E8!a/ion# an M$/'o# +

  • 8/9/2019 Thesis Ermina

    49/194

    +

  • 8/9/2019 Thesis Ermina

    50/194

    control volume scheme for a structured grid is presented in figure &.9. )n &D( finite*volume

    cells are he4ahedral 'ith > quadrilateral surfaces interfacing the neighboring cells( called

    orth ,-( $ast ,$-( South ,S-( est ,-( 5op ,5- and "ottom ,"-. %lu4 values are es*

    timated at midpoints of the cell. 5he advantage of the fact that the computational nodes

    are assigned to the 2ontrol @olume center is that the nodal values represent the mean over

    the control volume at higher accuracy( since it is a second order discreti=ation scheme ,O2-.

    Fi.!r$ + 5he control volume method scheme. %or the present case it is assumed that

    δy n Eδy s E Fy/7 and δ x e Eδ x w E Fx/7

    5he net flu4 through the control volume is calculated as the sum of the integrals over the

    control volume surfaces ,in 7D the surfaces are 6: ( S( ( $- and the integral conservation

    equation is appro4imated 'ith the follo'ing algebraic e4pression:

    dU 9

    dtE −V

    '

    ,Fi −F% -.nPdAB Q ,&.77-N ES0 

    ( 'here U and Qrepresent cell*averages values.

    3.3.2 Tim$ #/$ppin. pro&$!r$

     An operator*splitting approach ,as described by 0ran and "oris C8- is used to perform

    the time*integration of this ordinary differential equation ,&.77-. 5he physical phenomena

    are handled in a decoupled manner( creating different time differentiations for the inviscid(

     viscous( chemical and thermal phenomena and the boundary conditions are imposed on the

    edges of the control volumes. 5herefore( the time differentiation variable d8 is decomposed

    into:

  • 8/9/2019 Thesis Ermina

    51/194

     

    dU 

    dt

     

    dU 

    dt

     

    dU 

    in%+

    %is# 

    +

    E'

    ,Fi -.nPdAB Q(eom+B Qrad+ ,&.7&-V

    N ES0 

    E

    '

    ,− F% -.nPdA ,&.76-N ES0 

    dt

     

    dU 

    dt

    #hem+

    therm+

    EQ#hem+ ,&.73-

    EQtherm+ ,&.7>-

    3.3.3 Tim$ i#&r$/i?a/ion m$/'o

    3.3.3.1 E3p"i&i/ M$/'o

     As aforementioned( in the 7D solver( $ilmer&( the set of 0rdinary Differential $quations

    ,0D$- is obtained by an operator*splitting approach. 5hus( each physical process can be

    handled by a more efficient integration scheme( 'hich is useful for large chemical !inetic

    models ,see C&9 for the chemical model-.

    %or a better understanding(

    →− 

    U is the vector containing all the conserved quantitiesprevi* ously described. )t is obvious that→− U is time and space*dependent and can be 'ritten as→− 

    U,→− x , t- for a one*dimensional problem. 0nce discreti=ed in space and time( 'e

    end up

     'ith:

    i EU,xExi , tEtn-.

    5he ne4t value of→− U( can be computed via the second order up'ind scheme as:

    Un+1 n n n

    i  E f,Ui, Ui −1, Ui −2-.

    5herefore( the value of the considered conservative variable in a cell at the ne4t time step

    ,tn+1- can only be computed if the past values ,tn- in the current and the t'o previous

    cells are !no'n.

    3.3.3.2 Imp"i&i/ M$/'o#

    5he method used for implicit time integration for the steady state problems encountered

    in this thesis( 'ith the use of the &D soft'are( is the Lo'er*Hpper Symmetric +auss*Seidel

    ,LH*S+S- method. 5he scheme is based on a lo'er*upper factori=ation and a symmet*

    ric +auss*Seidel rela4ation. 5he governing equations are discreti=ed separately in space

    and in time. 5his ensures that the steady state solution 'ill be independent of the time

    discreti=ation procedure and therefore independent of the time step. 5he conservation

    − 9

    − 9

    V

     

  • 8/9/2019 Thesis Ermina

    52/194

    equations are transformed into a diagonally dominant form( in order to meet the stability 

    requirements of the rela4ation method.

    %or the viscous flo' cases( the contribution of the viscous terms is ta!en into account

  • 8/9/2019 Thesis Ermina

    53/194

    +

  • 8/9/2019 Thesis Ermina

    54/194

  • 8/9/2019 Thesis Ermina

    55/194

    ,&.&?-

  • 8/9/2019 Thesis Ermina

    56/194

    +< E8!a/ion# an M$/'o# +

  • 8/9/2019 Thesis Ermina

    57/194

    are smaller than that of chemistry( a flo' in chemical equilibrium is al'ays assumed

    to be in translational*rotational and vibrational equilibrium.

    %or flo's in chemical equilibrium( the governing equations are similar to those for a

    caloric perfect gas e4cept for the equation of state( pE p, ρ, T-.

    ❼ on*$quilibrium gas: As aforementioned( collisions bet'een particles in 'hich the

    collision energy is so high that a particle dissociates or ioni=es lead to dissociation

    or ioni=ation of the gas respectively. )f the characteristic time for the read#ustment

     by collisions is of the same order of magnitude as the characteristic time of the

    flo'( the flo' is in non*equilibrium. 5he thermally perfect gas ,or #ust chemical

    non*equilibrium- is the gas state( in 'hich the gas components have all a perfect

    ,collisional- behavior but each component has all internal energy modes e4cited to

    an equilibrium described by a single temperature.%or flo's in chemical non*equilibrium( the governing equations are supplemented

     'ith equations describing the mass conservation of the chemical species in the react*

    ing mi4ture. As a result( the continuity equation has to be solved for each chemical

    species.

