13
J. Math. Anal. Appl. 332 (2007) 1216–1228 www.elsevier.com/locate/jmaa The higher order derivatives of Q K type spaces Hasi Wulan a,, Jizhen Zhou b a Department of Mathematics, Shantou University, Shantou 515063, China b Department of Mathematics and Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China Received 2 July 2006 Available online 4 December 2006 Submitted by S. Ruscheweyh Abstract The higher order derivatives characterization of Q K type spaces, the so-called Q K (p,q) spaces, is given. Our result further means that the spaces Q K (p,q) can be described by the K-Carleson measures. © 2006 Elsevier Inc. All rights reserved. Keywords: Higher order derivatives; Q K (p,q) spaces; K-Carleson measures 1. Introduction In recent years a special class of Möbius invariant function spaces, the so-called Q p spaces, has attracted a lot of attention. We recall some facts about Q p spaces. Let g(a,z) = log(1/|ϕ a (z)|) be the Green function on the unit disk Δ in the complex plane C, where ϕ a (z) = (a z)/(1 az) is the Möbius transformation of Δ. For 0 p< , the space Q p consists of analytic functions f on Δ for which f 2 Q p = sup aΔ Δ f (z) 2 ( g(a,z) ) p dA(z) < , The authors are supported by NSF of China (Nos. 10371069, 10671115) and NSF of Guangdong Province of China (Nos. 04011000, 06105648). * Corresponding author. E-mail addresses: [email protected] (H. Wulan), [email protected] (J. Zhou). 0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.10.082

The higher order derivatives of type spaces

Embed Size (px)

Citation preview

J. Math. Anal. Appl. 332 (2007) 1216–1228

www.elsevier.com/locate/jmaa

The higher order derivatives of QK type spaces ✩

Hasi Wulan a,∗, Jizhen Zhou b

a Department of Mathematics, Shantou University, Shantou 515063, Chinab Department of Mathematics and Physics, Anhui University of Science and Technology,

Huainan, Anhui 232001, China

Received 2 July 2006

Available online 4 December 2006

Submitted by S. Ruscheweyh

Abstract

The higher order derivatives characterization of QK type spaces, the so-called QK(p,q) spaces, is given.Our result further means that the spaces QK(p,q) can be described by the K-Carleson measures.© 2006 Elsevier Inc. All rights reserved.

Keywords: Higher order derivatives; QK(p,q) spaces; K-Carleson measures

1. Introduction

In recent years a special class of Möbius invariant function spaces, the so-called Qp

spaces, has attracted a lot of attention. We recall some facts about Qp spaces. Let g(a, z) =log(1/|ϕa(z)|) be the Green function on the unit disk Δ in the complex plane C, whereϕa(z) = (a − z)/(1 − az) is the Möbius transformation of Δ. For 0 � p < ∞, the space Qp

consists of analytic functions f on Δ for which

‖f ‖2Qp

= supa∈Δ

∫Δ

∣∣f ′(z)∣∣2(

g(a, z))p

dA(z) < ∞,

✩ The authors are supported by NSF of China (Nos. 10371069, 10671115) and NSF of Guangdong Province of China(Nos. 04011000, 06105648).

* Corresponding author.E-mail addresses: [email protected] (H. Wulan), [email protected] (J. Zhou).

0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.doi:10.1016/j.jmaa.2006.10.082

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228 1217

where dA is an area measure on Δ normalized so that A(Δ) = 1. It is easy to check that the spaceQp is Möbius invariant in the sense that ‖f ◦ ϕa‖Qp = ‖f ‖Qp for every f ∈ Qp and a ∈ Δ. Weknow that Q1 = BMOA, the space of all analytic functions of bounded mean oscillation [5,17],and for each p > 1, the space Qp is the Bloch space B [1] (for the case p = 2 see [15]) consistingof analytic functions f on Δ whose derivatives f ′ are subject to the growth restriction

‖f ‖B = supz∈Δ

(1 − |z|2)∣∣f ′(z)

∣∣ < ∞.

When p = 0, the space Qp degenerates to the Dirichlet space D. See [11,14] for a summary ofrecent research about Qp spaces.

