28
The NanoAssemblr™ Platform: Microfluidics-Based Manufacture of Nanomedicines Precision NanoSystems, Inc. September 2014

The NanoAssemblr™ Platform: Microfluidics-Based ...September 2014 Conceptual Nanoparticle Scale-up Bench-Scale Nanoparticle Formulation Manufacturing Process Robust Manufacturing

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • The NanoAssemblr™ Platform: Microfluidics-Based Manufacture of

    Nanomedicines

    Precision NanoSystems, Inc. September 2014

  • Conceptual Nanoparticle

    Scale-up Bench-Scale NanoparticleFormulation

    Manufacturing Process

    Robust Manufacturing

    Process

    Nanomedicine Product

    Nanoparticle Development Process

    2

  • Conceptual Nanoparticle

    Scale-up Bench-Scale NanoparticleFormulation

    Manufacturing Process

    Robust Manufacturing

    Process

    Nanomedicine Product

    Nanoparticle Development Process

    3

    NanoAssemblr™ Benchtop Instrument

  • Conceptual Nanoparticle

    Scale-up Bench-Scale NanoparticleFormulation

    Manufacturing Process

    Robust Manufacturing

    Process

    Nanomedicine Product

    Nanoparticle Development Process

    4

    NanoAssemblr™ Benchtop Instrument

    Accelerated Development of Nanoparticles

    Scale-Up Platform

  • 5

    ü  Proprietary microfluidics-based instrument

    ü  Rapid nanoparticle prototyping

    ü  Single step

    ü  Small sample volumes

    ü  Software controlled, automated

    ü  Intra- and inter-operator reproducibility

    ü  Robust processing and variable manipulation

    The NanoAssemblr™ Benchtop Instrument

    Microfluidic Cartridge

    NanoAssemblr™ Benchtop Instrument

  • 6

    ü  Laminar flow – controlled mixing

    ü  Rapid mixing (3 ms-1)

    ü  Nanoliter Reaction volumes: ~ 14 nL

    ü  Low energy input, low shear system

    ü  Seamless scale-up

    The Magic is in the Microfluidics

    Exquisite Control Over Manufacturing Process

    organic aqueous

    Rapid & Controlled Mixing

    Mixer design by: Stroock et al., Science 2002

    Channel diameter: ~100 µm

    Staggered Herringbone

    Mixers

    Nanoparticles

  • The NanoAssemblr™: Manufacture of Novel Nanoparticles

    O/W Nanoemulsions

    7

    Lipid Nanoparticles

    Liposomes

    Polymer Nanoparticles

  • 8

    0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 10 20 30 40 50 60 70 80 90

    Actual diameter Theoretical diameter

    Part

    icle

    siz

    e, n

    m

    POPC/Triolein ratio, mol/mol

    Zhigaltsev, I.V. Et al., Langmuir 2012, 28, 3633−3640

    Nanoemulsion Droplet Size Dictated by Emulsion Composition

  • Nanoemulsion Droplet Size Dictated by Manufacturing Process

    9

     

    0 1 2 3 4 5 6 7 8 9 10

    10

    20

    30

    40

    50

    60

    70

    B POPC/triolein (60/40 mol/mol)

    Par

    ticle

    siz

    e, n

    m

    Aqueous/ethanol flow rate ratio

    Zhigaltsev, I.V. Et al., Langmuir 2012, 28, 3633−3640

  • 10

    Liposome Size Dictated by Manufacturing process

    “Limit size” Liposomes are dictated by the Flow Rate Ratio

    1 2 3 40

    20

    40

    60

    80

    100

    Flow Rate Ratio (Aqueous:Organic)

    Z-A

    ve (n

    m)

    POPC:Chol:DSPE-PEG (55:42:3)

    DSPC:Chol:DSPE-PEG (55:42:3)

    Post-Dialysis DataAll PDI < 0.09

  • Liposome Size Dictated by Lipid Composition

    11

    0 10 25 35 4220

    30

    40

    50

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    Cholesterol content [mol%]

    Z-A

    ve

    [nm

    ]

    PD

    I

    Liposome size and size distribution is dependent on Cholesterol content

    POPC:Cholesterol:PEG-DSPE (3%)

  • RNA-Lipid Nanoparticle Size Dictated by Lipid Composition

    12

    Dia

    me

    ter

    (nm

    )

    PEG-Lipid Content (mol %)

    10

    20

    30

    1.0 2.5 5.00

    40

    50

    60

    PD

    I

    0.02

    0.04

    0.08

    0.00

    0.10

    0.06

    “Limit Size” is Dependent on RNA-Lipid Nanoparticle Composition

  • 13

    RNA-Lipid Nanoparticle Size Dictated by Manufacturing Process

    siRNA-LNP (Cationic Lipid:DSPC:Cholesterol:PEG) Changing Process

    Dia

    me

    ter

    (nm

    )

    Flow Rate (mL / min)

    20

    40

    0 120

    60

    80

    100

    4 8 16 20 24

    RNA-Lipid Nanoparticles Reach “Limit Size” at High Flow Rates

  • CellaxTM Polymer-Drug conjugates

    14

    100nm 100nm

    NanoAssemblr TM Vortex

  • 4 8 15 20 30 35

    60

    80

    100

    120

    0.0

    0.1

    0.2

    0.3

    concentration [mg/g]

