65
THE POPULATIONS & CHEMICAL ENRICHMENT OF CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN NATIONAL UNIVERSITY

THE POPULATIONS & CHEMICAL ENRICHMENT OF CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Embed Size (px)

Citation preview

Page 1: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

THE POPULATIONS & CHEMICAL ENRICHMENT OF CENTAURI

JOHN E. NORRIS

RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS

MOUNT STROMLO & SIDING SPRING OBSERVATORIES

AUSTRALIAN NATIONAL UNIVERSITY

Page 2: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

PLAN OF ATTACK• Historical review (pre ~1995)• Chemical abundances on the Red Giant Branch

– Metallicity Distribution Function & relative abundances– constraints on enriching stars and age spread

• Kinematics vs. abundance– Constraints on formation mechanisms

• Populations• Main sequence studies

– Constraints on the population parameters

Collaborators: M.S.Bessell, K.Bekki, R.D.Cannon, G.S.Da Costa, K.C.Freeman, M.Mayor, K.Mighell, G.Paltoglou, P.Seitzer, L.Stanford

Page 3: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Abundance inhomogeneity of Cen (1960-1995)

• Discovery of CH star– Harding (1962)

• Wide giant branch

– Woolley et al (1966, photographic), Cannon & Stobie (1972, photoelectric)

Cen 47 Tuc

Cannon & Stobie 1972, MNRAS, 162, 207 Lee 1977, A&AS, 27, 381

Page 4: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Abundance inhomogeneity of Cen (1960-1995)

• Discovery of CH star– Harding (1962)

• Wide giant branch – Woolley et al (1966, photographic), Cannon & Stobie (1972, photoelectric)

• [Ca/H] spread among RR Lyrae stars– Freeman & Rodgers (1975, low res)

• Large CN variations among red giants– Norris & Bessell (1975, low res), Dickens & Bell (1976, low res)

• Large CO spread among red giants– Persson et al (1980, IR photometry)

[Ca/H] = log(N(Ca)/N(H))* -log(N(Ca)/N(H))o

Page 5: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Persson et al 1980, ApJ, 235, 452

C and/or O enhance-ment unique to Cen

Page 6: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Abundance inhomogeneity of Cen (1960-1995)

• Discovery of CH star– Harding (1962)

• Wide giant branch – Woolley et al (1966, photographic), Cannon & Stobie (1972, photoelectric)

• [Ca/H] spread among RR Lyrae stars– Freeman & Rodgers (1975, low res)

• Large CN variations among red giants– Norris & Bessell (1975, low res), Dickens & Bell (1976, low res)

• Large CO spread among red giants– Persson et al (1980, IR photometry)

• Heavy element abundance spreads – High resolution spectroscopy– Cohen (1981; 5 stars), Gratton (1982; 8), Francois et al (1988; 6),

Paltoglou & Norrris (1989; 15), Brown & Wallerstein (1993; 6), Norris & Da Costa (1995; 35), Smith et al (1995; 7)

Page 7: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Ca II H&K AAT

Ca II triplet74-inch

Ca II triplet74-inch

[Ca/H] abundance histograms

METALLICITY DISTRIBUTION FUNCTION

[Ca/H] = log(N(Ca)/N(H))*

-log(N(Ca)/N(H))o

NB: Complete sample of red giants having V < 13

(R ~ 4000)

Page 8: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Two populations

First population: [Ca/H]0 = -1.59 <[Ca/H]> = -1.29

Second population: [Ca/H]0 = -1.09 <[Ca/H]> = -0.83

Simple model,closed box approximation:

metal-rich/metal-poor ~ 0.20

Page 9: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris & Da Costa 1995, ApJ, 447, 680

[alpha/Fe] vs. [Fe/H]

(NB: heavily biased sample)

Enrichment by SNe II

Cen Other clusters

(AAT UCLES R ~ 35000)

Page 10: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris & Da Costa 1995, ApJ, 447, 680

[neutron capture/Fe] vs. [Fe/H]

Enrichment by (intermediate-mass) AGB stars

Cen Other clusters

Page 11: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell, 1996 ApJ, 462, 241

Heavily biased sample(AAT UCLES high-res)

Unbiased sample(AAT, 74-inch low-res)

