35
The Wavefront Propagation Tool PHASE Johannes Bahrdt February 24th, 2009

The Wavefront Propagation Tool PHASE

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Wavefront Propagation Tool PHASE

The Wavefront Propagation Tool PHASE

Johannes BahrdtFebruary 24th, 2009

Page 2: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Ray tracing codes have been developed over the last 30 years at1st, 2nd, 3rd generation synchrotron radiation facilities

geometrical optic is justified if radiation is emittance dominated:

this limitation is wavelength dependentvertical emittance usually 1% of horizontal emittancein 3rd generation light sources coherent effects show up

for low energiesin vertical plane

4th generation machines have a high degree of transverse coherencephysical optics propagation methods are required

Limits of Ray Tracing Algorithms

L

L

photonelectron

photonelectron

2/'/'2

1

λσβεσ

λπ

σβεσ

=>>=

⋅=>>⋅=

Page 3: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Intermediate Step: Brightness Formalism (Kim,Wigner)

Brightness definition from electric fields:

brightness is not positive definite:derivation of physical properties via integrationover space or solid angle

Diffraction at an Aperture:Convolution with aperture function:

Convolution with beam emittance is straight forward

)2/()2/(

)2/()2/(),(

2exp),(),(

*

*

0

ξξ

ξξξ

ξξλπξ

−⋅+

+−⋅+=

⋅⎥⎦⎤

⎢⎣⎡ ⋅Φ⋅=Φ ∫

xExE

xExExA

dixAcxB

zz

yy

)2exp()2/(

)2/(1),( 2

xixS

xSdxG

rrrr

rrrrr

⋅Φ⋅−

⋅+⋅=Φ ∫ ∗

λπξ

ξξλ

Realistic description of thecoordinate and angle correllationof an undulator source in the brightness formalism

Page 4: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

20:1 demagnification of a dipole sourcegrazing angle 10°

PHASEtransformation

brightnesstransformation + realistic description of

source phase space+ diffraction at apertures+ simple implementation

of beam emittance- no mutual interference,

variation of polarization etc

comparison with ray tracing result

Limits of Brightness Formalism: Mutual Interference

Page 5: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Features of the Code PHASE

Geometrical opticsRay-Tracing including slope errorsAutomated beamline optimization

Brightness

Physical opticsfree space propagation of electric fieldspropagation across optical elementstime / frequency dependent simulations

Wavefront propagation methods of PHASEstationary phase approximation (SPA)FFT near field approximationFFT far field approximationFFT Fraunhofer approximation

Simulation method of SPAbased on a matrix formalism for nonlinear transformations

of various parameters across the elementsthe code is generated with the algebraic code REDUCE

Page 6: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Method A: Integration of the equation of Fresnel and Kirchhoff

Method B: Fourier Optics (FO)

large Fresnel numbers (F>>1)near field approximation (fixed grid)

small Fresnel numbers (F<<1)far field and Fraunhofer approximation (non fixed grid)

a = radius of aperturef = focal length = distance to aperture for parallel beams

= distance of mirrors in confocal resonator

dzdyrr

eyzEyzErrki

⋅⋅−

= ∫ ∫∞

∞−

∞−

)cos(|'|

),(1)','()'(

βλ rr

rrrrr

Free Space Propagation

faF⋅

2

Page 7: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Method B1: Fourier optics, near field approximation

Plane wave expansion ofelectric fields

multiplication witha phase factor

back transformation

Grid size in source and image plane is equalchoose grid extension in source plane appropriately

to get equal resolution in source and image plane

∫ ∫∞

∞−

∞−

+− ⋅⋅= dzdyeyzEE yziyz

yz )(20 ),(),( ννπνν

rr

222/120 ),(),( yzxi

yzyz eEE ννλπνννν −−⋅Δ⋅⋅=rr

∫ ∫∞

∞−

+⋅∞

∞−

⋅⋅⋅= zyyzi

yz ddeEyzE yz νννν ννπ )(2),()','(rr

Free Space Propagation, Fourier Optic I

Page 8: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Method B2: Fourier optics, far field approximation

convolution of source field with point spread function

Rewriting the expressions:

where the sign of the FFT depends on the direction of propagation

Both methods, B1 and B2, are mathematically equivalent, but the noise behaviour is different, depending on the specific application

xkri

exi

xxzzyyt

dzdyxxzzyytyzExyzE

Δ

∞−

∞−

Δ=−−−

⋅⋅−−−⋅=Δ ∫∫

2

2

1)',','(

)',','()0,,(),','(

λ

rr

])0,,([1),','( 22

21

22

xkri

xkri

ezyEFFexi

xzyE Δ±Δ ⋅Δ

=Δrr

λ

Free Space Propagation, Fourier Optic II

Page 9: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Method B3: Fourier optics, Fraunhofer approximation(very far field approximation)

for large distances the phase factors in method B2are approximately one.

the sign of the FFT depends on the direction of propagation

)]0,,([1),','( zyEFFxi

xzyErr

±

Δ=Δ

λ

Free Space Propagation, Fourier Optic III

Page 10: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Where is the beam waist?What is the phase space volume?

