59
NASA/TM-- 1998-208844 The Space-Time Conservation Element and Solution Element Method--A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws II. Numerical Simulation of Shock Waves and Contact Discontinuities Xiao-Yen Wang University of Minnesota, Minneapolis, Minnesota Chuen-Yen Chow University of Colorado at Boulder, Boulder, Colorado Sin-Chung Chang Lewis Research Center, Cleveland, Ohio December 1998 https://ntrs.nasa.gov/search.jsp?R=19990018834 2018-06-18T14:09:36+00:00Z

The Space-Time Conservation Element and Solution … · Multidimensional Paradigm for Solving Conservation Laws ... mA New High-Resolution and Genuinely Multidimensional Paradigm

Embed Size (px)

Citation preview

NASA/TM-- 1998-208844

The Space-Time Conservation Element andSolution Element Method--A New

High-Resolution and Genuinely

Multidimensional Paradigm for SolvingConservation LawsII. Numerical Simulation of Shock Waves and Contact

Discontinuities

Xiao-Yen Wang

University of Minnesota, Minneapolis, Minnesota

Chuen-Yen Chow

University of Colorado at Boulder, Boulder, Colorado

Sin-Chung Chang

Lewis Research Center, Cleveland, Ohio

December 1998

https://ntrs.nasa.gov/search.jsp?R=19990018834 2018-06-18T14:09:36+00:00Z

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and spacescience. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center forNASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographiesthat contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored byNASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA'smission.

Specialized services that complement the STI

Program Office's diverse offerings include

creating custom thesauri, building customized

data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http://www.sti.nasa.gov

• E-mail your question via the Internet to

[email protected]

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Telephone the NASAAccess Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information7121 Standard Drive

Hanover, MD 21076

NASA/TM-- 1998-208844

The Space-Time Conservation Element andSolution Element Method--A New

High-Resolution and Genuinely

Multidimensional Paradigm for SolvingConservation LawsII. Numerical Simulation of Shock Waves and Contact

Discontinuities

Xiao-Yen Wang

University of Minnesota, Minneapolis, Minnesota

Chuen-Yen Chow

University of Colorado at Boulder, Boulder, Colorado

Sin-Chung Chang

Lewis Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Lewis Research Center

December 1998

Trade names or manufacturers' names are used in this report for

identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information7121 Standard Drive

Hanover, MD 21076Price Code: A04

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100Price Code: A04

The Space-Time Conservation Element and Solution Element Method

mA New High-Resolution and Genuinely Multidimensional Paradigm

for Solving Conservation Laws

II. Numerical Simulation of Shock Waves and Contact Discontinuities

Xiao-Yen Wang

Department of Aerospace Engineering and Mechanics

University of Minnesota

Minneapolis, Minnesota 55455

e-mail: [email protected]

Chuen-Yen Chow

Department of Aerospace Engineering Sciences

University of Colorado at Boulder

Boulder, Colorado 80309-0429

e-mail: chow@ rastro.colorado.edu

and

Sin-Chung Chang

NASA Lewis Research Center

Cleveland, Ohio 44135

e-mail: [email protected]

web site: http://www.lerc.nasa.gov/www/microbus

Abstract

Without resorting to special treatments for each individual test case, the 1D and 2D CE/SE

shock-capturing schemes described in Part I [ 1] are used to simulate flows involving phenomena

such as shock waves, contact discontinuities, expansion waves and their interactions. Five 1D

and six 2D problems are considered to examine the capability and robustness of these schemes.

Despite their simple logical structures and low computational cost (for the 2D CE/SE shock-

capturing scheme, the CPU time is about 2/,tsecs per mesh point per marching step on a Cray

C90 machine), the numerical results, when compared with experimental data, exact solutions or

numerical solutions by other methods, indicate that these schemes can accurately resolve shock

and contact discontinuities consistently.

NASA/TM-- 1998-208844 1

i. Introduction

NASA/TM-- 1998-208844 2

2. Boundary CondiLion_

9.. L "t

_'_b,-".,. _'_b,-".,9..9. "i

Tx'_ (1) P> -- L..,"2,_..,"2,.%..,"2.... ifj_ {g _ I,_lf {ng_,g_,t': _n_L Iiil P> -- O, L,2 .... ifj'_ ig

I"2.2"l ar_

<-",J.l_([

T,_. j'6

NASA/TM-- 1998-208844 3

:_--2.9, _,--0., #-- L.O, p-- L.O..."L.."J 2.,5 "1

I>'1 Tn t.l,e _ .hP,,PT3,

:_- 2.6L9_, _,----0..506_2, #-- L.TO00, }>-- L..52._2 2.6 _

(e'l Tn t.l,e _ P,,_P,

:_--2.40L.5, _,--0., #--2.6._T2, }>--2.9340 2._'1

I>O{nt._ &t. _l,e {n f]o_" I_otLn<[&_,. h# I'_ee T;'{g. _'1.

.._.__l,e tLl>l>et" I)otLn([&t'y .h Jr.), lot" &ll , -- L,.,"2,L,_,.,"2,2 ..... ({) :_ &t_ e',_ltL&t.e([ tLP.{l"l_

Eq. (2.()), &n<[ ({{) :_¢ &n<[ :_ &t_ e',_ltL&t.e<[ tL_.{n_, Eq. (2.._).

NASA/TM-- 1998-208844 4

_.. LOI

2. L2I

_neL

• " 11 " " 11

• " 11 " " 11

2. L_I

2. L.'_"l

-t'C._l>C.c-t.tvc.ly.."v,_c,:-:,txLh,__,:-:,F"t_. 3, _I,_ v_n_ _f._ h_ F'..,j_. (2. L2I-f2. L."JI{_ ,:L_I>_i,,:L_I,_,::,n,_I,_

6m_" Ic.vc.I .. T,_'_ I";.'l,S'_ - 5' if 5' _._c.vc.n: _n<L _n<L I";.';.'l,S'_ - 5' - L if 5' _._o<kL. Tl,_'n I";.'l

._ -- .'1,.% L2..... 2,S'_ if e_ -- L,.,"2,_,.,"2..... an,L I'{{'1 ._ -- L,.5,_ ..... 2,S'_ L if e_ -- L,2 .....

F'ttvt, l,_,r_-__cw_, I_y 1.L_{l"lg Gq. ((".._'1 ¢_fPav_ T[L] will. 6 -- 0, i_ can I_" _l.¢_'vn _l.a_ Eq_. 2. L_I

an,L f2. L."JIarv _,qu{_,al_,nt, t,¢_

z.:,:,-- L.,2., 2.L,5l

_n(L

":l I_"") !':l ")11-- __ " . " 112. LGI

rv_l>_,c_iv_,ly. Gqttat,{_, (2. L2), f2. L.5I an,L f2. LGI a_ _I,_ I)r'_ttl_([a_ r ¢¢_,Li_i¢_ a_ _I,_ Icw¢_v

wall f a _,:-:,1";.,:L-wall'l. In _1 ,_r- ',:v_ L_,_1,_ ma_l ,'h',g v_.al _1_'__,:-:,¢';.a,:._,:[ ',:v';.,:.l,_1,_ ,'_',_1, I>Nn _

I:,d,:-:w ,:1,_ _,:-:,li,:L-wall will I:,_ ,:Lo:_m':_,h,o:LLL_h,g ':1,_ _qLLa':i_,_.