There are a number of ways we can further generalize the Qp spaces; see, for example, [16]for F(p,q, s), and [3,10] for QK . In this paper we are concerned with a more general gener-alization, the so-called QK(p,q) spaces, and we characterize the QK(p,q) spaces in terms ofhigher order derivatives. The higher order derivatives characterization of Qp spaces was given in[2]. The corresponding problems for QK and F(p,q, s) spaces were studied in [8] and [13], re-spectively. Our proof to ensure the higher order derivatives characterization of QK(p,q) spacesis new even for above special cases.

Let K : [0,∞) → [0,∞) be a right-continuous and nondecreasing function. For 0 < p < ∞,−2 < q < ∞, the space QK(p,q) consists of analytic functions f defined in Δ satisfying

‖f ‖pK,p,q = sup

a∈Δ

∫Δ

∣∣f ′(z)∣∣p(

1 − |z|2)qK

(g(z, a)

)dA(z) < ∞.

Equipped with the norm |f (0)| + ‖f ‖K,p,q , the space QK(p,q) is Banach when p > 1. Thespaces QK(p,q) were introduced in [12] and some basic properties about QK(p,q) can befound there.

Throughout this paper, we suppose that the nondecreasing function K is differentiable andsatisfies that K(2t) ≈ K(t); that is, there exist constants C1 and C2 such that C1K(2t) � K(t) �C2K(2t). Also, we assume that

1∫0

(1 − r2)q

K

(log

1

r

)r dr < ∞. (1.1)

Otherwise, QK(p,q) contains constant functions only (cf. [12]). We know that QK(p,q) =QK1(p, q) for K1 = inf(K(r),K(1)) (see [12, Theorem 3.1]) and so the function K can beassumed to be bounded. To avoid QK(p,q) = F(p,q,0) we assume that K(0) = 0 in this paper;see [12, Corollary 3.5].

The letter C denotes a positive constant throughout the paper which may vary at each occur-rence.

In order to obtain our main results in this paper, we define an auxiliary function as follows:

ϕK(s) = sup0�t�1

K(st)/K(t), 0 < s < ∞.

We further assume that

1∫ϕK(s)

ds

s< ∞, (1.2)

0

1218 H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

and that

I = supa∈Δ

∫Δ

(1 − |z|2)p−2

|1 − az|p K

(log

1

|z|)

dA(z) < ∞. (1.3)

We know that (1.2) implies (1.3) for 1 < p < ∞. In fact, by [4, Lemma 2.1] the integral I isdominated by

1∫0

K(log 1r)

1 − rdr ≈

1∫0

K(1 − r)

1 − rdr � K(1)

1∫0

ϕK(s)ds

s< ∞

whenever (1.2) holds.One of our main results in the paper is the following.

Theorem 1. Let K satisfy (1.3) and 0 < p < ∞,−1 < q < ∞. Let n be a positive integer. Thenf ∈ QK(p,q) if and only if

supa∈Δ

HK,p,q(f, a,n) < ∞,

where

HK,p,q(f, a,n) =∫Δ

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(g(z, a)

)dA(z).

For a subarc I ⊂ ∂Δ, the boundary of Δ, let

S(I) = {rζ ∈ Δ: 1 − |I | < r < 1, ζ ∈ I

}.

If |I | � 1 then we set S(I) = Δ. A positive measure μ on Δ is said to be a K-Carleson measureif

supI⊂∂Δ

∫S(I)

K

(1 − |z|

|I |)

dμ(z) < ∞.

Here and henceforward supI⊂∂Δ means the supremum taken over all subarcs I of ∂Δ. Clearly,if K(t) = tp, 0 < p < ∞, then μ is a K-Carleson measure if and only if (1 − |z|2)p dμ(z) is ap-Carleson measure. Note that p = 1 gives the classical Carleson measure; see [5].

As a modification of p-Carleson measure our new K-Carleson measure has the followingproperty; see [4].

Theorem A. Let K satisfy (1.2). A positive measure μ on Δ is K-Carleson if and only if

supa∈Δ

∫Δ

K(1 − ∣∣ϕa(z)

∣∣2)dμ(z) < ∞.

A geometric characterization of functions in QK(p,q) in terms of K-Carleson measure canbe stated as follows, which is our second main result in this note.

Theorem 2. Let K satisfy (1.2), (1.3), 0 < p < ∞ and −1 < q < ∞. Suppose n is a positiveinteger. Then f ∈ QK(p,q) if and only if∣∣f (n)(z)

∣∣p(1 − |z|2)np−p+q

dA(z)

is a K-Carleson measure.