21 slices from time dependent GENESIS simulationdata refer to z=0 (exit of final amplifier)

FFT at each grid point frequency spectrumpropagation for frequency of maximum intensity

results from beam propagation phase space from GENESISphase space at the beam waist

Example: BESSY LE-FEL @114eV

Page 11: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Normal Iincidence optics:- free space propagation to the optical element- multiplication with complex amplitude to account for

- amplitude variation and- phase variation at optical element

- free space propagation

Grazing Incidence optics:- ray tracing across the optical element instead of

multiplication with amplitude / phase factor

source image

lens, mirror, zone plate...

aperture

FO-Propagation Across an Optical Element

Page 12: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Advantages and Limits of Fourier Optics

Advantages of Fourier optics:fast: computation time scales with

as compared to

for the stationary phase approximation(however smaller arrays are needed for SPA)

Limitations of the method:grid size is not freely choosablemany zeroes have to be computed in case of

strong magnification / demagnificationlarge arrays are neededdiffraction effects at long mirrors in

grazing incidence geometry are not exactly simulated

)ln(2 2 nn ⋅⋅

4n

Page 13: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

∫ ⋅⋅= adaEaahaE )(),'()'(

dldwlwbrr

rrikKaahSurface

⋅⋅⋅+

= ∫ ),('

))'(exp(),'(

Propagation of electric fieldsalong an optical element,starting with Fresnel Kirchhoff:

with the propagator h

b = complex number describing the optical property of the surface

K = obliquity factor

Another Method: Stationary Phase Aproximation SPA

Page 14: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

lkji

lkjiijkl dzdyzyay ''''4

⋅⋅⋅⋅= ∑≤+++

4th order expansion of source coordinateswith respect to image coordinates y‘, z‘, dy‘, dz‘

Similar expansions for phase, determinants...From expansion above derive expansion of all cross products e.g.:

Matrix formalism for transformation of coordinates etc.(linearization of non linear transformation)

• coordinate vector with y, z, dy, dz and all cross products: • representation of optical element with a (70 x 70) matrix: • transformation of coordinate vector across one element:

lkji

lkjiijkl dzdyzybzy ''''4

2 ⋅⋅⋅⋅=⋅ ∑≤+++

YM

if YMY ⋅=

Matrix Formalism of PHASE

Page 15: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Second order expansion of the optical path length PL around :

perform analytical integration to infinity

SPA reduces the dimensions of integration from 6 to 4!

Simplification of Propagator h for one optical element

adlw

PLlPL

wPL

rrrrikaE

aE

lwlwlwlw

r⋅⎟⎟

⎞⎜⎜⎝

⎛Δ∂⋅Δ∂

∂−

Δ∂∂⋅

Δ∂∂

⋅⋅+⋅

∫2/122

2

2

2

2

,,,, )'/()]'(exp[)(

)'(

00000000

ldwdlwlw

PL

llPLw

wPLik

rrikrr

aah lwlwlwlw

Δ⋅Δ⋅Δ⋅ΔΔ∂⋅Δ∂

+Δ⋅

Δ∂∂

+Δ⋅

Δ∂∂

⋅+⋅

)]

22(exp[

)]'(exp['

1)',(

2

2

2

22

2

2

,,,,

0000

0000

),( 00 lw

Page 16: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Heuristic Approach: valid for one optical element

General approach needed for a combnation of N optical elements

Path length PL forN optical elements:

The propagator has the form:

Propagator h for several optical elements I

qp

qp

q

p

sq

rp

ni

mi

li

ki

nmlksr

sr

Nqpqp

lwdzdyzy

srnmlkPLCPL

Δ⋅Δ⋅⋅⋅⋅

⋅= ∑

≤+++=+

===

42}2,0{}2,0{

...1,),,,,,(

∫ ∫ ∑ ∑

Δ⋅⋅⋅Δ⋅Δ⋅⋅

Δ⋅Δ⋅

Δ∂⋅Δ∂∂

⋅⋅⋅

⋅++⋅∝

= =+

+

++

=

N

N

qp sr qp

sr

srp

sr

NN

i

iNN

ldldwdsr

lwlw

PLik

rrikr

lwlwh

qp

qq

pp

qq

p

qp

111,

2

2

10

101

10

001010

)]!!