Normal globular clustersNo counterpartelsewhere in Galaxy. Suggestscausal link between populations

Page 12: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

[Fe/H]-1.5-2.0 -1.0

0.0

0.0

0.0

1.0

1.0

1.0

Smith et al 2000, AJ, 119, 1239

5Mo

3Mo1.5Mo

5Mo3Mo1.5Mo

5Mo

3Mo1.5Mo

[Rb/Zr]

[Rb/Zr]

[Rb/Zr]

Star formation occurred over 2-3 Gyr

Page 13: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell 1996, ApJ, 462, 241

[Ca/Fe] vs. radius

Abundance decreases with radial distance

Page 14: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman, Mayor & Seitzer 1997, ApJ, 487, L187

Rotation vs. abundance

Metal-poor sample:V = 10.7 +/- 1.8 km/s

Metal-rich sample:V = 3.0 +/- 2.4 km/s

Metal-poor population rotating more rapidly

Page 15: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Metal-poor sample kinematically hotter and rotating more rapidly.

Kinematics vs. abundance

Norris, Freeman, Mayor & Seitzer 1997, ApJ, 487, L187

O Not ELS type collapseO Kinematically consistent with binary cluster evolution (e.g. Makino et al 1991 Ap&SS, 185, 63); but not clear this works chemically

Page 16: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Ferraro et al 2004, ApJ, 603, L81 Pancino et al 2000, ApJ, 584, L83

‘Third’ population

(see also Lee et al 1999, Nature, 402, 55)

Page 17: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Pancino et al 2002, ApJ, 568, L101

Enrichment by SNe Ia

[Ca/Fe]

[Fe/H]

Page 18: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Sollima et al. 2005, MNRAS, 357, 265

Page 19: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

To Cen’s main sequence withAAT Two Degree Field

Spectrographs

Page 20: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

… working with Laura Stanford, Gary Da Costa & Russell Cannon(Stanford et al 2006, ApJ, 647,1075)

1998/992002

Page 21: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford et al. (2006, ApJ, 647, 1075)

From -

• Ages of individual star in the CMD determined from YY isochrones, taking into account correlated age-metallicity errors

• Comparisons of Monte-Carlo CMD simulations with that of the cluster

There exists an age-metallicity relation, with the more metal-rich populations being younger by 2-4 Gyr than the metal poor one

Page 22: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford et al. 2006, ApJ, 647, 1075Age ranges from the literature

Page 23: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford et al. 2006, ApJ, submitted

[Sr/Fe] = +1.6[Ba/Fe] < +0.8:

Page 24: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Bedin et al. 2004, ApJ, 605, L125 (also Anderson 1997, 2000, 2003 Thesis U

Berkeley & ASP Proceedings)

Anderson’s double main sequence

HST data

Page 25: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Two populations

First population: [Ca/H]0 = -1.59 <[Ca/H]> = -1.29

Second population: [Ca/H]0 = -1.09 <[Ca/H]> = -0.83

Simple model,closed box approximation:

metal-rich/metal-poor ~ 0.20

Page 26: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Bedin et al. suggest:

• Observations and/or modelling wrong

• Bluer main sequence has [Fe/H] < -2.0

• Bluer main sequence has higher helium (Y > 0.3)

• Two clusters superimposed, separated by 1-2 kpc along

line of sight

Majority, metal-poor population should be bluest!

Note: X = hydrogen mass fraction Y = helium mass fraction Z = heavy element mass fraction

Page 27: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Pop 1st 2nd 3rd[Fe/H] -1.7 -1.2 -0.6Y 0.23 0.23 0.23Age(Gyr) 16 16 16Fraction 0.80 0.15 0.05

Revised Yale Isochrones Norris 2004, ApJ 612, L25

Page 28: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Pop 1st 2nd 3rd[Fe/H] -1.7 -1.2 -0.6Y 0.23 0.23 0.23Age(Gyr) 16 14 12Fraction 0.80 0.15 0.05

Revised Yale Isochrones Norris 2004, ApJ, 612, L25

Page 29: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Pop 1st 2nd 3rd[Fe/H] -1.7 -1.2 -0.6Y 0.23 0.35 0.38Age(Gyr) 16 15 14Fraction 0.80 0.15 0.05