    ❼ 5hermal on*$quilibrium gas:

     As aforementioned( the collisions bet'een free stream particles and molecules of 

    the dense shoc! layer e4cite the rotational( vibrational and electronic modes of the

    molecules( and give rise to a non*equilibrium bet'een the temperatures and energiescorresponding to these modes C96. +enerally( translational and rotational energy 

    modes require a fe' collisions to equilibrate( so they are usually considered in equi*

    librium even for ypersonic flo' conditions( for the sa!e of time*saving. 0n the

    other hand( chemical dissociation and vibrational e4citation require more collisions

    to reach their equilibrium state and non*equilibrium effects may be important for

    hypersonic flo' conditions( especially at high altitudes. ith the assumption of 

    thermal non*equilibrium( a multi*temperature model is applied( in 'hich every tem*

    perature dictates a different energy mode C&7. 5his 'ay( the total internal energy of 

    any species i is formed by the contributions of translational( rotational( vibrationaland electronic energies. 5he same applies to the thermodynamic and transport

    properties of the gas mi4ture C9&.

    eEet Ber Be% Bee

    Molecules are presented 'ith all energy modes( 'hile only translational and elec*

    tronic modes are associated 'ith atoms and free electrons.

    Modern non*equilibrium models ideally associate a modal energy ems depending on

    temperature Tms for mode m for each species s. 5he internal energy of the gas

    mi4ture of species is hence given by:

  • 8/9/2019 Thesis Ermina

    58/194

    eE'

    ys'

    ems,Tms- ,&.&9-

    s m

    ('here ys is the mass fraction of each species s in the gas mi4ture.

    5he model used in the present 'or! is a commonly*used thermal non*equilibrium(

    t'o*temperature model( developed by Par! C&9. )n the specific model( the system is

    described by t'o temperatures:Ttr ( 'hich stands for the translation*rotation energy 

    mode of the heavy particles and T%e( 'hich represents the distribution of vibrational(

    electronic e4citation and electron translation energies.

    )n the t'o*temperature model the total energy can be split into !inetic energy(

    translation*rotation energy and vibration*electron*electronic energy:

    EEetr Be%e B1u u

    5he internal energy e for Nmodes thermal modes is given by the sum of the specific

    energy of each mode:

    eE),N modes

    %or the t'o*temperature model( the above equation is transformed into: eE etr Be%e.

    5his means that every energy and heat*flu4 is defined as the sum of the t'o thermal

    modes. %or e4ample( the conduction heat*flu4 term is defined as:

    q# ond Eq#o nd)tr Bq#on d)%e E − ktr∇ Ttr −k%e∇ T%e ,&.&7-

    3.6.1 C'$mi&a" mo$""in.

    Par!’s chemical model developed in 7??? C&9( used among simpler models in the present

     'or! ,e.g. 8 species model of atmospheric air gas mi4ture for the &D cases-( is an atmo*

    spheric chemical model( including ablative materials emerging from P)2A*li!e materials.

     As can be seen in 5able ( it considers 7? species divided into three categories:

    9.  ,ir spe#ies: species that are present in the $arth’s atmosphere.

    7.  ,lati%e spe#ies: species that are emerging from the ablative 'all as ablative gases.

    &. Bo$ndary layer spe#ies: species that are formed as the ablative species are bro!en 

    do'n as they pass through the boundary layer and the post*shoc! layer.

    2

    m

  • 8/9/2019 Thesis Ermina

    59/194

    Ta0"$ + 2hemical reactions considered in Par!’s 7??9 model

    R$a&/ion# M  , " a[2 ] n R$a&/ion# M  , " a[2 ] n

    Di##o&ia/ion r$a&/ion#

     N" + M −� −−***−  N + N + M All 7+0"! 113200 −1+6 O" + M −� −−***− O + O+ M All 2+0"! 59360 −1+5 C 3+0"" 113200 −1+6

    C 1+0"" 59360 −1+5O 3+0"" 113200 −1+6 O 1+0"" 59360 −1+5 N 3+0"" 113200 −1+6 N 1+0"" 59360 −1+5

    H 3+0"" 113200 −1+6 H 1+0"" 59360 −1+5e' 3+0"$ 113200 −1+6 H" + M−� −−***− H + H + M All 2+2

    !$

    48300 0+0

    C"

    + M −� −−***− C + C + M All 3+7!$ 69900 0+0 H" 5+5!$

    48300 0+0

    CN + M� −−−***− C + N + M All 2+5!$ 87740 0+0

    N$!/ra" $3&'an.$ 

    r$a&/ion#

     N"

    + O −� −−***−  NO + N − 5+7!" 42938 0+42 CN + O−� −−***− NO + C

    − 1+6!%

    14600 0+10 NO + O� −−−***− O" + N − 8+4

    !" 19400 0+0 CN + C−� −−***− C" + N − 5+0!% 13000 0+0CO + C−� −−***− C" + O − 2+0

    !( 58000 −1+0 CO + C"−� −−***− C% +

    O − 1+0!" 41200 0+0CO + O −� −−***− O" + C − 3+9

    !% 69200 −0+18 C% + N −� −−***− CN + C"− 1+0!" 34200 0+0

    CO + N−� −−***− CN + O − 1+0!$ 38600 0+0 C% + C−� −−***− C" + C"− 1+0!" 16400 0+0

     N" + C−� −−***− CN + N − 1+1!$ 23200 −0+11 C"H + H −� −−***− C" +

    H" − 1+0!" 16770 0+0

    E"$&/ron impa&/

    ioni?a/ion r$a&/ion#

    O + e' −� −−***− O) + e' + e' − 3+9%% 158500 −3+78 C + e'−� −−***− C) + e' + e'− 3+7%! 130720 −3+00  N + e' −� −−***− N) + e' + e'− 2+5%$