.",,': ':1,_ ,:':,LL':fl,:':,WI;,C:,LLn,;L_r C-"_, f,:':,L'_ny _':,-- L,'9,3 ..... _r,,:L r. -- L,2,3 ..... _, we. _LLr':_,_

• 11 " " 11 -- L/----.

2. L,_I

NASA/TM-- 1998-208844 5

all(L

• " 11 " ",,i 11-- I ,,"""

o1" Pat=t. T ILl w{t.l, b -- O, _.t. can I_e _l,_wn t.l,at. Gcj_. 1:2. L._'l ancL f2. Lgi

• • 11 • • 11-- l ,.'__.

(:.,_,.._ _ _L ( -- :.,_.,.,,) ,, P:,:,- L,,2,,_,,.I f2.20i

wall _._, i.e..,

(=-' - (=-'L.+ P_- L,,_,,.'_,,an,L (';.,__.')_.__._.,-- -- (';.,__')""__._t'?..?.?.'t

a._t (=,_+,)_.__.,- (=,_+,)_.__._,,.- t._.._ ,?..?._,

• " 11 " " 11

a._L (:_-%.)_._.._.,- -(:_-%.L._.._ ,?..?.4,• " 11

an([

_an not. I:,e tt_e,L ,:L';._t.ly _ t.l,e _olkt-wall I:,ot,r,,:La_r cvm,Lit.i_.

Two al>l>ro_'_'l,e_ can I:,e Lt_e(L t.O ,:-:,",,,erc,:-_"=_'_et.l,e alcove (Li_,:'-Ltlt.y. T-n t.l,e fi_t. al>l>ro_'_'l,,

t.l,e f,:-:,llowir,g al>l>roxh:_at.e fr-:,ta'__gof Eqg. I'?..?.?.'1-1"?..?.._'1aL"C.Ltge,L_ t.l,e g,:-:,li,:L-wall I)oLtn*La_'e,:-m,:LM_', g"

• " - " + " " - " " - :"---),-.__s , 2.2.5 ,(=,_.,).,,__._.. (=,_.,).,,__._, m L,_,."I, an,L (=,__.).,,__._.. -( ""

NASA/TM-- 1998-208844 6

• , ._. - , _-'-')_._s ' P:,:,-- L,_.,.I 2.2,3"1- - "-'

_1"1 ,:L

• • 11 - • 11- L,,.'_ - • 11 - • 11-- L,,"-

u,+. - ( _+ ).,._._ an,L (:'--..L,).,.__._.,( _. , , -

• ,, ..,'rl_e.-L-'e. (=.,_.,.,,.,.__._,,P>:, -- L,,2,, .++,,.+'l,,a.L"e,e.",.'_l-LLa.Ce.,:L-Lt+'h',g _Iie. k-m--:,w-n-ma.-rc-lrh',g ",,.,_<-",+.l:,le.+<-",+.__Iie.

-r':_,e.+l,i>,:-:,{-nt. ( r', 2,G',I':, -- L,.,"2) wit.l, t.l,e, a.i,:Lof t.l,e. G+t.-c_r-,:Le.r-T<"_.yl¢:,r"+ e...+l>a-n+i,:m,.

ln t.l,e, e_e.ev:,ncLa.ncLge.ne.r-a.lly _-_+_¢.<',_'-e-ur-a.t.e.al>l>-rv:,<-",Mi,t.lle, i>-t-'-e.+e.-nt. -r:',a-rc-lrh',g I>rV:,ev,:Lttt"e.

ie_a.l>l>lie.cLo.r.,e.r-a. ,L-ua.Ime.e4,. It. wa+--:,e...+l>la.ine.cLin SJe.c..+,of Part. T t.l,a.t.a. ,L-ua.I 1-_+e.e_l,ca.n I+e.

ev:,ne;kLe.r-e.cLa+--:,t.l,e, ev:,mI+ina.t.ic:,nof t.wo e_t.<',,+.,_.+.,e.-t'-e.cLeq><-',_x'.-t.h-_w.1-_+e.e_l,e.e_,i.e.., 1-_+e.e_l,L (Pig. 41a.))

a.ncL 1-_+e.e_l,2 IiT;'ig. 411+))...'+.e_ e4,c:,,:vnin Plg. 4(1+), a. 1-_+e.e_l,i>,:-:,i-nt,of 1-_+e.e_l,2 ie_<-',.le_okLe.nt.iGe.cL

I:,y ,:.we:,+l:,a,:.ial i,,,:Li_+ t.'.a,,,:L .._, a,,,:L _I,_, ,:.ir:,e.-le.ve.I -r,-tt-r':',l:,_t'- t:,. "F'-ttt'-t.l,_t'--r':',¢_v.,a m_,e_l, i>c:,in,:.

(t.'., .%P:,l of-r':,e.+ll 2 i+ -r':,a-L-'-ke.,:LI:,y (1) a +oli,:L ,:.rla-r,gle. if P:,- L..,"2,+..,"2,.3..,"2..... a-r,,:LIiil a I1_11¢_:',:"

,:.rla-r,gle. if P:, - O, L, 2 .....

T.,c.t..({) t" a r,,:L .._ I:,e. a r,y" I:,aiv ¢:,i"wl,¢:,le, i r,,:.e.ge._ a r,,:L P:, I:,e. a r,y" wl,¢:,le. _ I,ali"ir,,:.e.ge.v roLeIn

_l,a_ (1%._, i'>) rvl>rv+_,n_+ a m_'+l, l>Nn_ c_fm_,+l, L, ancL I{{I i.>+ -- i'> . L.."2. Tl,_'n, <'_'cc_Ling _o

T;'i_.. fJl'_'l _I_¢[ fJ(l>), (r,._, I'>_) rvl>rv+_'n_+ a m_'+l, l>C_h_c_i'm_,+l, 2 at. _I,_" P>+_l,_h;w I_'-,,_'Iwi_l,

i,:.+ +l:,a,:.ial Ic:,¢-a,:.i¢:,nI:,e.i,,g kte.,,,:.ical ,:.c:,,:.l,a,:.c:,i"(t",,._,, P:"I. _Ltt"t:.l,_L"-l":_'n_r,_'.,, ({) i"r'W"I':, -- t"),, L.,2 .....

(r, 2.S' L, t>'i i+ a m_'+l, l>Nn_ c_f m_,+l, L wl,il_" (r, 2.S', t+'i i+ a m_'+l, l>Nn_ c_f m_,+l, 2, I'{{'I fr-yr

_i'1;_'_.ll L, _n¢[ l'iii'l i'r-_r I'> -- t'], L,.,"2, L,_,.,"2 ..... t.li_" I;_'_.II l>_int._. (r, 2,_' L, I'>'I _n¢[ (r, 2,_', I'>'I

lle. at. t.l,e. _ame. t.h:w, le.ve.I anaL, friar.lye, t._ 0'.,"9, arv mimw h:_-'_,e._ _f e._l, _t.l,e.v. ..%_ a

L"_mLlt.., _.Iie. +,:-:,li,:L-wa.lll+¢':,LLncLa._'_:,,,,:LM¢:,,,_ at. CD ca,, l:,e. i-ml>,:-:,+e.,:L"LL_{'I'Ig "I'_c'J_. (2.22"I-1"2.2._),

wk.Ii , - O, L,.,"2,L,_,.,"2..... _-','_.e. _.Ii<-',+._._.Iie. ma.-rc-lrh+g _m-L+L<-',+.l+le.e_+e_+_.<-',+._.e.cLwk.Ii me.e41e.e_ L

a r,,:L2 are. r,¢_:',:"CC:,LLI>IC',:Lt.lrL"C:,LL_II_l,c.+c. I),:':,LLr',,:Lat"y_:,r,,:LM¢:,r,+...".v.l+,:-:,-n,:-:+e._l,a_ _l,c. "[:'..,q+.(2.2_),

(2.2.'J), 1"2.21_'1_r',,:L 1"2.2']"1c_r', c._'s.--_.{ly"I:,c.cc:,-,,-,._-L-'-,:.c.,:L,:.,:-:,,:.l,c.vc._ic:,-,,_ _,:-:,cia,:.c.,:L ,:vi,:.l, ,:.l,c.(_,,_)

,_",C:.:'yL"_Lift <-",J._,_._I)y LL_if't _ "F".,c'j. (_" .._ ) ,:-:,l""_<-",J.L"_T r L] ,:vi,:.l,& - O.