Revised Yale Isochrones Norris 2004 ApJ, 612, L25

Page 30: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Bedin et al. 2004, ApJ, 605, L125 (astro-ph/0403112) (also Anderson 1997, 2000, 2003 Thesis U

Berkeley & ASP Proceedings)

Anderson’s double main sequence

HST data

Page 31: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Piotto et al. 2005, ApJ, 621, 777

The blue main sequence is more metal-rich by 0.3 dex![C/Fe] = 0.0; [N/Fe]bMS = 1.0-1.5, [N/Fe]rMS < 1.0

VLT Giraffe

Page 32: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Sollima et al 2006, astro-ph/0609650

Page 33: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Sollima et al 2006, astro-ph/0609650

NbMS/NrMS = 0.16

NbMS/NrMS = 0.17

NbMS/NrMS = 0.24

The ratio of bMS to rMS is a function of cluster radial distance

r >15’

r < 10’

10’<r<15’

Page 34: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell 1996, ApJ, 462, 241

[Ca/Fe] vs. radius

Abundance decreases with radial distance

Page 35: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

BUT …

• Canonically, Y/Z ~3-4, and with an increase from [Fe/H] = -1.7 to -1.2 one expects only Y = 0.003!

• Suggests non-canonical evolution.

OBSERVATIONALLY …

• Determine Y from hot blue HB stars? • Use sensitivity of HB luminosity &Teff to Y? (Y up => Teff up, L up)

• Zero-Age HB RR Lyraes of 2nd pop should be brighter by 0.2-0.3mag. In contrast, the observed metal-richer RR Lyraes are fainter by 0.2-0.3mag! (see also Sollima et al. 2006, ApJ, 640, L43)

But … are the variables representative of the populations?

Page 36: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Ferraro et al 2004 ApJ, 603, L81

Pop 1st 2nd Alt.2nd[Fe/H] -1.7 -1.2 -1.2Y 0.23 0.35 0.23Age(Gyr) 14 12 12Fraction 0.80 0.15 0.15Turnoff mass (Msun) 0.82 0.71 0.85

Rey et al 2004

D’Cruz et al 2000 ApJ, 530, 352 - HST UV observations

“… over 30% of the HB objects are “extreme” HB or post-HB stars”

see also:Lee et al., 2005, ApJ, 621, L57

RR Lyrae

Page 37: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Lee at al. 2005 ApJ, 621, L57

Y Z [Fe/H] Age

0.231 0.0006 -1.45 13

0.232 0.001 -1.23 13

0.38 0.0015 -1.05 12

0.40 0.0028 -0.78 11.5

0.42 0.006 -0.45 11.5

Helium constant

Helium varies

Page 38: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

CANDIDATES FOR PRODUCERS OF HELIUM• Massive stars (~60 Mo) with rotationally driven mass loss (Maeder & Meynet

2006, A&A, 448, L37) - also produce copius N, but not large overabundances of C and O

• 10-14 Mo SNe (Piotto et al 2005, ApJ, 621, 777)

• More massive (~6-7 Mo) AGB stars

• Helium diffusion in protocluster phase (Chuzhoy 2006, MNRAS, 369, L52) “Element diffusion can produce large fluctuations in the initial helium abundance of the star-forming clouds. Diffusion time-scale … can fall below10 8 years in the neutral gas clouds dominated by collisionless dark matter or with dynamically important radiation or magnetic pressure. ”

• Problems with self enrichment by above (stellar) candidates within a closed system producing so much helium. Bekki & Norris (2006, ApJ, 637, L109) suggested second population formed from gas “ejected from field stellar populations that surrounded Cen when it was the nucleus of an ancient dwarf galaxy”

Page 39: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Bekki & Norris 2006, ApJ, 637, L109

Helium production in stars

Y

Log (Stellar mass)

Constraints on two populations, in whichthe AGB ejecta of the first (IMF slope s1) forms the second (s2). Massive star ejecta lost from the system, but all AGB ejecta for 6<M/Mo< 7 are retained and form second population.

f 2nd/

(f1s

t+f 2n

d)

frem (remnant mass fraction of GC)

(f is

fra

ctio

n of

sta

rs w

ith

M<

0.8

8Mo)

s1=2.35

(D’Antona et al (2005) suggest AGB stars with 6<M/Mo<7 can produce Y = 0.40)

Page 40: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Bekki, Campbell, Lattanzio & Norris 2006, MNRAS, submitted

Globular cluster formation in the central regions of low-mass protogalaxies embedded in dark matter halos.