    168200 −3+82 H + e'

    −� −−***− H)

    + e'

    + e'

    − 2+2%*

    157800−2+80A##o&ia/i1$ ioni?a/ion

    r$a&/ion#

     N + O−� −−***− NO) + e' − 5+3!" 31900 0+0 N +

     N−� −−***−  N"+ e' − 4+4( 67500 1+5

    ('here A is the frequency factor inr m3/mole

    1N −1s−1( Ta is the temperature that cor*

    responds to the activation energy Ea in K and n is the temperature e4ponent of the

     Arrhenius equation( that describes the temperature dependency of the reaction rates of 

    each reaction:

    kE AexpIE

    a

    n1

    — RT

    ,&.&&-

    )t should be noted that some species as HCN ( CN O( N H and O+ are missing from

    the  model( even though their effects are particularly important in reentry conditions.

    5heir  concentrations are small( 'hile O+ presents no significant impact on chemical

    reactions

    and radiation.

    )

    2

    2

  • 8/9/2019 Thesis Ermina

    60/194

    3.6.2 C'$mi&a" Kin$/i

    %or an accurate characteri=ation of the shoc! layer in atmospheric reentry( a good !no'l*

    edge of the species mass fractions consumed and produced by chemical reactions in the

    shoc! layer is required. 5herefore( apart from the species identified( the reactions and the

    !inetics of the species should also be investigated. 5he 7? species identified in Par!’s model

    form a 76*reaction scheme ,3 dissociation reactions( 97 e4change reactions( 6 electron im*

    pact ioni=ation reactions( and 7 associative ioni=ation reactions-. All those reactions are

    governed by the chemical !inetics theory 'hich deals 'ith the reaction rates corresponding

  • 8/9/2019 Thesis Ermina

    61/194

    to the speed of reaction. 5hese reaction rates must be computed in order the evolution

    of the gases mi4ture composition and thus the chemical behavior of the flo' field to be

    described accurately.

     An usual set of nchemical reactions involving N sspecies needs to ta!e into account aparameter rto distinguish the different reaction. )t can be described by:

    N s N s'

    νi)r Cxi  �'

    νii Cxi  ,&.&6-

    i =1 i =1

     herexi is the species mole fraction and νi)r and νii

    are the stoechiometric coefficient.

    $quation &.&6  can be split into t'o individual relations: one for the reaction going from

    left to right and the other for that going from right to left. Let us denote by k&)r the

    for'ard reaction rate coefficient and k)r the bac!'ard one. 5a!ing into account this

    transformation and summing over all reactions 'e end up 'ith the La' of Mass action

    e4pressed in terms of mass production for a particular species α:

    n N s N s

    ωOs EM:',ν:)r −ν

    ii -.{ k&)rnCxi D

    ; i)r −k1)rnCxi D

    ; i)r }  ,&.&3-

    r =1 i =1 i =1

    )n equation &.&3 the for'ard and bac!'ard reaction rate coefficients can be e4pressed

    using the equilibrium reaction rate constant k# :

    k Ek &  )r  

    #)r k)r 

    E A.T<

    e4p

     

    − EART

    ,&.&>-

    k# follo's the e4tended Arrhenius la' 'here E , is the activation energy ( ηis the temper*

    ature e4ponent and is the gas constant. )n Par!’s model( the Arrhenius la' 'as defined

    as:

    k,T- EC Tn exp,T

    a-, ,&.&8-

    T

    ( 'here C( nand Ta ,activation temperature- are presented in   for the Par! 7? specieschemical model.

    3.6.3 Tran#por/ prop$r/i$#

    5he choice of the chemistry model influences the transport properties required to solve

    the avier*Sto!es equations( such as the gas mi4ture’s viscosity and thermal conductivity.

    %or the purposes of this section( the modelling of the fluid viscosity is further discussed.

    )n a given gas mi4ture( the collisions bet'een the different particles ,atoms( molecules(

    ions( electrons- create an induced momentum transfer. 5he amount of momentum transfer

    depends on the electromagnetic forces and( thus( on the shape and si=e of the particles

    i)

    i)

    :)

    − 

  • 8/9/2019 Thesis Ermina

    62/194

    involved. 5he !inetic gas theory proposes the particles to be modeled as hard*spheres and

    that is ho' Ma4'ell defined the follo'ing proportionality relation for the viscosity C6?:

  • 8/9/2019 Thesis Ermina

    63/194

    +

  • 8/9/2019 Thesis Ermina

    64/194

    +< E8!a/ion# an M$/'o# +

  • 8/9/2019 Thesis Ermina

    65/194

    entry. )n presence of a moving fluid heat is transported mainly by convective heating. )t

    is usually described by e'ton’s la' of cooling:

    q#oOn% EhA,T∞ −Ts- ,&.66-

    ('here Ts is the temperature on the body surface( T∞ is the free*stream temperature and

    his the heat transfer coefficient( 'hich is dependent on the type of transfer media( gas or

    liquid( the flo' properties( such as velocity and viscosity and other flo' and temperature

    dependent properties.

