28
The Standard Model Lagrangian Elementary Particle Physics Strong Interaction Fenomenology Diego Bettoni Academic Year 2011-12

The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

The Standard Model Lagrangian

Elementary Particle PhysicsStrong Interaction Fenomenology

Diego BettoniAcademic Year 2011-12

Page 2: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 2

Dirac Formalism

0 mi

j Conserved Current

0110

00 0

i

ii

10

015

L

R

mi L

Page 3: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 3

Gauge Invariance

DD

D

U

igA

U 11

UUAUU

giA

Wig 22

D

kjijkii Wg

W 2

1

Abelian

Non Abelian

Gauge invariance requires the introduction of vector bosons, which act asquanta of new interactions.

In gauge theories the symmetries prescribe the interactions.

Page 4: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 4

The Symmetries of the Standard Model

• U(1) invariance. All particles appear to have this kind of invariance, related to electromagnetism. It requires a vector boson, B, whose connection with the photon will be determined later.

• SU(2) invariance. Non abelian gauge invariance (electroweak isospin). It requires three vector bosons, Wi

, one for each generator of SU(2). The physical W particles have definite electromagnetic charges.

• SU(3) invariance. It requires eight vector bosons, Ga, the gluons, the

quanta of the strong interaction, described by Quantum ChromoDynamics (QCD).

302121 22 WWiWWWiWWW

Page 5: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 5

The Lagrangian

• In order to obtain the Standard Model Lagrangian we start from the free particle Lagrangian and replace the ordinary derivative by the convariant derivative. It will contain two parts:

kinetic energies of the gauge fieldscovariant derivative fermion kinetic energies

• Next we must specify the particles and their transformation properties under the three internal symmetries.

• Notation

gaugeL

fermL

Page 6: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 6

eLLeRR PePe

L

e

eL

Re

Leptons

• Rotations in electroweak SU(2) turn L electrons in L neutrinos and vv. • Ordinary spin: raising and lowering operators (vectors).• Strong isospin: pions (vectors).• Weak isospin: the W bosons connect the members of an electroweak

doublet• eR is not connected to any other state by electroweak transitions.• p,q,r=1,2 e.g.: Lp L1=eL, L2=e-

L.

Left-handed and right-handed particles behave differently under electroweak SU(2) transformations: the electrons R are SU(2) singlets, whereas the electrons L are put in doublets together with the L neutrinos.

SU(2) singlet SU(2) doublet

Page 7: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 7

LL d

uQ

RR ud ,

Quarks

• the index describes how the quark transforms under color SU(3).• The basic representation is a triplet: ,, = 1,2,3 or r,g,b.• Color (e.g. r) and anticolor (e.g. r ). Singlet (rr+ gg+ bb)• All leptons are color singlets.• All quarks are color triplets.• The gluons generate the transitions from one color to another: they

are the quanta of the strong interaction, but unlike photons they carry color charge.

• There are eight “bi-colored” gluons (e.g. bg): octet representation of color SU(3).

Page 8: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 8

• In the Standard Model there are no R neutrinos:– Experimentally ony L are observed.– Neutrino masses are very small (but non-zero, oscillations).– If right-handed neutrinos R exist either they are very heavy or they

interact very weakly.• R and L fermions were put in different electroweak SU(2) multiplets:

that implies a violation of parity, since clearly the theory is not invariant under the reversal of the component of spin in the direction of motion. This is the way in which parity violation is described in the standard model, but it is not explained in a fundamental sense.

• The same theory can be applied to the two other fermion families: (,, c,s) and ( ,,t,b).– The universe consists of fermions from the first generation.– The other families are produced in high-energy cosmic ray collisions

and in particle accelerators.– No reason has been found for the existence of three families of particles

with identical quantum numbers and interactions.

Page 9: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

• B is the spin-one field needed to maintain the U(1) gauge invariance. g1 is the coupling strength (to be measured experimentally. Y is the generator of U(1), transformations, a constant, but in principle different for the different fermions.

• Analogous remarks describe the SU(2) and SU(3) terms. We introduce 3 and, respectively, 8 vector bosons which are needed to maintain the local gauge invariance.

• D gives a zero result when it acts on a term of different matrix form. For example is a 22 matrix in SU(2) and it gives zero acting on eR, uR ,dR.