    Z-A

    ve

    [nm

    ]P

    DI

    Nanoparticle Size Dictated by Polymer Concentration

    15

    Particle size is dictated by polymer concentration

    CellaxTM Polymer-Drug conjugates

  • 16

    10 12 14 16 18 20 22 24 26 28 30 320.0

    0.1

    0.2

    0.3

    Flow-Rate [ml/min]

    PD

    I

    Polymer Nanoparticle Size Distribution Dictated by Manufacturing Process

    Polydispersity is dependent on flow rate

    CellaxTM Polymer-Drug conjugates

  • Reproducible RNA-Lipid Nanoparticles Independent of Operator or Site

    17

    Automated Instrumentation Removes Operator Variability

    Dia

    me

    ter

    (nm

    )

    Sample

    20

    40

    1 40

    60

    2 3 5 6

    PD

    I

    0.04

    0.12

    0.00

    0.16

    0.08

    Operator

  • Assessment of the Robustness of the Manufacturing Process

    18

    Stable Results = Robust Process = Scalable Process

    Design of Experiment (DoE) variables –  Lipid Concentration –  Flow Rate –  Mixing Conditions –  Lipid:RNA Ratio

  • 19

    Continuous Flow Pumps

    Parallelized Microfluidic Mixers

    RNA -Nanoparticles

    Aqueous (RNA)

    Solvent (Lipids)

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Dilution Buffer Exchange

    & Nanoparticle

    Concentration

    Microfluidics Enables “Seamless Scale-Up”

  • 20

    Continuous Flow Pumps

    Parallelized Microfluidic Mixers

    RNA -Nanoparticles

    Aqueous (RNA)

    Solvent (Lipids)

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Dilution Buffer Exchange

    & Nanoparticle

    Concentration

    Microfluidics Enables “Seamless Scale-Up”

  • Continuous Flow Scale-up Manufacture of RNA-Lipid Nanoparticles Using Single Mixer

    21

    Seamless Transfer of Optimized Manufacturing Parameters

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0

    10

    20

    30

    40

    50

    60

    PD

    I

    Dia

    me

    ter

    (nm

    )

    Cumulative Fraction (mL)

  • 22

    Continuous Flow Pumps

    Parallelized Microfluidic Mixers

    RNA -Nanoparticles

    Aqueous (RNA)

    Solvent (Lipids)

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Microfluidic Mixer

    Dilution Buffer Exchange

    & Nanoparticle

    Concentration

    Microfluidics Enables “Seamless Scale-Up”

  • -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0

    10

    20

    30

    40

    50

    60

    1X Mixer 2X Mixer 4X Mixer

    PD

    I

    Dia

    me

    ter

    (nm

    )

    Manifold Microfluidic Parallelization Enables RNA-Lipid Nanoparticle Scale-Up Manufacture

    23

    12 mL/min 24 mL/min 48 mL/min

    Parallelization of Microfluidic Mixers Enables Higher Throughput

  • On-Chip Microfluidic Parallelization Produces Equivalent RNA-LNP

    24

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0

    10

    20

    30

    40

    50

    60

    4X Manifold 4X On-Chip

    PD

    I

    Dia

    me

    ter

    (nm

    )

    Multiple options for increased throughput by parallelization

    48 mL/min 48 mL/min 4X Mixer Chip

  • 25

    Aqueous Metering Pump

    Solvent Reagent Bag

    Aqueous Reagent Bag

    Solvent Metering

    Pump

    Dilution Pump

    Dilution Reagent Bag

    Pinch Valve

    To Post-processing

    Tee

    Tee

    Pinch Valve

    Sample Switch Waste

    288 mL/min

    384 mL/min

    8X Scale-up System

    8 x 12 mL/min

    24 mL/min

    72 mL/min 96 mL/min

    Microfluidic Mixer Array

    Design for GMP Manufacturing

  • 8X Scale-Up Instrumentation Produces High-Quality RNA-LNP

    26

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0

    10

    20

    30

    40

    50

    60

    PD

    I

    Dia

    me

    ter

    (nm

    )

    Cumulative Fraction (mL)

    •  8X Scale-Up System Processes 5.75 L/hr •  Further parallelized systems under development

  • GMP Program in Development

    27

    ü  Prototype instrumentation developed

    ü  Disposable COC microfluidic chips developed

    ü  Working with drug development partner to transfer technology to CMO for scale-up and GMP manufacturing

    ü  Fully disposable fluid path using USP Class 5/6 materials

    ü  Working with partners and to support development and push programs forward

  • Try the NanoAssemblr™ for your drug development program

    ü  Worldwide distribution

    ü  Demo Program Available ü  Contact Colin Walsh: [email protected] ü  Contact Gesine Heuck: [email protected]

    ü  Development programs in place

    ü  RNA delivery systems ü  Liposomes ü  Polymers ü  Polymer-drug conjugates ü  Other nanoparticle systems

    28

    NanoAssemblr™ Benchtop Instrument