    2onvection is usually used to describe the combined effects of heat conduction 'ithin the

    fluid 'ith diffusion mechanisms. 5herefore( it is crucial to model diffusion in such a 'ay(

    so that the results obtained are accurate.

    Mo"$&!"ar Di22!#ion

    %or the case of an ablating boundary surface( the mass balance equation must be ta!en

    into consideration for the flu4 of chemical species entering or leaving the ablating surface.

     ith the assumption that no solid material is removed in a condensed phase( the mass

     balance of species i at the surface is 'ritten as:

     ρDi5 

    ∂YiI

    I

    Iw 

    BmO #)i BmO ()i E

    , ρi vn-w B

    N r ea#tions'

    ωO i)r  ,&.63-

    ( 'hereDi5 is the binary diffusion coefficient( for t'o interacting components(Yi the mass

    fraction of species i( ρthe density( vthe velocity and

    mOthe mass blo'ing for either gas or

    char for the g and c subscripts respectively. 5he term ωO i)r is the creation or

    destruction of chemical species i during surface reaction r.

    5he diffusive species mass flu4 at the 'all:

     Ji w E ρDi5 

    ∂ YiI

    I

    Iw 

    ,&.6>-

    e4presses the relative motion of chemical species 'ith respect to the motion of their mov*

    ing center of mass. Di is the effective binary diffusion coefficient of each species i into the

    gas mi4ture( i.e. the mass diffusivity. 5he higher the diffusivity of one substance relative

    to another( the faster they diffuse into each other.

    T'$rma" i22!#ion

    I

    I

  • 8/9/2019 Thesis Ermina

    66/194

    5hermal diffusion affects the diffusion mass flu4 if there is a temperature gradient in

    the flo'*field. 5he diffusion mass flu4 e4erted from thermal diffusion is equal to: J" E

    nD"1

    ∇ T( 'here D" is the thermal diffusion coefficient and n is the total number of " 

  • 8/9/2019 Thesis Ermina

    67/194

    molecules per unit volume. 5he induced diffusive heat flu4 is calculated:

     

    ∂ci

    q E ρ D h∂y

    ,&.68-

    i  w 

     All the calculations presented in this 'or! have been solved for t'o diffusion models:

    ❼ 2onstant Le'is umber: 5he Le'is number in reacting flo's( i.e. flo's 'here there

    is simultaneous heat and mass transfer by convection( is a dimensionless number de*

    fined as the ratio of thermal diffusivity to mass diffusivity: LeE : ( 'here αis the

    thermal diffusivity and D the mass diffusivity. 5he thermal diffusivity is defined as:=  

     /C  p

    ( 'here κis the thermal conductivity( ρis the density and C p is the specific

    heat capacity and it relates the ability of a material to conduct thermal energy to

    its ability to store thermal energy.

     A simplified 'ay to obtain effective individual species diffusion coefficients consists

    in deriving them from an assumed constant Le'is number. 5his simplification is

     based on the concept of individual species Le'is number changing little through the

    reactive area of the hypersonic flo'*field. o'ever( such a simplification can hardly 

     be considered accurate( as the Le'is number is highly dependent on the temperature

    of the mi4ture( 'hich radically changes during reentry conditions.

    ❼  Ambipolar Diffusion in 5'o*5emperature Multicomponent Plasmas ,amsha'*2hang

    Model-

    5his approach C&3 calculates the diffusional mass flu4es of the individual compo*

    nents of species relative to the mass*averaged velocity of the fluid are calculated after

    e4tracting the diffusion coefficients ,binary molecular and thermal- from relations

    containing collision integrals( such as the follo'ing:

    Di5 E3k B " i "  5  

    16 p>i5 Ω+!,

    (1)" i5 )

    ('here kB is "olt=mann’s constant( µi5 Emi m 5/,mi Bm 5 - is the reduced mass for

    the pair ,i(#-( mi is the mass of a single particle of species i( N(1)

    ,9, Ti5 - is astandard

    collisional integral andTi5 Emi "  5 +m 5 " i .

    3.7.2 Raia/ion Tran#por/ Mo$""in.

    Processes such as dissociation and ioni=ation ma!e the gas particles radiate electromag*

    netic energy in the flo' ,radiative heating- and also transfer energy to the surface 'hen

    (as)di& &  − ' "

    D

    α

    "

    mi +m 5 

  • 8/9/2019 Thesis Ermina

    68/194

    they collide 'ith it ,convective heating-. 5he radiating gas can be either absorptive and

    gain energy or transparent and emit energy in the flo'*field.

  • 8/9/2019 Thesis Ermina

    69/194

    adiation is a non*local phenomenon( i.e. electromagnetic energy emitted at one location

    in a plasma field may be absorbed at any location 'ithin a line*of*sight of the origin. A 

    first order appro4imation of radiation transport is to assume an optically thin or thic! 

    medium( representing the cases 'here 9?? and ? local re*absorption occurs. %or atmo*

    spheric entry shoc! layers( ho'ever( the actual local re*absorption is generally some'here

     bet'een these t'o limiting cases. 5he tangent*slab model ma!es various simplifications

    to the integro*differential equations governing radiative transport such that they can be

    more easily solved.

    o'ever( the tangent*slab model has been sho'n to not accurately predict radiative heat*

    flu4 due to shoc! layer curvature C;. 5he accurate solution of the radiation transport

    equations requires the discreti=ation of the computational domain via ray*tracing. Such

    an approach has been implemented by considering the radiation field as a discrete quantity 

    in Monte*2arlo models C9>.