D. Bettoni Fenomenologia Interazioni Forti 9

D

ai GigWigBYigai

222 321 D

332211 WWWW ii

RRLR duQeLf ,,,,f

ff DLferm

The Quark and Lepton Lagrangian

iiW

Page 10: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 10

LLLLRR eeee

L

RR

i

eeLeL

2

Ri

R

i

eee

LeL

Gauging the Global Symmetries

Dirac kinetic energy Lagrangian for the first generation:

Global SU(2) symmetry

Global U(1) symmetry

We put eL and L in a doublet, eR in a singlet.

We make these symmetries locals by introducing potentials Wi and B. and

by replacing with the covariant derivative D . Thus we obtain the same result. Some attempts to extend the Standard Model proceed along theselines, by adding particles and symmetries and then gauging the symmetries.

Page 11: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 11

The Electroweak Lagrangian

• Since the term is always present we will not write it.• All the calculations in SU(2) will be done only for the leptons.• Since the color labels of the quarks do not operate in the U(1) or

SU(2) space, quarks will behave the same way as leptons for U(1)and SU(2) interactions.

Page 12: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 12

RR

RL eBYigieLBYigiLU

22

leptoni,1 11fermL

LLLL eeLL

BeeYeeYgU RRRLLLLL

2leptoni,1 1

fermL

The U(1) Terms

Page 13: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 13

002

0

02

0

02

321

2132

2ferm

222

22

2

22

2

2

2leptoni,2

WeeWeWeWg

eWWeWW

eg

eWWWW

eg

eWiWWiWWW

eg

LWigiLSU

LLLLLLLL

LL

LLLL

L

LLL

L

LLL

ii

L

The SU(2) Terms

Page 14: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 14

RRLL eeeeQA EML

LLL WgBYg

021

22

012 WYgBgA L 0

21 WgBYgZ L

221

22

012

LYgg

WYgBgA L

221

22

021

LYgg

WgBYgZ L

The Neutral Current

Electromagnetic interaction of particles of charge Q:

There are terms involving neutrinos

We assume the the electromagnetic field A is the orthogonal combination:

Page 15: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 15

BYgeeWgBYgee RRRLLL 2221021

221

22

12

LYgg

ZYgAgB L

221

22

210

LYgg

ZgAYgW L

221

22

21

221

22

22

221

221

22

2122

122

21

22

2

LL

LL

YggYYgee

YgggYgeeZ

YggYggee

YggYggeeA

LRRR

LLL

RRR

LLL

Terms involving electrons:

The term in A must be the usual electromagnetic current. The term in Z can be an additional interaction, to be checked experimentally.

Page 16: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 16

221

22

21

LYgg

Ygge L

221

22

21

2L

YggYgge R

21

221

22

2

ggYgg

eY

YY

LL

LR

21

22

211gg

ggeYL

We can choose YL=-1, since anychange in YL can be absorbed bya redefinition of g1.

The theory we have been writing can be interpreted to contain the usualelectromagnetic interaction, plus an additional neutral current interaction with Z for both electrons and neutrinos.

Page 17: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 17

21

22

2

21

22

1

cos

sin

ggg

ggg

W

W

W

W

eg

eg

sin

cos

2

1

23.0sin 2 W

Define:W weak mixing angle(Weinberg angle)

g1 and g2 are written in terms of the known e (e2/41/137)and the electroweak mixing angle, which needs to be measuredor calculated some other way.

Page 18: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 18

LLW

LL ZgZgg

cos22

221

22

WW

WW

WW

e

e

eegg

sincos

sincos

sincos21

22

2

21

2

2

2

221

22

-Z Coupling

W

gcos2

2 quantity to be associated to each L-Z vertex. “electroweak charge” of the left-handed neutrino.

Page 19: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 19

e-Z Coupling

21

22

21

21

22

22

21

2 gggee

ggggeeZ RRLL

WWW

WW

egg

egg

gg

2

2221

22

2

21

22

22

21

sin21

sincos

sin1

cos1

22

WWW

WW

W

e

ee

ggg

2

2

2

21

22

21

sinsincos

sincoscos

eL Coupling

eR Coupling

Page 20: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 20

Wff

WWQTe

2

3 sinsincos

T3f is the eigenvalue of T3 for any fermion f.