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228 1219

2. Preliminaries

The following lemmas will be used in the proof of our main theorems.

Lemma 3. Let 0 < p < ∞,−2 < q < ∞. If f is analytic in Δ, then there exists a constantC = C(p,q) such that∫

Δ

∣∣f ′(z)∣∣p(

1 − |z|2)p+qK

(log

1

|z|)

dA(z)

� C

∫Δ

∣∣f (z)∣∣p(

1 − |z|2)qK

(log

1

|z|)

dA(z).

Proof. Suppose 1 � p < ∞ and write z = reiθ ∈ Δ and ρ > r . By the Cauchy formula,

f ′(z) = 1

2πi

∫|ζ |=ρ

f (ζ ) dζ

(ζ − z)2= ρ

2π∫0

f (ρei(t+θ))ei(t−θ)

(ρeit − r)2dt.

By Minkowski’s inequality we have

Mp(r,f ′) � 1

2π∫0

Mp(ρ,f )dt

ρ2 − 2ρr cos t + r2= Mp(ρ,f )

ρ2 − r2, (2.1)

where

Mp(r,f ) ={

1

2π∫0

∣∣f (reiθ

)∣∣p dθ

}1/p

.

For the case 0 < p < 1 we suppose f has no zero in Δ. Thus the function F(z) = (f (z))p isanalytic and by (2.1),

M1(r,F′) � M1(ρ,F )

ρ2 − r2= (Mp(ρ,f ))p

ρ2 − r2. (2.2)

By Hölder’s inequality,

(Mp(r,f ′)

)p = 1

2π∫0

∣∣f ′(reiθ)∣∣p dθ

= 1

(1

p

)p2π∫

0

∣∣F (reiθ

)∣∣1−p∣∣F ′(reiθ)∣∣p dθ

� 1

(1

p

)p( 2π∫

0

∣∣F (reiθ

)∣∣dθ

)1−p( 2π∫0

∣∣F ′(reiθ)∣∣dθ

)p

=(

1)p(

M1(r,F ))1−p(

M1(r,F′))p

,

p

1220 H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

which together with (2.2) gives

Mp(r,f ′) � 1

p

(M1(r,F )

) 1p

−1M1(r,F

′) � Mp(ρ,f )

p(ρ2 − r2).

If f has zeros, for a fixed s,0 < s < 1, let fs(z) = f (sz). By Lemma 2 in [6, p. 79] there existtwo nonvanishing functions f1 and f2 in Hp such that

fs(z) = f1(z) + f2(z), ‖fi‖p � 2‖fs‖p, i = 1,2.

Since f1 and f2 are nonzero functions, for ρ > r

sMp(sr, f ′) � Mp

(r, f ′

1

) + Mp

(r, f ′

2

)� 1

p

(Mp(ρ,f1)

ρ2 − r2+ Mp(ρ,f2)

ρ2 − r2

)

� 2Mp(ρ,fs)

p(ρ2 − r2).

Let s → 1 and then

Mp(r,f ′) � 2Mp(ρ,f )

p(ρ2 − r2).

Thus for all p,0 < p < ∞,

Mp(r, f ′) �(

2

p+ 1

)Mp(ρ,f )

ρ2 − r2, ρ > r.

By the assumption of K we have

K

(log

1

r

)� K

(log

4

1 + r

)� CK

(log

2

1 + r

).

Choosing ρ = 1+r2 we obtain∫

Δ

∣∣f ′(z)∣∣p(

1 − |z|2)q+pK

(log

1

|z|)

dA(z)

= 2

1∫0

(Mp(r,f ′)

)p(1 − r2)q+p

K

(log

1

r

)r dr

� C

1∫0

(Mp(ρ,f )

)p(1 − ρ2)q

K

(log

1

ρ

)ρ dρ

� C

∫Δ

∣∣f (z)∣∣p(

1 − |z|2)qK

(log

1

|z|)

dA(z).

The proof is complete. �Lemma 4. Let f be analytic in Δ and 0 < p < ∞,−2 < q < ∞. Then(

1 − |a|2)np−p+q+2∣∣f (n)(a)∣∣p � CHK,p,q(f, a,n) (2.3)

holds for all positive integers n and a ∈ Δ.

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228 1221

Proof. Set

E(a,1/e) ={z ∈ Δ: |z − a| < 1

e

(1 − |a|)}, a ∈ Δ.