    +

  • 8/9/2019 Thesis Ermina

    70/194

    %or applications to computational grids it is convenient to e4press equation &.3? as the

  • 8/9/2019 Thesis Ermina

    71/194

    difference bet'een local emission and absorption:

    − ∇ .− q− r → 

    ad Er ∞ r 

    0

    r ∞κ;I;dωdν− 6π

    0

     j;dν ,&.3?-

     hereκ; is the spectral absorption coefficient and j; is the spectral emission coefficient.

    3.7.3 F"o-=2i$" Raia/ion &o!p"in.

     A useful parameter for estimating the degree of radiation flo'*field coupling is the +oulard

    number:

      7 q O r ad  R E

    1∞

    ,&.39-

    ( 'hereqOrad is the radiative heat flu4 incident at the stagnation point( ρ∞ the free*

    stream density and u∞ the free*stream velocity. 5he +oulard number is a measure of 

    the conversion of energy flu4 in the free*stream to radiative energy flu4 incident on the

     vehicle. hen the +oulard number becomes large ,R > ?.?9- radiation flo'*field

    coupling  should be ta!en into consideration due to significant levels of radiative flu4

    through the  shoc! layer.

    3.7.3.1 Tran#por/ mo$"#

     A variety of models are implemented in the %lo'*field Solver for the radiative source term

    to be calculated:

    1. Op/i&a""=/'in mo$"

    5he optically*thin model neglects re*absorption( transforming &.3? into:

    −∇ .− q− r → 

    ad E − 6π{∞ j%dv.

    %or the radiating shoc! layers of hypersonic reentry cases( the ma#ority of the radia*

    tive emission is located in the vacuum*ultraviolet spectral region 'here re*absorption

    is significant. 5he optically*thin model 'ill therefore substantially overestimate the

    radiative divergence( and is not an appropriate model for this 'or!.

    2. Tan.$n/=#"a0 mo$"

    5he tangent*slab model allo's the effect of re*absorption to be modeled 'hile

    avoid*  ing a complete directional integration of the local intensity field. A one*

    dimensional  variation of properties is considered along each line*of*sight normal

    to the vehicle  surface. 2omputationally( a line of cells is used to represent the

    normal line*of*sight  as demonstrated in figure &.&. 5his is a good appro4imation

     

    0

  • 8/9/2019 Thesis Ermina

    72/194

    to the body normal  direction for the shoc!*aligned grids ,such as the ones built

    for blunt reentry bodies-.  )f a single column of bloc!s is used to define the

    computational domain bet'een the

  • 8/9/2019 Thesis Ermina

    73/194

    inflo' and vehicle surface boundaries( the tangent*slab model is realisable( as all the  

    information required for the calculation is contained in the local bloc!.

    Fi.!r$ + Schematic of tangent*slab calculation domain along lines of cells on a multi* 

     bloc! grid

    +iven that the infinite*slab arrangement 'ill result in =ero net radiative flu4 in the

    transverse directions( the definition of the radiative divergence for slab i reduces to:

    − ,∇ qrad -i E −  

    . 3 r  ad  

    .s

    −(3r ad +i )!,−3r 

    ad +i ,)

    ∆si 

    ('hereq(i )

    is the radiative flu4 at theith cell interface ,i.e. preceding the cell from

    right*to*left- and Fsi is the 'idth of the cell in the ,appro4imately- body normal di*

    rection. 5he solution for the radiative flu4 in a gaseous medium bet'een t'o parallel(

    infinite*slabs is a function of the spectral optical thic!ness τ% . )f the computational

    domain is a collection of Nslas isothermal slabs 'ith the spectral range discreti=ed

    into N% frequency intervals( the radiative flu4 at interface i can be e4pressed as:

    q(i )

    N % 

     

    τ (i ) 

    B7π),N sla1s( 5 )

    E3

    I(i ) ( 5 )

    I (i )   ( 5 −1)

    I l

    rad E),

    k =1 7πI% k )wall E3

    % k 

     5 =1

    S% k 

    I

    % k

    — τ% kI

    E3

    I

    % k

    — τ% 

    IFv

    I

    ('hereS( 5 )

    is the source function for the i hisothermal cell atv

    % k  t 

    k frequency(I% k)wall 

    is the intensity emitted by the 'all and the optical thic!ness τ(i )

    is calculated as:

    E

    ra

    I I I

  • 8/9/2019 Thesis Ermina

    74/194

    τ(i ) i  (l )

    % k E ),l =1κ% kFsl 

    5he En term is the nt horder e4ponential integral 'ith form:

  • 8/9/2019 Thesis Ermina

    75/194

    &<

    En,x- E{∞ω−nexp,− ωx-dω

    5he $& curve fit that is implemented in the tangent*slab model is a semi*empirical  

    formula:

    E3 E ?.?

  • 8/9/2019 Thesis Ermina

    76/194

    5he total radiative divergence for a finite*volume cell is calculated as the difference

     bet'een the total emissive po'er Eems and absorptive po'er Eas divided by the

    cell volumeV:   , E ems+  E a1s+ - 

    − ∇ .− q− r 

    → 

    adE

    −  − ,&.37-

    ('here:

    r r 4 r % max  N ems+rays N % Eems+E

    6  0% mi n

     j%dvdωdVE

    ' '

    Er)n ,&.3&-r n

    N a1s+rays N % 

    Ea1s+ E' '

    ,− FEr)n- ,&.36-

    r n

    ('here Na1s+rays is the total number of ray segments traversing the current cell(

    Nems+rays is the total number of rays emitted by this cell and the frequency domain

    has been divided intoNn intervals bet'eennmin andnmax . Er)n is the po'er carried

     by a photon pac!etn 'ith frequency interval F%n from rayr 'ith solid angle Fr :