Tr":_,i>,:-:,_{-r,_ t.Iic.cc:,-r,,:L{t.{c:,-r,_ l:'..,q_. ( 2.22 1-12.2.'J 1,:Li-L-'C.c-,:.ly t"C.c'JLL{t"C._t.IIc.LL_,_.,:':,l"<-".J.,:LLL_Ir":_',c._I i...".v.

<-"+.L"_+LLIP..,,it. I,_ t.l,e. ,Li_a,L_nt._-"_,e. of ,:L¢:,LLI:,I{n__:,r':_'_l>LLt.<-'+.t.{,:':,r,<-'+.l¢,:-:,_t...T"Jr"_%_t"..t.l,e, e._t.ra _x-_t.

..",._ will I:,e.e._l>l_i-,,e.,:Li-,, i'-Lt,:.Ltt"e.i>al>e._, ,:.l,i_i-,',,:Le.e.,:Li_ ,:.i,e.¢-_e. i'br--,:',_-,',yi>r-a¢,:.i¢-alal>l>li¢-a,:.ic:,-r,_

i-n¢-I-Lt,:Li-,,:_,:.l,,:-:,_e.-r-e.q-Ltlri-,,:_,:.i,e.Lt_e. ,:':,fLt,',_,:.r-Lt¢,:.Ltt"e.,:L,:.rla-,,g-Ltlar--,:,e._l,e._.

NASA/TM-- 1998-208844 7

_. Numerical Results

_.i. On,c-Dimenslonal Problems

..%p,<-",+.i>re.lh"=4na_,, <-",+.mLl::,t.let.y re.lat.e.,:Lt.c:,t.l,e. P,l>e.cifi,:at.{_l ,:-:,1"n'LL'r"='_e'Ld.,:'al{nit.ial ec:,n,:LM_lp,

will I:,e. ,:L{P,,:-LLP,P,c.,:LIw.t'v....%p,<-%-ne."+ar'=,i>le,we. ec:,np,i,:Le.r-<-",+.P,ItC:,ck-t.'LLI:,C"i>eol:,le.r':_,,:Le.6ne.,:LI:,y t.l,e.

ec:,np,e._t.i_, law E,"j. (2. Lgt {-n Part.. T ILl an,:L t.l,e, e.."+<',_"-t,h,Mal ec:,n,:LM_,p,- <-",+.t.,' - O,

:__ - :__ (_, O),L___ (_. tt

i., _.110

[ r+j,

if j -- j'd L,.,"2,j'd _,.,"2..... j'b -- L,.,"2

if j -- j'd -- L,.,"2,j'd -- +,.,"2..... --j'+ L/2

._ 1

NASA/TM-- 1998-208844 8

T+_t.c,r - .P.:,_,,:,:'it.I, j'_ ..- {. L,.,"2, . _,.,"2...... (j_,-- L,.,"2)}. Tl,_'ll (j',+,0) t_l>t_llt._ _ 1___1,

l>_.lIP, ,.- _. T:'¢L_P,li_t'-n_'u% <-'w_[_.ll_ P,_ t:'.+_'J.(_.L), :_ _II<[ O:_,."O.P _ ll_P, <[_G11_<[ _ _I,_

I_C_P,I._'_I_ _i" P,li{_. I;_'_.II I>_{I_P,...%_. _ t'_.tLIP,, P,li_" 1.1_I.P,I._I C¢)I_[I.P,I._'_I_. F'_Q_.. I'.'{..'{'I _I_<L l'.%fJ'l _t'_ I_

will. (j, 0) ..- _, w_, I._,_,_,(1)

_ _ :__ (_:, 0), {f j - j_(

t (_'_ _':, ),.,"2, {f j - +ie

1_.,5 l

NASA/TM-- 1998-208844 9

L.O,0.4, --2.0), if _, • • 0...3

L.O,0.4, 2.0), if _, • • 0...3

_.i._. $}m-Osher Problem

if _ • • -4

if _ • -4

_.,qlf _.,q,..37,LO._, 2.629),

L 0.2 _in ..3_,,L.O, 0.0),

1_.91

if _ • • -2.0

if --2.0 • _, • • L...3

if L...3• _"

( 7. L,q2_, 2,.3.40 LS, _.,_.q28,.3),(p, t_, :_) -- f L.._82 L, 2..q..3._, 0.,_2L8),

t L.O, L.O, 0.0),

NASA/TM-- 1998-208844 10

(t.O, LOOO,OZI, {f_ I "OIL

L.0, 0.0 L, 0), {fO. L I I _ I

U.O,UO0,0), {fO.9 I I _

I 0 "_ I" "/_ " LOI

(20.0, 20.0, 0.0), {/" ._ • " 0.2.5

L.0, L.0, 0.0), {/" _ • [').2.5

I_.L LII

NASA/TM--1998-208844 11

8._. Two-l_imensional Problems

NASA/TM-- 1998-208844 12

NASA/TM-- 1998-208844 13

NASA/TM-- 1998-208844 14

8._.-,4. ___'racL_on o_I'5;}1ock IA'ave down a 5;Lep

NASA/TM-- 1998-208844 15

NASA/TM-- 1998-208844 16

NASA/TM-- 1998-208844 17

4. Conclus{ons and D{scuss{ons

l_y ___ I>_n_ P..I,e.C'LL'L"_I.1I:.n'LLl%'_e._l "L"e.mLIP.._vc{_l,e.Yl>e._l%'_e.nP.._l,:L&t.&,e.Y<-',_'t._,:':,ILLP..'[_I

r, tLr':,e.-r{,:&l _oltL_';.,_',_ge.l.1e.t'-&_e.,:LI:,y o_l,e.t+ l':',e._l,o,:L_,";._I,_ I:,e.e.l.1_1,_,_"1.1_1,<-",+.__l,e. LD &l.1,:L2D

_'"F".,,.,"£'F".,_l,o,:k-,:&l>ULr'h.1g _,:l,e.l':',e._ ,:&1.1&,:,e-tLt'-&_e.ly_ol-,.'e. _l,o,:k &l.1,:Le,:m.1_&,:_,:L'[_e,:m.1_'[1.1tL'[_'[e._

c,:-:,1.1;.'[;.t.e.1.1t.ly."[;"LLt"t.lle.t'-i%',OPe,"it. li<'m.-'..&h-'.,:-:,l:,e.e.i', ;.Im,,;v1.1t..li<-",,.P..P..lle.l>t"e.;.e.1.1':.;.,:l,e.,;',e.;. &t"e._e.i',LL'[i',e.l',.."

t_l)tL_.P.,{.e'., li+._+_e. +]'ca+._ym+f-+:e'_-,_+:m+e_-e++f_+.l,_-_++._",_e+:e.+]'ce.,_f.+:e._+_-aeeli_-a_" ACe. ae+:_+e.%'e.d rr+'_+f.+:-

01ii I. _-e.,ex_'_-iI.J';'._12_il.O ,_,l':'e.,gJ'_'_.i' il._-e.ail.;']'_e.;'._il._ _'_- e.a,9_: J';'._,:.l'J"_'J',:.l'lia.i' ,9+'_,':_C'.