(exp[

)]...(exp[1),,...,(~

)','(),(

')cos()cos(

22

22

2

2

2

2

dzdyzy

rrlwPL

lPL

wPL

∂∂

⋅⋅

≅⎟⎟⎠

⎞⎜⎜⎝

⎛Δ∂⋅Δ∂

∂−

Δ∂∂⋅

Δ∂∂ βα

PL = quadratic form

Page 17: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

The quadratic form can be represented by

The matrix can be converted to a diagonal formusing an orthogonal transformation (principle axis theorem)

A seperation of integrals and an analytic integration simplifies the expression of the propagator:

),(),( 1121 NN

T

llwxxX

XGXPL

Δ⋅⋅⋅ΔΔ=⋅⋅⋅=

⋅⋅=

GK

KGKT

N

⋅⋅=⎟⎟⎟

⎜⎜⎜

λ

λ

000...0001

2/2/

2121

11

1

001010

12)()(1

),,...,(~

ππ

λλπ

υυiNim

N

N

N

NN

ii

NN

eek

lw

r

lwlwh

−+

=

⋅⋅⋅⋅⋅

⋅⎟⎠⎞

⎜⎝⎛⋅

⋅⋅⋅∂Δ⋅⋅⋅Δ∂

⋅=

Propagator h for several optical elements II

Page 18: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

The anayltic integration requires asufficient separation of principle rays (top).

For one or two optical elementsthe source and image plane have tobe chosen appropriately to guaranteea separation of principle rays.

For three or more optical elementsthe principle rays are well seperated and no singularities show up.

Singularities

Thick line: principle rays are well separated.Thin lines: principles raysare close and the resultsare noisy.

Page 19: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Comparison of Different Propagation Shemes

For a given vectror lengthFourier optics (FO) is much faster as compared to the stationary phase approximation (SPA)

However:the SPA requires much smaller vectors than FO to propagate the same information

Page 20: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Strong Demagnification in Fourier Optics

20:1 demagnification of a Gaussian source. The noise in the image plane increases if the image size is reduced.

Though the information is concentrated only in a small area large arrays have to be propagated.

Within the SPA only the relevant partin the image plane has to be evaluated.

Page 21: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

)( xEℜ )( xEℑ

amplitude phase

Real and imaginary partsof electric field from:• Integration of Jackson equation

(spontaneous emission)• FEL code (GENESIS…)

(stimulated emission)

Amplitude and phaserepresentation permits fasterintegration algorithm

Representation of the Source (One Slice)

Page 22: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Polarization filtere.g. circular right handed

lryz

yz

vhyz

vhyz

IIAAS

IIAAS

IIAAS

IIAAS

−=⋅=

−=⋅=

−=−=

+=+=

)sin(2

)cos(2

3

135452

221

220

δ

δ

Projection vectors

Stokes parameters

[ ][ ]δω

ω

+−⋅=

−⋅=

)(exp

)(exp

trkiAE

trkiAE

yy

zz

Results: Electric fields

22*

21

yzrr iEESEI −=⋅=

[ ][ ][ ][ ][ ][ ] 2/),1(

2/),1(

2/)1,1(

2/)1,1(

)1,0(

)0,1(

135

45

iS

iS

S

S

S

S

l

r

v

h

−=

=

−=

=

=

=

Polarization Analysis of Results: Stokes Vectors

Page 23: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Working with PHASE

source definition

beamline definition

ray tracing

graphic outputcheck for consistency

switch to physical optic

wave front propagation

graphic output

beamline optimization coherent source definition

Page 24: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Structure of PHASE

User Interfaces : Motif, IDLGraphics : PAW (CERN library), IDLPlatform : LINUX

monolithic PHASE PHASE libraryfor IDLbeamline file

Motif interfacePAW graphics

read and writebeamline file

define beamlinerun PHASErun optimization

IDL interface

read and writebeamline file

use specific routines e.g. FO

IDL libraryuser specific libraryuser scripts

run PHASErun optimization

Page 25: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Definition of source Beamline layout

PHASE: Motif Based User Interface I

Sources:- Gaussian source- hard edge- undulator source- source from file

Page 26: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Definition of optical elements

PHASE: Motif Based User Interface II

Optical elements• mirrors• gratings (VLS)

Surface profile• limited to 5th order

might be enhancedin the future

Slope errors• Gaussian distribution

(ray tracing mode only)

Misalignment• 3 translations• 3 rotations

Apertures• ray tracing mode only

in physical optics different algorithm

Page 27: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Beamline Optimization in Geometrical Optics Mode