    Er)n E j% FvnFrV ,&.33-

    5he radiative po'er lost by a photon pac!et n 'hile traversing from point si to s& 

    along a ray is calculated from:

    − FEr)n E −  9 −e−= % n

    (s)∆s

    Er)n,si - ,&.3>-

    ( 'here FsEs& −si . Similarly( the radiative heat flu4 incident on any 'all element

    qradis calculated as the sum of the remaining energy from all incident rays Nin#rays

    divided by the 'all element area A:Eas ),N in#+rays ),N % 

    qrad E A

    E nEr)n

    ,&.38- A

    Ra=/ra&in. an raia/ion #!0=.ri

    5he ray*tracing method for planar and a4isymmetric grids of quadrilateral cells is

     based on the creation of a radiation sub*grid and the connection of this to the main

    V

  • 8/9/2019 Thesis Ermina

    77/194

  • 8/9/2019 Thesis Ermina

    78/194

    xEx0 BLcos,φ-cos,θ- ,&.3;-

    yEy0 BLsin,φ- ,&.3?-

    ,&.>9-

    5he corresponding 2%D grid coordinates are then calculated from the follo'ing

    transformation ,in 7D application-:

    xEx ,&.>7-

    yE/yS2 BzS2 ,&.>&-

    5his transformation has the effect of reflecting rays intersecting the symmetry a4is

    at yE ?( as required. %or planar geometries the radiation sub*grid is formed in the

    xyplane as the 2%D domain is symmetrical along the za4is.

    5he core of the ray*tracing method is a cell searching algorithm that allo's the

    radiation sub*grid to be mapped onto the 2%D grid( such as the one sho'n in

    %igure &.3

    Fi.!r$ + $4ample of mapping of the radiation sub*grid onto the 2%D grid

  • 8/9/2019 Thesis Ermina

    79/194

  • 8/9/2019 Thesis Ermina

    80/194

    6&

    Par/ II

    N!m$ri&a" Sim!"a/ion# in (D

  • 8/9/2019 Thesis Ermina

    81/194

  • 8/9/2019 Thesis Ermina

    82/194

    63

    Chater $

    Simulations in "-

    "his #hapter presents the o%erall pro#ed$re to set $p and r$n a sim$lation on  Eilmer3)

    the two*dimensional sol%er) de%eloped y the 8ni%ersity o& $eensland) ,$stralia) and the

    main res$lts o& the present #al#$lations

    4

  • 8/9/2019 Thesis Ermina

    83/194

    4

  • 8/9/2019 Thesis Ermina

    84/194

    stagnation point of a blunt body is governed primarily by the shoc! standoff( it becomes

    possible to define a 7D equivalent sphere. %rom Schlieren studies carried out by ied et

    al ,ref.ied et al.-( Par! ,ref.Par!stagnation- chose a sphere of 7.;3m radius( 'hich gave

    the same shoc! standoff as seen on the Apollo 6 geometry at 73.3 deg angle of attac!.)n this study( the same equivalent sphere radius is used in order to be able to verify the

    results from $ilmer& 'ith Par!’s results. )ndeed( the final geometry implemented in the

    7D simulations is the one depicted in figure 6.9G it consists of the equivalent sphere of 

     Apollo 6( 'hile the case is built as a4isymmetric. 5he boundary conditions are the same

    for each case for the inflo'( outflo' and symmetry boundaries( 'hereas it changes on

    the 'all surface( according to the case simulated each time. More specifically( the east

     boundary of the domain changes from a slip*'all for an inviscid calculation to an energy*

     balance surface for a viscous calculation and to an ablative boundary condition for an

    ablation calculation.

    h h

    kg

      kg

    f f 

     jd

      jd

    !"!#$%&A'A"(! )*#+A(!

    y,

    -./

    i -.0a x

    A&'A123! 4A''

    y,

    -./

    i   -.0a   x

    )'2P

    4A''

    - -.5

    -.6)'2P

    4A''

    - -.5 -.6

    +a, .iscousFlow

    +b, .iscous flow/ ablation included

    Fi.!r$ 4 "loc!ing of the domain of the Apollo 6 fore*body for a viscous case( 'ithand 'ithout ablation

    4.2.1 Pr$=pro&$##in.

    5he viscous simulations are initiali=ed 'ith the converged inviscid case( 'hich is set up

     'ith a coarser mesh( preventing the solution to diverge 'hen inserting the viscous effects.

    0nce the flo' is 'ell established from the inviscid solution( the viscous effect is added

    incrementally. 5he transport properties ,e.g. viscosity- are incremented at each time stepfor stability reasons as stated in the relation: µn+1 Eµn ×Fin# ( 'here Fin# is the incre*

    i i 

    mental factor( 'hich for the present calculations 'as set to 9 · 9?−5 .