It is easy to see that(1 − 1

e

)(1 − |a|) � 1 − |z| �

(1 + 1

e

)(1 − |a|) (2.4)

whenever z ∈ E(a,1/e). Since |f (n)(z)| is subharmonic in Δ and E(a,1/e) ⊂ Δ(a,1/e) for anya ∈ Δ, by (2.4) we have∫

Δ

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(g(z, a)

)dA(z)

� K(1)

∫Δ(a, 1

e)

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qdA(z)

� K(1)

∫E(a, 1

e)

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qdA(z)

� CK(1)(1 − |a|2)np−p+q

∫E(a, 1

e)

∣∣f (n)(z)∣∣p dA(z)

� C(1 − |a|2)np−p+q+2∣∣f (n)(a)

∣∣p.

This means that (2.3) holds. �Lemma 5. [7, p. 758] Let 1 � k < ∞, μ > 0, δ > 0, and let h : (0,1) → [0,∞) be measurable.Then

1∫0

(1 − r)kμ−1

{ r∫0

(r − t)δ−1h(t) dt

}k

� C

1∫0

(1 − r)kμ+kδ−1hk(r) dr.

Lemma 6. [9, p. 626] Let f be analytic in Δ and 0 < r < 1.If p � 1, then

Mp(r,f ) � C

(∣∣f (0)∣∣ + r−1

r∫0

Mp(s,f ′) ds

). (2.5)

If 0 < p < 1, then

Mp(r,f ) � C

{∣∣f (0)∣∣ + r−1

( r∫0

(r − s)p−1Mpp (s, f ′) ds

) 1p}

. (2.6)

1222 H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

Lemma 7. Let 0 < p < ∞,−1 < q < ∞. Then there exists a constant C = C(p,q) such that∫Δ

∣∣f (z)∣∣p(

1 − |z|2)qK

(log

1

|z|)

dA(z)

� C

(∣∣f (0)∣∣p +

∫Δ

∣∣f ′(z)∣∣p(

1 − |z|2)p+qK

(log

1

|z|)

dA(z)

)

holds for all analytic functions f in Δ.

Proof. We first show that for all p,0 < p < ∞, we have the following estimate:

1∫0

(1 − r)q(Mp(r,f )

)pK

(log

1

r

)dr

� C

(∣∣f (0)∣∣p +

1∫0

(1 − r)p+q(Mp(r,f ′)

)pK

(log

1

r

)dr

),

which gives the proof of Lemma 7 by setting r = ρ2.To use (2.5) and (2.6) in our estimates, it is easy to see that the integrals

1∫0

(1 − r)q(Mp(r,f )

)pK

(log

1

r

)dr

and

1∫0

(1 − r)qrp(Mp(r,f )

)pK

(log

1

r

)dr

are comparable. For the case 1 � p < ∞, by (2.5) and Lemma 5,

1∫0

(1 − r)q(Mp(r,f )

)pK

(log

1

r

)dr

� C

{∣∣f (0)∣∣p +

1∫0

(1 − r)qK

(log

1

r

)( r∫0

Mp(s,f ′) ds

)p

dr

}

� C

{∣∣f (0)∣∣p +

1∫0

(1 − r)q

( r∫0

Mp(s,f ′)(

K

(log

1

s

))1/p

ds

)p

dr

}

� C

{∣∣f (0)∣∣p +

1∫0

(1 − r)p+q(Mp(r,f ′)

)pK

(log

1

r

)dr

}.

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228 1223

On the other hand, for the case 0 < p < 1, (2.6) and Lemma 5 give

1∫0

(1 − r)q(Mp(r,f )

)pK

(log

1

r

)dr

� C

{∣∣f (0)∣∣p +

1∫0

(1 − r)q

( r∫0

(r − s)p−1(Mp(s,f ′))p

ds

)K

(log

1

r

)dr

}

� C

{∣∣f (0)∣∣p +

1∫0

(1 − r)q

r∫0

(r − s)p−1(Mp(s,f ′))p

K

(log

1

s

)ds dr

}

� C

{∣∣f (0)∣∣p +

1∫0

(1 − r)p+q(Mp(r,f ′)

)pK

(log

1

r

)dr

}.