Figure of merit:horizontal focusvertical focushor. & vert. focusresolving powerspecial cost function

Variables for optimization:distancesdeflection anglesgrating line density parametersradii R & rhoexpansion parameters of surface…

Optimization:multi parameter fit with MINUIT / CERN librarysystematic variation of 2 specific parameters

Page 28: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Beamline Optimization Example: VLS-Grating

N0 =1200N1 =0N2 =0

N0 =1200N1 =0.244N2 =0

N0 =1200N1 =0.244N2 =0.00178

Line density n of the grating:n = N 0 + 2 N 1 w + 3 N 2 w 2 + 4 N 3 w 3 + 5 N 4 w 4

Page 29: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

PHASE: The IDL User Interface

1 2 3 4

A short example:1. beam=phaSrcWFGauss( nz,-size/2, size/2 , ny ,-size/2, size/2, waist, 0,

lambda,1,1,0 ) beam is an array of complex numbers2. bild = read_bmp('b5_cross.bmp') bild is the phase pattern

idx = where(bild GT 0.5)ezre = beam.zre * cos(phi *!DPI/180D) – beam.zim * sin(phi *!DPI/180D)beam.zre(idx) = ezre(idx)

3. phaPropFFTnear, beam, dist1 propagation4. phaPropFFTfar, beam, dist

Page 30: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Interface Between IDL and Monolithic PHASE

Create new or read old beamline beamline = phaNewBeamline(blfname) or phaReadBLFile(blfname)

Create source and set aperturesbeamline.src.so4 = phaSrcWFGauss( ianzz, zmin, zmax, ianzy, ymin, ymax, w0 , zfoc, xlam, ez0, ey0, dphi_zy ) phaSetApertures, beamline, ….

Create or modify optical elementOptElement = phaNewOptElement('Spieglein an der Wand')phaDefineOpticalElement , OptElement, …. phaAddOptElement, beamline, OptElement

Set or modify integration parametersphaSetIntegrationParameter, beamline , ……phaSetControlFlags, beamline , ……

Write beamline file and run PHASEbeamline = phaWriteBLFile(blfname) phaBatchMode, BLfile, ResultFile, cmode

Get resultsphaLoadEMField, beamline, MainFileName

Page 31: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Generation of transverse field distributionswith GENESIS, number of slices depends on fine structure in time space: HGHG SASE

Time domain

FFT for each grid point

Frequency domain

PHASE propagation for each frequency

zy

time

zy

frequency

FFT-1 for each grid pointz

y

time

Time / Frequency Dependent Simulations

Page 32: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Example: Self Seeding Option at FLASH I

Page 33: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

Black: directly behind the first undulator unseeded FEL (black)Coloured: behind the monochromator for exit slits of seeded FEL (red)

40μm (blue) one order of magnitude 200μm (red) enhancement due to400μm (green) seeding

Characteristics of the FEL pulse

behind the 1st undulator & monochromator behind the 2nd undulator

time domain frequency domain

GENESISoutput (black)

used frequencies(coloured)

59 60 61

1x106

2x106

3x106

4x106

5x106

6x106

59 60 61103

104

105

106

107

Wavelength/nm

SASE SEEDED

Example: Self Seeding Option at FLASH II

Page 34: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

• Ray tracing capabilities (limited set of optical elements)

• Automated beamline optimization

• Wavefront propagation with various propagators such asStationary phase approximation propagationFourier optic

• Time and frequency dependent simulationsusing realistic pulse features from time dependent FEL codes

Summary

Page 35: The Wavefront Propagation Tool PHASE

Johannes Bahrdt, HZB für Materialien und Energie, SMEXOS Workshop, February 24th-25th, ESRF, Grenoble, France

References

Fourth order optical aberration and phase-space transformation for reflection and diffraction optics, J. Bahrdt, Appl Opt. 34, 114 (1995).

Beamline optimization and phase space transformation,J. Bahrdt, U. Flechsig and F. Senf, Rev. Sci. Instrum. 66, 2719 (1995).

Wave front propagation: Design code for synchrotron radiation beam linesJ. Bahrdt, Appl Opt 36, 4367 (1997).

Wave front propagation in synchrotron radiation beamlines,J. Bahrdt, U. Flechsig, published in "Gratings and grating monochromators for synchrotron radiation", Proc. of SPIE, Vol. 3150 pp158-170, San Diego, 1997.

Tracking of wave fronts, J. Bahrdt, Proc. of Int. FEL Conference, Stanford, Ca, USA, 2005.

Wave front tracking within the stationary phase approximation,J. Bahrdt, Phys. Rev. ST Accel. Beams 10, 060701 (2007).