"L_e.,C'_'LLP.e.Of t.l,e."i.t";."h;',l>le.l,o,_,:&l P.I:.L"-LL,CI:.LLL"_P._1.1,:Lt.,:-:,t.&lly e...+l>li.,:i.t.I"I_I:.'LL"L"_,, t.l,e, l>t'-e.;.e.1.1t.

+,:l,e.l':,e.+ <-",+._<-",+.1+oI,{gl,ly _:':,1%'_l>'Ltt-&t-{,:':,'i.1&le._.e.'i.1t.. A+ &1.1e..'.'.X&l':',l>le.,e_+e;[<Le.t"& ve.+_.+_4.e+e.<Lm<Le.

•h":'_l>le.l':'_e.l.1t.'h.1gt.l,e. +'h.1gle.-l':'_e.+l,2D _'"F".,,.,"£'F".,+l,o,:k-,:&l>t.U_l.1g +,:l,e.l':'_e.._,:-_"& .++00:>::L2t"]l':'_e.+l,,

t.l,e. ('T"U t.'[l':'_e.,_.1 & ("r&y ('90 t'e.qu'[t"e.,:L+..oe._e.eut.e. L_t"]l':'_&_l,'h.1g +t.e.l>+(T -- L_t"]:>::(",,t,.,"2))

•[+_+ly L.+'J+e.e+'m_[+,"i.e..,_l+¢':,-tL_.2. L6 +'++e.e+i>e.t'-+%w.+l,I>O'[n_.I>e.t"+%+_-r..:l,'[n_+_'e.l>-

l>,:':,'h.1':-;-"hv,.,,:-:,Ive.,:t"h.1e.<',_'l, ;.'h.1gle.-+;',e.;.l,(,:ttL&l-+;',e.;.l,"t CE..;'SE;.'[1%',LLl&t.'[,:':,i.1{+ &l:,c:,-LLI:.l:.'L"v"[ce,f i"C:,I.LL"

':."h;',e';.'I_I,_ ,:-:,i"& ,:.yl>[,:&l ;.h.1gle.-;.,:.e.l>L"e_,tLl<-",,.t"-i%',e.;.--.It;.'[1%',LLl&t.'[,:':,i.1{f e.<+,w-i,;.'[1%',LLl&t.'[,:-:,i.1LLP.e.P._ ,G'X ,_me._I,_n<L I,o_I,I,_:_"_I,e._'__e.",,.,"alt,e.;-'.oi" ,5', .F'+,-',_'_n<L _o_I ;.'h;',t,l&t.'i.,:-:,1.1t."i.-,;',e.T. TT_",:'e.ve.t'-,

_1,';.+,:L'[+&,:Lv_l.1_&ge.,:&1.1I:,e. e,:m":',l>e.l.1+&_e.,:Li"_t"-I:,y o_l,e.t+ <-",+.,:L',."__',_<-',,+_,e.+_l,e. I>re.+e.n_.++i,e.+%+e.i,<-',+-_+,

+-tt,:l, _ I,'[gl,e.t+-<',+e-e-tt_," &l.1,:LI_,_"e.-t+-e,:m":',l>tt_&_'[,_.1&le,_,+_i>e.-t+-l':',e.+l, I>_'[1.1_I>e.t+ l':',&_l,'h.1g +_e.l>.

..%;-'.&1.1e..'.'.X&l':',l>le.,e,:m.1+'[,:Le.t+-_l,e. _e.+_I>r,_l:,le.l':',,:L'[+e-tt++e.,:L{1", £e.,:..++.2.6. TI,e. T'+,,-'D_+-ttl_+ _Ve.l.1

•i.i.1[9.0]&t_ ge.ne.t_e._L.t,e..i.1.1_& _,_9 × _,_9 l:_e._l, _-141e. _l,e. ('F...;'£F.t..e;--..t,It.;--.&t.e ge.ne.t_e._L.t,e..i.1.1_

& +LtL&l240 X 240 l"_+e.+l,.J_._.tLl"_+{ng_l,&__l,e.+&1"__e.CP[ 1.1tLl"-)l:)e.t_{P.tLP.e.(L{1.1I,o_I,;.{I"_ULI&P.{m.1;.,

_l,e.n _l,e. ';._&ltLe.oi" _l tL;.e.(L{1"1_l,e. CE/SE _.{I"_ULI&P.{Ot.1_._..'+59/240 _{l"_+e.+_l,&_ tL;.e.(L{1.1 _l,e.

TVD P.{I"_)tII&P.{OI.1.T,:.¢'&1.1I,e. _l,_n e._{ly _l,&_ _l,e. _o_&l 1.1ttl"-)l:)e.t_O1"+l><'_'Z'-P.{l"-+e.me._l, I>O{nP.+

{nvolve.<[ {1.1_l,e. CE/.£E _.{l"_utl&P.{ot.1_._._.11y &l)ottP. 20% l"_)Ot_ P.It&n _l,&_ tt;.e.(L {1.1_l,e. TVT)

_.{I"_ULI&P.{ot.1.TI,e. _l{gl,_ (L{_&(Lm_n_<'_;,e.o/" _l,e. i>t_e.n P._-I,e.1-__e.e&n I,e. 6Lt"t.l_e.t"e+m-__l>e.n_&_e.(L/'or

no_ _.11y I,y {_+ I>O++{I,le. I_e.r _Ol"_)l>tLb&b{Ol.1 _P.P. I>e.t"l"_+e.+l,I>O{n_ I>e.t"m&t_l,{ng +_.e.l>, I)tLP.

e.&Ply _'_;,e. +il"_ULI&P.e.([I,y _l,e. TVD 1;_e.t.l,o(L.

NASA/TM-- 1998-208844 18

R_f_r_nc_z

[L] _.C. ("l,_ng, X.Y. %%L'mg_n<L C.Y. ("1,o,_', "TI,<" _l><'_'_'-Th'__<"("_l_<'t_'_{_l EIz'l"__z'n_ _n<L

£_h,w_._l El_'m_'n w >.h'wl._< [--..% _";_',_"lq{gl.-l-{_,_h, w_._l _n<L G_'n t.{n _'ly >.h.I w{<Lh'__'n_._l _1

- ..%_";_,,_"..%l>l>t'o_'_l.lot" ,£_l'_ng _1._"_N_,_,t'-S_k_,_ _n<[ Et.l_,t" Equ_{_," .t. <-'_m_,L

Pbj:_.llO, 29:5(L99.5I.

[_] T". L_ _1:.1:.,91-1, .',,_.A. ]',e_cI. :,/n et _ _1"1,: [ ['.C'. Goh LI,eta, "A ve_,e-£_e .L'_',I :,'[_1"1P. _1"1,: [ ]'1%'1I>I{i

i L9971.