For a singlet (f=eR,uR,dR ecc) T3f = 0.

For the upper member of a doublet (f=L,uL ecc) T3f = +1/2.

For the lower member of a doublet (f=eL,dL ecc) T3f = -1/2.

Qf is the electric charge of the fermion in units of e: Qe=-1. Q=0, Qu=2/3, Qd=-1/3)

The electroweak theory contains both the electromagnetic interaction,mediated by the photon, and the weak neutral current, mediated by the Z0, which couples to any fermion with electric charge or electroweak isospin.

The strength of the Z0 interaction is not intrinsically small, but it gets reducedby the high value of its mass.

This expression gives the electroweak charge of any fermion, i.e. the strength of the coupling to the Z.

Page 21: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 21

The process e+e- +- (ore+e- +-) is not purelyelectromagnetic, but it has a weak component, due to theexchange of a Z0.

e

e

e

e

0Z

G G

ceinterferenddweak

ddQED

dd

dd

)(

s

2 sG2 G

The asymmetry comes from the interference term, the effect is of the order of10 % for s = 1000 GeV2.

Page 22: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 22

The Charged Current

WeWeg

LLLL22

fermL

eeLL51

21

137

2sin2

44

22

222

W

eg

The U(1) part of the Lagrangian contains only terms diagonal in the fermions, whereas the SU(2) part has also non diagonal terms.

charged current

V-A interaction

We thus expect W bosons and the associated charged currenttransitions. The observed charged currents occur with a strength muchsmaller than one would expect:

Page 23: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 23

Example of a Charge Current: decay

As is the case with neutral currents, also for charged currents the charged current strenghts are reduced by the high value of the W mass.

eepn

eeud

s8.07.885

d

u e-

e

u e-

d e

g gG

W-

MW = 80.425 0.038 GeV/c2

q2 << M2W

The interaction is practically pointlike, described by a 4-fermion couplgin

2

2

WMgG

Page 24: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 24

The Quark Electroweak Terms

The SU(2) and spin structure of quarks and leptons are the same, consequently all the previous conclusions hold without modifications for the quarks:• They couple to the same gauge bosons W, Z0, .• Normal electromagnetic coupling to the photon.• Charged current coupling generating transitions uL dL, but no

charged current transitions for uR e dR.• Neutral current transitions with a

universal strength:

Wff

WWQTe

2

3 sinsincos

f Q T3f

uL +2/3 +1/2dL -1/3 -1/2uR +2/3 0dR -1/3 0

Page 25: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 25

The Quark QCD Lagrangian

• It contains only quarks, since leptons have no color charge.• In the electroweak case the Wi are related to states of

electromagnetic charge because of the interaction with the photon. The gluons are electrically neutral, i.e. they have no interaction with the electromagnetic field.

• Since the generators a are not all diagonal, the interaction with a gluon can change the color charge of a quark.

• Gluons and quarks are confined within hadrons.

8,...,13,2,1,

23

aqGqg aa

Page 26: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 26

The Second and Third Families

• All known phenomenology is consistent with the above replacements• It is unknown whether more families or additional quarks and leptons

exist • All fermions of the three families have been observed experimentally.• The same set of gauge bosons (, W, Z0,g) interacts with all the

families of fermions:– lepton universality– u- and d- universality

bt

sc

duee

Page 27: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 27

The Fermion-Gauge Boson Lagrangian

duq

aa

LLLL

duefWfRRWffLL

W

dueff

Gqqg

Wedug

ZQffQTffg

AffeQ

,

3

2

,,,

2232

,,,

2

h.c.2

sinsincos

L

Page 28: The Standard Model Lagrangianbettoni/particelle/Strong/... · 2011. 11. 15. · D. Bettoni Fenomenologia Interazioni Forti 4 The Symmetries of the Standard Model • U(1) invariance

D. Bettoni Fenomenologia Interazioni Forti 28

Masses

• For fermions a mass term would be of the form m.

Since L fermions are members of an SU(2) doublet, whereas the R fermions are singlets, the termsRL and LR are not SU(2)singlets and would not give and SU(2) invariant Lagrangian,

• For gauge bosons mass terms are of the form

which is clearly not invariant under gauge transformations.The solution of this problem lies in the Higgs mechanism.

RLLRmm

BBmB

2

21