    7 7

  • 8/9/2019 Thesis Ermina

    85/194

    5he generated mesh for the inviscid and viscous cases for the 7nd tra#ectory point( 'hich

    is also the pea! radiative heating point( is presented in figure 6.7. )t is 'orth mentioning

    that for the viscous cases the mesh 'as not only refined at the boundary layer region(

  • 8/9/2019 Thesis Ermina

    86/194

  • 8/9/2019 Thesis Ermina

    87/194

  • 8/9/2019 Thesis Ermina

    88/194

    08-0-- ,8-

    -- 8- -

    all ?@@)

    Fi.!r$ 4  @elocity profile along the stagnation line( 57( investigation of ablation effects and diffusion model

  • 8/9/2019 Thesis Ermina

    89/194

    0.-,=5

    ,.8  

    in9isid

    9is:;s ('

    9is:;s#(

    ,.-

      a7lati:n ('

    a7lati:n #(

    -.8

    -.- 08- 0-- ,8- ,-- 8- -

    ,.0

    ,=5

    ,.-

    -.6  

    -./

    -.5

    -.0

    in9isid 9is:;s ('

    9is:;s #(

    a7lati:n ('

    a7lati:n

    #(

    all ?@@)

    -.- 08- 0-- ,8- ,-- 8- -

    all ?@@)

    Fi.!r$ 4 5emperature profile along the stagnation line( 57( investigation of ablationeffects and diffusion model

    5he species mass fractions’ profiles in the shoc! layer are presented in figure 6.3 for the

    ablation case. 5he graphs are illustrated in a logarithmic scale. 5he calculation 'as

    performed 'ith the 77*species gas model( presented in section &.>.9. As ablative species

    have been in#ected in the gas mi4ture the composition of the gas mi4ture of air and ablativespecies has been highly modified. )n the region close to the 'all the main ablative species

    is carbon and its mass fraction on the 'all is more than ten times higher than the follo'ing

    highest mass fractions. 5he ablative mass fractions never become significant compared

    to the air species mass fractions. )t should also be noticed that the ablative species are

    present in an e4tremely small region close to the 'all surface ,≤  96mm-( compared 'ith

    the shoc!*standoff distance ,≈ 93cm-.

       1  r  a  n  s   l  a   t   i  :  n  a   l  B   #  :   t  a   t   i  :  n  a   l

        1  =  @  C  =

      r  a   t  ;  r  =   ?   D   )

       3   i   7  r  a   t   i  :

      n  a   l  B   !   l  =   .

        !   l  =     t  r  :  n   i     1  =  @  C  =  r  a   t  ;  r  =   ?   D   )

  • 8/9/2019 Thesis Ermina

    90/194

    ,--

    ,-B,

    ,-B0

    ,-BE

    ,-B5

    ,-B8

    ,-B/

    ,-BF

    ,-B6,6-

    ,/- ,5- ,0- ,-- 6- /- 5- 0-

      G "

      "0

    "GG0

      GHCl;s  "HCl;s  "GHCl;s

    "0HCl;s  =H@in;s

    -

    ,--

    ,-B,

    ,-B0

    ,-BE

    ,-B5

    ,-B8

    ,-B/

    ,-BFB6

     all?@@)

      (I

      (G(0

      ("  I0  (E  (0I

    (HCl;sIHCl;s

    ,-,5

      ,0 ,- 6 / 5 0 - all ?@@)

    Fi.!r$ 4 Species mass fractions along the stagnation streamline( 57( ablative viscous

    flo' 

    4.2.2.2 H$a/ 2"!3 &a"&!"a/ion#

    %or each case( viscous 'ith or 'ithout the ablative boundary condition ta!en into consid*

    eration( the heat flu4es 'ere calculated during the simulations. )n the follo'ing section

    the calculated heat flu4es ,conductive and convective- are compared bet'een the cases

     'ith or 'ithout ablation. 5'o diffusion models 'ere used and the results they gave are

    also compared in this section.

    %igure 6.>  illustrates the conductive and diffusive heat flu4 participation in the heat flu4

    field along the capsule’s 'all for a viscous case 'ithout ablation. As it is easily e4tracted(

    the diffusive heat flu4 can be considered insignificant in this case.

    %igure 6.8 illustrates the convective heat flu4 on the 'all of the Apollo 6 capsule( as

    calculated 'ith the use of the amsha'*2hang and the 2onstant Le'is umber Diffusion

       A   t  @  :  s  C   h  =  r   i    s  C  =     i  =  s

        J  a  s  s   +  r  a     t   i  :  n  s

       A   7   l  a   t   i  9  =  s  C  =     i  =

      s

        J  a  s  s   +  r  a     t   i  :  n  s

  • 8/9/2019 Thesis Ermina

    91/194

    Models. )t is observed that the 2onstant Le'is umber diffusion model calculates a

    conductive heat flu4 almost t'ice the value of the the one calculated 'ith the amsha'*

    2hang model. As it 'ill be sho'n in section 6.7.6.9(  the values of convective heating for

  • 8/9/2019 Thesis Ermina

    92/194

    large nose radii are particularly small. 5hus( the amsha'*2hang Model is considered 

    more appropriate for this simulation case.

    ,-F

    ,-/

    ,-8

    ,-5

    ,-E

    ,-0

    ,-,

    ,--

    -.- -.8 ,.- ,.8 0.- 0.8 E.- E.8 5.- 5.8 B(hang (:nstant '=>is

       (  :  n  9  =     t   i  9  =   I  =  a   t   +   l  ;  x   ?   4     @   0   )

  • 8/9/2019 Thesis Ermina

    93/194

    4.2.2.3 Raia/ion Ca"&!"a/ion#

    5he viscous converged simulation is used as a starting point for the adiation calculations.

    adiation calculations are also performed for the ablation cases( considering the 9? more

    ablative species. 2alculations 'ere run assuming the KSS ,EKuasi Steady State- non*

    equilibrium electronic level population model( 'hereas t'o different radiation transport

    models 'ere investigated: the tangent slab and the Monte*2arlo ray*tracing method ,'ith

    9> rays-. )t is 'orth noticing that the e&rad.e4e e4ecutable file that is used for the ay*

    5racing Approach is not calculating the spectra in the case( #ust the radiative heat flu4

    in the flo'*field. )n order for spectral data to be calculated for these cases( the solution

    should be post*processed 'ith the tangent slab appro4imation. 5he radiation library used

    for the radiation calculations is the photaura library implemented in $ilmer&.