[41 lq.('. Y_,_,, R.F. W_'_;_h_g _n_L ..%.lq_-_,n, "h;_ I>IM_ 'T'_I \'_-_l_{_ Dh;_h_{_l.h_g (TVDI

£el._,m_,_ i'_ £_'_Ly-£_" ('_I_LI_{_," ..%T..%..%l>al>_'_._- L909 I"Lg._'I.

[6] T,[. X'LL,, T.,..',,lat'-t.'h',ell';.a-r,,:LA..']'a-r:',e_',, ""G_-T'.['h',e,:.';.,: T:"h','i.,:.e'%rhhLi":',e.',,le,:.l,,:-:,,:L,"[;"ILL_-

'r'r_':':-Ot".£1>l;.':-':-h,:g_-r,,:L..".,,t'-,:.i.6ci.al"L")'i.ff'LL_';._',,'",7".<"',:::'_",_,'"-"_'_..Pby..=.:.1_0, ."J_i L99.5].

[7] C.W. SI,'LL _-r,,:L S. O_l,_t'-, ""F.,_ci._-r,,:. T-r:,l>l_-r:,_-r,,:._,:.;._,,:-:,i"F.,_-n,:.i._lly _-',;_,-O_c;.ll_,:.c,_,

SI,,:-:,,:k-CaI>,:.-LL-L4.-n:gS,:l,_-r:',_, TT," 3". <',:::._",_,,".,_,_..Pby'..=.:.&...%,_")..i"L9_9].

[_] TT.T. TT-LLynI,, ""..".,,,:,,:-LLt'-a,:._"['l>',:',:"h',,:L.£,:l,_-r:',_ i"ot'-,:.1,_F..,tLl_t'-F'.,,"JLLa':.';._',_,'"..".,,T..".,,..".,,I>al>_'t"9.5-LT_T-("P t L99,5t.

[_] _;._tL<L{n_et_,__ve T)_,_,c[_,_m,__ ._.,_f.e,_@"_" _. T)_cf,_.V&n _N_n<L, P_[n_,

N.I, L9.5.5.

[L0] T". "r,,%%:-:,,:L_t'-,,:L_-r,,:LT". (",:-:,I_II_,""TI,_ _-";LLr:',_L4.,:_I_r:',LLI_':.';._', ,:':,i"T_c:,.-'L")';._":_',__',_';._',_IT:'ILL';.,:L

T:'Ic:,':":"":":";.':.1,S':.L',_',:g.£1,,:-:,,:k,'",7".<"',:::._",_,,"-,_,_..Pby..=.:._4, LL.5 t Lg_."J].

[L L] .',,I.S.T.,;.C:,,LL,""T"-r,:_ Tc:,',:,:'_t'-,:L__-_, T-r:,l>t'o,,._,:L("T:"L") .",l_,:.l,,:-:,,:L"..".,,['S.",I",'" ..".,,T..".,,..".,,i>al>_'t_9.5- L'T0L-CT' t L99.5t.

[L2] S.C. CI,a-r,:g, C.Y. "r',%L_r,:gar,,:L C.Y. CI,c:,,:',:',""_-",'_',:',:"Devel,:-:,l>-r:,e-n,:._{1, ,:.1,_.",l_,:.l,,:-:,,:L,:-:,f'.£1>_',_:e.-

T{m_,->.l_t_l.{ng P_l,l_'m_," N..%S..%T>.I L067.5.% D_,_ml,_,t" L994.

[L_] ..%.lq_t'_,n, "lq{gl. l-{_'_oltL_{_ ,£el._'_'__'_i'or lqyl>_'tq,ol{e ("_'t_'a_{_ L_,_'_," .t. <-'_m_,L

P_'_;_. 49, _,STi"Lg,_'i.

[L."J] .I. (;{annakcm_%Jza-r,,:L('r.E. T'.[a_',';.a,:Lak';._,""A .£l>e,:,:.t"-alEle-r:,e-n,:.-T:'CT .",le,:.l,,:-:,,:Li"ot'-,:.l,e

C_":,l>t"e_;.l:,l_ F..,tLl_t'-F'.,,"JLLa,:.';._',_,'",7".<',:::.n_,,".,.LPby'.'=.:.11_, 6.5 t"L99."J].

[L.5] B. ",."a_',T.,_t", ""Tc:,',:,:'_t",,:L':.1,_ "Ul,:.'h":',_,:._("_',_"a,:.';.",.'_ "L")';._-n_ S,:l,_-r:',_. v...".,, S_--:,n,:L-

Ot'-,,:L_t'-.c';_,"jLL_I,:.,:':,('r,:':,,:L"LL'_',,:':,",."_.",l_,:.l,,:-:,,:L,'",7. <',:::.n_,,".,-.LPby..=.:....%_,L0 L t L9"i9].

[L6] E.>,I..£el,_-__{<L_ _n<L S. [)tLLTy, cc_'O{P.e6"O1"_).£1,ock TtLl:>e F<'_l{_{e_," ..%T..%..%i>al>et" .q.5-0049f L9,_5].

[L7] X.¥. %%L-rag,S.C'. Cl,ang an(L C.¥. CI,o_', "Al>l>l{ea_{+m_of _l,e >,le_l,o(L of .£1><'_'-Th-__e

i>t_l ,le_-__," {n ..t (-'_3ffeef./_3_:of" TPH.'_:ieM Pa_e_-.% %"oL r[TI, .S';_:P._."ir_:f.er_:aP.#_:M .S_'m_o-

.,:.:;_,_",_o_'.'.<',:::._,',_,,".,_,f.af.#_,.'.a,i'7:'f_,h] f")_'_'.'.a_",_iP.,:.:,I>- L_+ L,,Lake Tal.oe, _Ne,,.,"a,:La,,L995.

NASA/TM-- 1998-208844 19

NASA/TM-- 1998-208844 20

J = -Jb

j =-3/2 j =-1/2 j = 1/2 j = 3/2

j=-I j=O j=l J =Jb

m.._ X

x -.-ih x -3/2 x -1 x -1/2 xo x1/2 Xl x3/2 _Xib

t

mn=2

-- n = 3/2

mn=l

-- n=1/2

-- n = 0 (t = O)

Figure 1: A staggered space-time mesh with the spatial boundaries at j = + jb (jb = 2).

A D

0 _ i _ vl $ C_ xB 1 E2 3 4

Figure 2: The computation domain and the shock

locations of a steady-state oblique shock problem.

NASA/TM-- 1998-208844 21

Inflow

boundary

_A s _-- Upper/ boundary

T " f---e-------o-r' i (1, 2) (1, 3)

(1 ,£11)

I •I (2, 2)

(2 ,_11)

--I_1 •

(3!1)(3, 2)

• Mesh points with n = 1/2, 3/2, 5/2, - - -.

o Mesh points with n = 0, 1, 2, - - -.

D

(1, 6) (1, 2S-1)

• o " ,j S+l)_h°2-_-(1, 4) (1, 5) (1, 2S) (1o • o ._

(2, 3) (2, 6) (2, 2S-1)• 0 •

(2, 4) (2, 5) (2, 2S) (2,12S + 1)o • o Outflow

(3, 3) (3, 6) (3, 2S-1) /l_--b°undary• 0 • 0

(3, 4) (3, 5) (3, 2S) (3,12S + 1)0 • 0

(R, 2) (R, 3) (R, 6) (R, 2S-1) i I(R,__)___ -o (Re' 4) (R° 5) (Re,2S) (R, 2S+ 1)

-- -e- -- -q--- o- --ii_x

B (R + 1, 2) (R + 1, 3) (R + 1, 6)', (R, 2S-1) C0 • 0 1 • 0

(R+1,1) (R+1,4) (R+1,5) _ (R+1,2S)(R+1,2S+1)

_-- Solid wall

Figure 3: The spatial locations and the mesh indices (r, s) of mesh points used in

a steady-state oblique shock problem (R = S = 4).