First population forms at the center of the potential well. All AGB ejecta from first generation is retained in the potential well.

Infalling protogalactic gas combines with the retained AGB material to form the second generation.

Free parameters: s (=MIN/MAGB); timescale for (exponential) infall of protogalactic gas (~106

yr) with star formation ceasing after 107 yr; initial gas mass (Mg(0)) when infall begins.

omega Cen model with very small s (i.e. higher degree of AGB material), smaller infall time (i.e. rapid infall) and smaller initial gas mass (i.e. more rapid chemical enrichment)

Page 41: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

SUMMARY• Cen possesses at least three distinct populations, described

to first approximation by: Population First Second Third Fraction 0.80 0.15 0.05 [Fe/H] -1.7 -1.2 -0.6 Y 0.23 0.35 0.38: YY Age (Gyr) 14 12 12: (Vr) (km/s) 13 8 13

Rotation (km/s) 11 3 unknown

• The origin of the helium in the second population is currently not well understood.

• System not formed in an ELS scenario, but more likely as a dwarf galaxy having multiple star-formation episodes well away from the forming Galaxy, and later being captured by it.

Page 42: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES
Page 43: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

THE CHEMICAL ENRICHMENT OF CENTAURI

JOHN E. NORRIS

RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS

MOUNT STROMLO & SIDING SPRING OBSERVATORIES

AUSTRALIAN NATIONAL UNIVERSITY

Page 44: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Ca II H&K

Ca II infrared triplet

ROA 253

Low resolution (R~4000) [Ca/H] from Ca II H&K and Ca II infrared triplet

ROA 253

Page 45: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

High resolution spectrum obtained withAAT UCL Echelle Spectrograph (UCLES)

Page 46: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

High resolution spectra of 35 red giants(AAT UCLES, R~35,000;

Page 47: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Cen

Lee et al 1999,Nature, 402, 55

Page 48: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stars observed in 2002 box Cen radial-velocity

members in 2002 box

Stanford thesis

Page 49: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford thesis

Page 50: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Metallicity Distribution Function

Stanford et al (2006, ApJ, 647, 1075)

Page 51: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford et al. (2006, ApJ, 647, 1075)

Page 52: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford et al. 2006, ApJ, 647, 1075Age ranges from the literature

Page 53: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

98/9998/99

2002

Stanford thesis (2006, ApJ, 647, 1075)

Page 54: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Age-Metallicity Relation

Stanford et al (2006, ApJ, 647, 1075)

Page 55: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Sollima et al. 2005, ApJ, 634, 332

Page 56: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Smith, Cunha & Lambert 1995 AJ, 110, 2827

Mixing line

[Fe/H]

[Ba/Fe]

Page 57: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Metallicity RangeStanford thesis work

Page 58: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Age-Metallicity Relation

Stanford et al (2006, ApJ, 647, 1075)

Page 59: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES
Page 60: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Norris & Da Costa 1995 ApJ, 447, 680

[iron peak/Fe] vs. [Fe/H]

Cen Other clusters

Page 61: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford thesis work

Observations

Simulations of populations: [Fe/H] FractionFirst -1.7 0.80Second -1.2 0.15Third -0.6 0.05

0 Gyr

6 Gyr

4 Gyr

2 Gyr

Age spread

Page 62: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

Stanford thesis work

[Fe/H]

Age(Gyr)

15

10

5

-2 -1

Turnoff stars

Page 63: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

THE CHEMICAL ENRICHMENT OF CENTAURI

JOHN E. NORRIS

RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS

MOUNT STROMLO & SIDING SPRING OBSERVATORIES

AUSTRALIAN NATIONAL UNIVERSITY

Page 64: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

AAT Two Degree Field - Plate with fibres

Page 65: THE POPULATIONS & CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES

D’Cruz et al 2000 ApJ, 530, 352 - HST UV observations

‘Normal’ Horizontal Branch

EHB

“… over 30% of the HB objects are “extreme” HB or post-HB stars”

V ~ 16