    5he spectral 'avelength range 'as considered bet'een >? ≤   λ≤  6???nm( as most of the

    e4istent data used the spectral range of ,?.?>*6 µm-. 5he radiators considered are the

    follo'ing:

    2( 0( ( ( 20( 22( 2( 2( 0( 02( 2( 0+( +( +( 0+( 2

    +( e – 

    5he radiators considered in the KSS non*equilibrium electronic level population model are

    the follo'ing:

    2( 0( ( 20( 22( 0

    2

    )t is noticed that the species containing 'ere proved to be unstable for the KSS popu*

    lation model and therefore 'ere not ta!en into consideration.

    %igure 6.;  illustrates the spectral flu4 and the integrated flu4 calculated 'ith the tangent

    slab radiation transport method for the second tra#ectory point( 'hich is also the pea! 

    radiative point. )t is noticed that above 3? of the total integrated flu4 is reached in

    the 'avelength range bet'een ,?.?>*?.7 µm-( 'hich is designated as the @H@ ,E@acuum*

    Hltra*@iolet- range. o'ever( the spectral lines above 8?? nm have a valid contributionin the total spectra of the case. %igure 6.

  • 8/9/2019 Thesis Ermina

    94/194

    6=5

    0

    F

    /

    8

    5

    E

    0

    -0-- 5-- /-- 6-- --- 0--

     4a9=l=ngth ?n@)

    +a, Sectra in wa0elength range 4*3$*** nm

    E.8=/

    0

    E.-

    0.8

    0.-

    .8

    .-

    -.8

    -.- 0-- 5-- /-- 6-- --- 0-- 4a9=l=ngth ?n@)

    +b, Integrated flu5 in wa0elength range 4*3$*** nm

    Fi.!r$ 4 Spectral and integrated heat flu4( pea! radiative heating point( tangent slabradiation transport model

         C  =     t  r  a   l   M  ;  x   ?   4     @   0  B  @   )

       2  n   t  =  g  r  a   t  =   d   M  ;  x   ?   4     @   0   )

  • 8/9/2019 Thesis Ermina

    95/194

    6,=,5

    F

    6 =E

    0

    F

    / /

    8 8

    5 5

    E E

    0 0

    -/- 6- -- 0- 5- /- 6- 0--

    00-

     4a9=l=ngth ?n@)

    -08- E-- E8- 5-- 58-

     4a9=l=ngth ?n@)

    +a, Sectra in wa0elength range4*3""* nm   +b, Sectra in wa0elength range "!*3$6*

    nm

    6,=,E 0.8

    =5

    F

    0.-

    /

    8.8

    5

    E.-

    0

    -.8

    -58- 8-- 88- /-- /8-

    F-- 4a9=l=ngth ?n@)

    -.-F-- F0- F5- F/- F6- 6--

     4a9=l=ngth ?n@)

    + , Sectra in wa0elength range$"*3(!* nm   +d, Sectra in wa0elength range (**37!*

    nm

    0.8=5 .-

    =5

    0.--.6

    .8-./

    .--.5

    -.8-.0

    -.-6-- -.-

    + , Sectra in wa0elength range 7**3!"** nm

    +f, ) Sectra in wa0elength range !***3$*** nm

    Fi.!r$ 4 Spectral heat flu4( pea! radiative heating point( tangent slab radiation

    transport model. Divided spectra into specific important regions of the 'avelength range

      C  =         t   r      a     l   f     l  ;  x   ?   4                  A

       @   0

        )

      C  =         t   r  a     l   f     l  ;  x   ?   4                  A   @

       0

       )

      C  =         t   r      a     l   f     l  ;  x   ?   4

                     A

       @   0

        )

      C  =         t   r  a     l   f     l  ;  x   ?   4                  A   @

       0   )

      C  =         t   r  a     l   f     l  ;  x   ?   4                  A   @

       0

       )

      C  =         t   r  a     l   f     l  ;  x

       ?   4                  A   @

       0

       )

    68- N-- N8- --- -8- -- 8- -- 8-- 0-- 08-- E--- E8-- 5--- 4a9=l=ngth ?n@) 4a9=l=ngth ?n@)

  • 8/9/2019 Thesis Ermina

    96/194

    6=5

    F

    /

    8

    5

    E

    0

    -0-- 5-- /-- 6-- --- 0--

     4a9=l=ngth ?n@)

    +a, Sectra in wa0elength range 4*3!"** nm

    6=5 ,.0

    ,=,5

    F.-

    /

    -.68

    5 -./

    E-.5

    0

    -.0

    -/- 6- -- 0- 5- /- 6-

    0--

     4a9=l=ngth ?n@)

    -.-0-- 5-- /-- 6-- --- 0--

     4a9=l=ngth ?n@)

    +b, Sectra in wa0elength range4*3"** nm   + , Sectra in wa0elength range "**3

    !"** nm

    Fi.!r$ 4 Spectral heat flu4( pea! radiative heating point( tangent slab radiation transport model( ablation included

       )  C  =         t   r  a     l   f     l  ;  x   ?   4

                     A   @

       0

       )

      C  =         t   r  a     l   f     l  ;  x   ?   4                  A   @

       0

       )

      C  =         t   r  a     l   f     l  ;  x   ?   4                  A   @

       0

       )

  • 8/9/2019 Thesis Ermina

    97/194

    E.-=5 ,.0

    ,=,5

    0