NASA/TM-- 1998-208844 22

s oA,_ (0,1)_m 4 .....

r

(a)

(1, 0)

(2, 0)

(3, 0)

(R,0)

(0, 4).ore

B

(R+1,1)

Mesh points with n = 1/2, 3/2, 5/2, - - -.

Mesh points with n = 0, 1, 2, - - -.

o •

(0, 5) (0, 2S) D

(1, 2)o

(1, 1)

(2, 2)o

(2, 1)

(3, 2)o

(3, 1)

(R, 2)o

(R, 1)

(R + 1, 2)o

(1, 3)

(1, 4)

o(2, 3)

(2, 4)

o(3, 3)

(3, 4)o

(R, 3)

(R, 4)

(1, 6) (1, 2S-1) Io • I o

(1, 5) (1, 2S) I(1, 2S + 1)• o I

(2, 6) (2, 2S-1) Io • I o

(2, 5) (2, 2S) I(2, 2S + 1)

• o I(3, 6) (3, 2S-1) I

o • I o(3, 5) (3, 2S) 1(3, 2S + 1)

• o I

(R, 6) (R, 2S-1) I Ay

o . II o T(R, 5) (R, 2S) (R, 2_ + 1)

(R + 1, 6) (R + 1, 2S-1) CO •

(R + 1, 5) (R + 1, 2S)

-(3,

(R + 1, 3)

(R + 1, 4)

_[--_s A ....

rA

(1, 0)

A(2, 0)

A

(3, 0)

A(R, 0)

(b)

B

(R+1,1)

(0,1)

(1, 2)

(1, 1)A

(2, 2)

(2, 1)A

(3, 2)

(3, 1)A

(R, 2)

(R, 1)

(R + 1, 2)

• Mesh points with n = 1/2, 3/2, 5/2, - - -.

A Mesh points with n = 0, 1, 2, - - -.

A • A

(o,,) (o,5)(1, 3) (1, 6) (1, 2S-1) I

Z_ • Z_ I •(1, 4) (1, 5) (1, 2S) I(1, 2S + 1)

• Z_ • I

(2, 3) (2, 6) (2, 2S-1) IZ_ • Z_ I •

(2, 4) (2, 5) (2, 2S) I(2, 2S + 1)• Z_ • I

(3, 3) (3, 6) (3, 2S-1) IZ_ • Z_ I •

(3, 4) (3, 5) (3, 2S) 1(3, 2S + 1)• Z_ • I

(R, 3) (R, 6) (R, 2S-1) IZ_ • Z_ I •

(R, 4) (R, 5) (R, 2S) i(R, 2S+ 1).... ._. _- .... _ -- __ ..=

(R + 1, 3) (R + 1, 6) (R + 1, 2S-1) C

(R + 1, 4) (R + 1, 5) (R + 1, 2S)

Figure 4: The spatial locations and the mesh indices (r, s) of mesh points used in a problem

with both horizontal and vertical walls. (a) Mesh 1. (b) Mesh 2.

NASA/TM-- 1998-208844 23

2.5

1.5

0.5

_ -0.5

-1.5

-2.5

0.0

• . . i . . . i . . . i . . . i . . .

0.2 0.4 0.6 0.8 1.0X

0.50

0.40

0.30L.

GO® 0.20L

a. 0.10

0.00

-0.10

0.0

• . . i . . . i . . . i . . . i . . .

0.2 0.4 0.6 0.8 1.0X

2.5

1.5

0.5

o_ -0.5

-1.5

-2.5

0.0

• . . i . . . i . . . i . . . i . . .

0.2 0.4 0.6 0.8 1.0X

Figure 5: The CE/SE solution and the exact solution of the Sj6green problem.

NASA/TM-- 1998-208844 24

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5 .........................

-, -3 -2 -1 0 1 2 3X

12.510.5

8.5

A

6.5L

o_ 4.5

2.5

0.5 • . . i . . . i . . . i . . . i . . . i . . . i . . .

-3 -2 -1 0 1 2

X

0

.2°

3.3

2.8

2.3

1.8

1.3

0.8

0.3

-0.2

A

• . . i . . . i . . . i . . . i . . . i . . . i . . .

-3 -2 -1 0 1 2

X

Figure 6: The CE/SE solution of the Shu-Osher problem.

NASA/TM-- 1998-208844 25

"i

8.'''''''''

? -..........-.__----_._

6

5

4

3

!0 ....................................... :

-3 -2 -1 0 1 2 3 4 5 6 7X

0

>

2

1

0

-!

-3

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

-2 -1 0 1 2 3 4 5 6 7X

27

24

21

18

15

12

9

6

3o-3 -2 -1 0 1 2 3 4 5 6 7

X

Figure 7: The CE/SE solution and the exact solution of the shock-wave merging

problem (t = 0.675, o_ = 2).

NASA/TM-- 1998-208844 26

e_

8

7

6

5

4

3

2

1

0

-3 -2 -1 0 1 2 3 4 5 6 7X

0

o

5

4

3

2

1

0

-1

-3

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

..,...,...,...,...,...,...,...,...,...

-2 -1 0 1 2 3 4 5 6 7X

27

21

18 i

15 i

12

9

6

o-3 -2 -1 0 1 2 3 4 5 6 7

X

Figure 8: The CE/SE solution and the exact solution of the shock-wave merging

problem (t = 1.1205, o_= 2).

NASA/TM-- 1998-208844 27

8

7

6

5

4

3

2

1

0

-3

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

. . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . .

-2 -1 0 1 2 3 4 5 6 7X

0

o

5

4

3

2

I

0

-1

-3

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

. . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . .

-2 -1 0 1 2 3 4 5 6 7X

27 E.:.-.._2_:__._-_:_'_.:.:._.__ .........24 ........

21 I %'_=_*==

IX,

01- ....................................

-3 -2 -1 0 1 2 3 4 5 6 7X

Figure 9: The CE/SE solution and the exact solution of the shock-wave merging

problem (t = 1.62, o_= 2).

NASA/TM-- 1998-208844 28

8

7

6

5

4

3

2

1

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

A

0 - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - -

-3 -2 -1 0 1 2 3 4 5 6 7X

0

5

4

3

2

1

0

-1

-3

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

L

. . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . .

-2 -1 0 1 2 3 4 5 6 7X

27 .......... - .......

01- ....................................

-3 -2 -1 0 1 2 3 4 5 6X

M

7

Figure 10: The CE/SE solution and the exact solution of the shock-wave merging

problem (t = 1.62, o_ = 3).

NASA/TM-- 1998-208844 29

81 #2f f0.0 0.2 0.4 0.6

X

A

A

A

A

A

A

A

m

0.8 .0

14

12

10

•8 80

6

4

2

0

-2

16

0.0 0.2 0.4 0.6 0.8 1.0X

42O

36O

3OO

24o18o

t.

120

60

0

0.0

A

i• . . , . . . , . . . , . . . , . . .

0.2 0.4 0.6 0.8 1.0

X

Figure 11: The CE/SE solution of the Woodward-Colella problem.

NASA/TM-- 1998-208844 30

3

o 4 8x

?

6

5

e_ 43

2

AUSM ÷

,,] , , , , io0 4 8

X

"L.

7

6

5

4

3

2

1

00

AUSMD V

4 8X

7

6

5

4el.

3

2

' O'

o

Roe

i

4 81(

7 V=_ Lee'r/H_..eL6

5

2

o t _

X

Figure 12: Upwind solutions of the Woodward-Colella problem.

NASA/TM--1998-208844 31

__O 0.25 1.0

- t_L4

t_L.1

t_L09

C_. (3o_taetSurra_ I,S. l.neldcnts]to¢_l_

lg.F. Igx'im_slmFa.n I_. I_fJoet_dSho¢_

T_. Tra.nsmltl_ S]toek

Figure 13: Waves in a shock-tube with closed ends.

NASA/TM-- 1998-208844 32

w

21

18

15

12

9

6

3

0 - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - -

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00X

o

1.4

1.1

0.8

0.5

0.2

-0.1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X

w

n

21

18

15

12

9

6

3

0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X

Figure 14: The CE/SE solution and the exact solution of the waves

in a shock-tube with closed ends problem (t = 0.09).

NASA/TM--1998-208844 33

21

18

15

,._ 9

6

3

0 --'---'---'---'---'---'---'---'---'---

0.00 O.lO 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X

0

>

1.4

1.1

0.8

0.5

0.2

-0.1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00X

21 . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . .

18

15

= 12

0 r .................. 7.7:7i7:7.7:7.7Y7.7:7;

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X

Figure 15: The CE/SE solution and the exact solution of the waves in a

shock-tube with closed ends problem (t = 0.3).

NASA/TM-- 1998-208844 34

r_

21

18

15

12

9

6

3

0 - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - -

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00X

_o

1.4

1.1

0.8

0.5

0.2

-0.1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00X

L

n

21

18

15

12

9

6

3

0 - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - - ' - - -

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00X

Figure 16: The CE/SE solution and the exact solution of the waves in a

shock-tube with closed ends problem (t = 0.4).

NASA/TM--1998-208844 35

e_

21

18

15

12

9

6

3

0 ---,---,---,---,---,---,---,---,---,---

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00

X

00

1.4

1.1

0.8

0.5

0.2

-0.1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.60 0.90 1.00

X

L

Yl

k

e_2112151869 ." ...... " " ' " " " ' " " " ' " " " ' " " " ' " " "

3 _4 ....................................................

0 . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . . i . . .

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00X

Figure 17: The CE/SE solution and the exact solution of the waves in a

shock-tube with closed ends problem (t = 0.585).

NASA/TM--1998-208844 36

1.0

;_ 0.5

0.0

0 1 2 3 4X

0.75

0.50

0.25

0.00

-0.250

_ x J..L _ _..i

1 2 3 4X

Figure 18: Pressure contours and pressure coefficient at y = 0.5 of the

oblique shock problem (60x20 mesh).

0.5

0.0

0.5

0 1 2 3 4X

0.75

0.50

0.25

0.00

-0.25

0

............................ At A .............

:::::_::::_._ .............................

1 2 3 4

X

Figure 19: Pressure contours and pressure coefficient at y = 0.5 of the

oblique shock problem (120x40 mesh).

NASA/TM-- 1998-208844 37

loI 10.8 Ma = 3p= 1

0.6 p = 1.4

0.4

0.2

O0

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

X

o oo oo oo eo

o oo oo oo oo

oo oo oo oo ooo oo oo oo oo

eo oo oo oo oo

o oo oo oo oo

eo oo oo oo oo

o oo oo oo oo

i

o olo oo oo ooIe_

0 o oo

• o

• o

• o

• o

• o

• o

X

Figure 20: Geometry and Grid distribution of the 2D supersonic flow past a

step problem.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.6 1.2 1.8 2.4 3.0

X (60x20)

1.0 " " _

0"8 I

0.6

0.4

0.2

0.0

0.0 0.6 2.41.2 1.8 3.0

X (120x40)

loI0.8

0.6

0.4

0.2

0.0

0.0 0.6 1.2 1.8 2.4 3.0

X (_Ox80)

Figure 21: Density contours of the 2D supersonic flow past a step problem

generated using 60x20, 120x40, and 240x80 meshes.

NASA/TM-- 1998-208844 38

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

M.= 1.75

Pl-- 1.0135x 10 s N/m e

p,= 1.2014 kg/m s

u,=v,=O.O m/s

p_/pl=3.42, p_/p,=2.28

D= 152 mm

x/D

Figure 22: The initial conditions and geometry (cross section) of a cylindrical shock tube

for the blast wave problem.

OO

O0 O0 O0 O0 O0 O0 O0 O0

°°

O 00 I0

O0 O0 •

0 00 IO

O0 O0 •

O QO IO

O0 O0 •

0 00 I0

O0 O0 •

0 00 IO

O0 O0 •

0 O0 O0

O0 O0 •

0 O0 IO

©

©

• 0 •0 IO

• 0 00 •0 00 00 00 00 00

0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

0 •0 •0 •0 •0 •0

• 0 00 00 00 00 00

• 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0

0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0

•.io • o • o • o • o • o • o • o ,3o

rdl)

Figure 23: The computational domain and mesh-point distribution of the blast wave

problem (planar-flow version).

NASA/TM--1998-208844 39

3.0 ...,...,...,...,...,...,...,...

2.5(a)t=0.1996 msec

2.0

1.00.5

0.0 .................

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

r_"_ 1.5

3.0 ...,...,...,...,...,...,...,...

2.5(b)t=0.4937 msec

2.0

1.00.5

0.0 ........

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

r_1.5

3.0

2.5

2.0

1.0

0.5

0.0

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

_D

1.5

3.0

2.5

2.0

1.0

0.5

0.0

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

r_"_ 1.5

3.0

2.5

2.0

1.0

0.5

0.0

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

_D

_. 1.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

3.0

2.5

2.0

1.0

0.5

0.0

-I. -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

1.5

Figure 24: Pressure contours of the blast wave problem at eight different time levels.

NASA/TM-- 1998-208844 40

3.0f" "', "'" ,'" "," "', "'', "'" ,'" "," ""

2.5 (a)t=0.1996 msec

2.0

1.5

1.0_

0.5

0.0 .................

-I.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

3.0 ...,...,...,...,...,...,...,...

2.5

(b)t=0.4937 msec

2.0

1.00.5

0.0 ......

-I.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

_- 1.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-I.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

ao I'\2.5

2.0

1.0 I0.5

0.0 ,.

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

_- 1.5

3.0

2.5

• e

2.0

1.0

0.5

0.0

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

1.5

a.o ...................... I"]

2.5

-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

3.0

2.5

2.0

"_ 1.5

1.0

0.5

0.0

-I.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X/D

Figure 25: Density contours of the blast wave problem at eight different time levels.

NASA/TM-- 1998-208844 41

3.5_ ,

3.0

2.5

2.0

>-

1.5

1.0

0.5

(a)t=O.420.0 ............

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5X

3.5

3.0

2.5

2.0

>-

1.5

1.0

0.5

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5X

3.5-- _ " , " " , " , " , "

3.0

2.5

2.0

>-

1.5

1.0

0.5

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

X

Figure 26: The computational domain and density contours at three different

time levels of the diffraction of shock wave down a step problem (first case).

NASA/TM--1998-208844 42

: iiiiiii_;;:i!i:i:iiiii:i!i!iliiii:i;ii:iiiiill: ,ii:i_i:i_ii_i_:i_iiiiiiiiiiiiiii:iiiiiiii:_ii/iiii:i::_ii!ii:_:_!ii::i:, ::i_ ?i?::: i:::i:i_::_i';:i:!iil;::_:_iii:_:i:;i::

Figure 27: Experimental results of the diffraction of shock wave down a

step problem (first case--three different time levels).

NASA/TM-- 1998-208844 43

>-

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

(a)t=0.275

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5X

3.5

3.0

2.5

2.0

>-

1.5

1.0

0.5

0.0

(b)t=O.875

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5X

>-

3.5 , , • , • '_ _.__

3.0

2.5

2.0

1.5

1.0

0.5 (c)t=l •3750.0 ...........

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5X

Figure 28: The computational domain and density contours at three different time

levels of the diffraction of shock wave down a step problem (second case).

NASA/TM-- 1998-208844 44

': :: +:: _:::i:!_:::i:i_!::i:i_:i;: :;i:i i:::: :: !::ii::i_i; ::::::i!::ii:_:i/i%iiiiiiiii

_ :: :_ _i _,_ _ _ __, :_ : _:_ _ _ _: , _ _ _::: ::_ :: ::,: :_ _ ,:i:;:ilf: U_:_I_I:III_

Figure 29: Experimental results of the diffraction of shock wave down a

step problem (second case--three different time levels).

NASA/TM-- 1998-208844 45

shock y,

Y

o

X t

X

Figure 30: Shock moving past a wedge with a dust layer.

i i i i

3

ent shock wave

1

o-0.50.0 0.5 1.O 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

x'/L

2

Figure 31" The computational domain of the dust layer problem.

NASA/TM-- 1998-208844 46

0 . ae_. ..........................

-1 0 1 2 3 4 5 6x/L

4

3

2

1

• • • i • • • i • • • i • • • i • • • i • • • i • • • i • • •

-1 0 1 2 3 4 5 6 7x/L

Figure 32: Density contours for the dust layer problem (Ow = 30 °) at four

different time levels. (a) t = 0.5, (b) t = 1.75, (c) t = 3, (d) t = 4.

NASA/TM-- 1998-208844 47

5

4

3

2

1

0

-1

• • • I • • • I • • • I • • • I ...... I • • • I • • •

0 1 2 3 4 5 6x/L

7

5.5

4.4

3.3

2.2

1.1

0.0

-1

• • • I • • • I • • • I • • • I • • • I • • • I • • • I • • •

0 1 2 3 4 5 6x/L

Figure 32: (continued)

7

NASA/TM-- 1998-208844 48

5.5

4.4

3.3

2.2

1.1

0.0

-1

• • • I • • • I • • • I • • • I • • • I ...... I • • •

0 1 2 3 4 5 6 7x/L

Figure 33: Density contours at t = 3.8 for the dust layer problem ( Ow = 20°).

5.5

4.4

3.3

2.2

1.1

0.0

-1

• • • I • • • I • • • I • • • I ...........

0 1 2 3 4 5 6 7x/L

Figure 34: Density contours at t = 3.0 for the dust layer problem ( Ow = 40°).

NASA/TM-- 1998-208844 49

Figure 35: A schlieren photography for (0w = 20°).

Figure 36: A schlieren photography for (0w = 30°).

Figure 37: A schlieren photography for (0w = 40°).

NASA/TM-- 1998-208844 50

2

ii ................(a)

-2 -1 0 1 --22 -1 0 1 --22 -1 0 1 2

t=0.203 t=0.387 t=0.428

2

-2

z

. m . m . m . -_ . m

-1 0 1 --22 -1

t=0.392

I I0

t=0.504

m . --9 . m

I "-22 --I

|

0

t=0.639

| .

1 2

2

(c)-2

. | . | . |

-1 0 1

t=0.39

0

1'

--22 -1 0 1 -22 -1 0 1 2

t=0.484 t=0.694

Figure 38: Pressure contours for implosion/explosion in a square box with

different initial shock wave configurations.

(a) an equilateral triangle. (b) a square.

(c) a regular pentagon.

NASA/TM--1998-208844 51

(a)-2 -1 0 1 -22 -1 0 1 _ -1 0 1 2

t=0.203 t=0.387 t=0.428

2 - ' - ' - ' - Z - ' - - ' - Z - ' ' ' -

ii ................_c_ -2 -_ o _ -_ -_ o _ -_ -_ o _ 2

t=0.39 t=0.484 t=0.694

Figure 39: Density contours for implosion/explosion in a square box with

different initial shock wave configurations.

(a) an equilateral triangle. (b) a square.

(c) a regular pentagon.

NASA/TM-- 1998-208844 52

2 -1 0 1

t=0.394

-22 -1 0 1 -22 -1 0 1 _"

t=0.488 t=0.761

2 -1 0 1 _ -1 0 1 --22 -1 0 1 ;

t= 1. 172 t= 1.965 t=2.465

- m - m - m - _ m - m - m - _ m m - m

2 -1 0 1 --22 -1 0 1 --22 -1 0 1 ;

t=3.166 t =3.452 t=4.17,5

Figure 40: Pressure contours for implosion/explosion of a hexagonal shock in a

square box.

NASA/TM--1998-208844 53

2 -1 0 1 -22 -1 0 1 -22 -1 0 1 ;t=0.394 t=0.488 t=0.761

..........

2 -1 0 1 -22 -1 0 1 -22 -1 0 1 ;

t=3.166 t=3.457 t=4.175

Figure 41" Density contours for implosion/explosion of a hexagonal shock in a

square box.

NASA/TM-- 1998-208844 54

Form ApprovedREPORT DOCUMENTATION PAGEOMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDDecember 1998 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Space Time Conservation Element and Solution Element Method_ New Higl_

Resolution and Genuinely Multidimensional Paradigm for Solving Consmwation LawsII. Numerical Sinmlation of Shock Waves and Contact Discontinuities

6. AUTHOR(S)

Xiao-Yen Wang, Chuen-Yen Chow, and Sin-Chung Chang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135- 3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546- 0001

WU-538-03-11-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E- 11457

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM--1998-208844

11. SUPPLEMENTARY NOTES

Xiao-Yen Wang, Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota

55455; Chuen-Yen Chow, Department of Aerospace Engineering and Science, University of Colorado at Boulder, Boulder,

Colorado 80309-0429; Sin-Chung Chang, NASA Lewis Research Center. Responsible person, Sin-Chung Chang, organi-

zation code 5880, (216) 433-5874.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 34, 59, 61 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 6214)390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Without resorting to special treatment for each individual test case, the 1D and 2D CE/SE shock-capturing schemes

described in Part I are used to simulate flows involving phenomena such as shock waves, contact discontinuities, expan-

sion waves and their interactions. Five 1D and six 2D problems are considered to examine the capability and robustness of

these schemes. Despite their simple logical structures and low computational cost (for the 2D CE/SE shock-capturing

scheme, the CPU time is about 2 psecs per mesh point per marching step on a Cray C90 machine), the numerical results,

when compared with experimental data, exact solutions or numerical solutions by other methods, indicate that these

schemes can accurately resolve shock and contact discontinuities consistently.

14. SUBJECT TERMS

Space-Time; Flux conservation; Conservation element; Solution element; Shocks;

Contact discontinuities

17. SECURITY CLASSIFICATIONOF REPORT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

6016. PRICE CODE

A0418. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

Standard Form 298 (Flev. 2-89)Prescribed by ANSI Std. Z39-1B298-102