Thus, as we mentioned above the proof is complete. �3. The proof of Theorem 1

Our goal is to prove that

supa∈Δ

HK,p,q(f, a,n) < ∞ ⇔ supa∈Δ

HK,p,q(f, a,n + 1) < ∞. (3.1)

We write

HK,p,q(f, a,n + 1)

=∫Δ

∣∣f (n+1)(z)∣∣p(

1 − |z|2)np+qK

(g(z, a)

)dA(z)

=∫Δ

∣∣f (n+1)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np+q+2K

(log

1

|z|)

dA(z)

(1 − |z|2)2

=∫

|z|< 12

+∫

12 �|z|<1

{·}

= I1 + I2.

On one hand,

I1 =∫

|z|< 12

∣∣f (n+1)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np+q+2K

(log

1

|z|)

dA(z)

(1 − |z|2)2

� sup|z|< 1

2

∣∣f (n+1)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np+q+2∫

|z|< 12

K

(log

1

|z|)

dA(z)

(1 − |z|2)2

� C sup∣∣f (n+1)(a)

∣∣p(1 − |a|2)np+q+2

.

a∈Δ

1224 H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

By Lemma 4 and the following estimate (cf. [18]):

supa∈Δ

∣∣f (n)(a)∣∣p(

1 − |a|2)np−p+q+2 ≈ supa∈Δ

∣∣f (n+1)(a)∣∣p(

1 − |a|2)np+q+2, (3.2)

we have

I1 � C supa∈Δ

∣∣f (n)(a)∣∣p(

1 − |a|2)np−p+q+2 � supa∈Δ

HK,p,q(f, a,n).

On the other hand,

I2 =∫

12 �|z|<1

∣∣f (n+1)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np+q+2K

(log

1

|z|)

dA(z)

(1 − |z|2)2

= (1 − |a|2)np+q+2

∫12 �|z|<1

|f (n+1)(ϕa(z))|p|1 − az|2(np+q+2)

(1 − |z|2)np+q

K

(log

1

|z|)

dA(z).

Consider the function

g(z) = f (n)(ϕa(z))

(1 − az)2(np−p+q+2)

p

and then

(1 − |a|2)p|f (n+1)(ϕa(z))|p|1 − az|2(np+q+2)

� C

(∣∣g′(z)∣∣p + |f (n)(ϕa(z))|p

|1 − az|p+2(np−p+q+2)

).

Hence, by Lemma 3,

I2 � C(1 − |a|2)np−p+q+2

∫12 �|z|<1

(∣∣g′(z)∣∣p + |f (n)(ϕa(z))|p

|1 − az|p+2(np−p+q+2)

)

× (1 − |z|2)np+q

K

(log

1

|z|)

dA(z)

� C(1 − |a|2)np−p+q+2

∫Δ

∣∣g(z)∣∣p(

1 − |z|2)np−p+qK

(log

1

|z|)

dA(z)

+ (1 − |a|2)np−p+q+2

∫Δ

|f (n)(ϕa(z))|p(1 − |z|2)np+q

|1 − az|p+2(np−p+q+2)K

(log

1

|z|)

dA(z)

� C

∫Δ

∣∣f (n)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np−p+q+2K

(log

1

|z|)

dA(z)

(1 − |z|2)2

= CHK,p,q(f, a,n).

Combining above estimates for I1 and I2 we get

supa∈Δ

HK,p,q(f, a,n + 1) � C supa∈Δ

HK,p,q(f, a,n). (3.3)

Conversely, consider the function

g(z) = f (n)(ϕa(z))(1 − |a|2) np−p+q+2p

2(np−p+q+2)p

.

(1 − az)

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228 1225

Thus by Lemma 7,

HK,p,q(f, a,n)

=∫Δ

∣∣f (n)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np−p+q+2K

(log

1

|z|)

dA(z)

(1 − |z|2)2

=∫Δ

∣∣g(z)∣∣p(

1 − |z|2)np−p+qK

(log

1

|z|)

dA(z)

� C

(∣∣g(0)∣∣p +

∫Δ

∣∣g′(z)∣∣p(

1 − |z|2)np+qK

(log

1

|z|)

dA(z)

).

We finish the proof by showing

supa∈Δ

(∣∣g(0)∣∣p +

∫Δ

∣∣g′(z)∣∣p(

1 − |z|2)np+qK

(log

1

|z|)

dA(z)

)

� C supa∈Δ

HK,p,q(f, a,n + 1).

In fact, since∣∣g(0)∣∣p = ∣∣f (n)(a)

∣∣p(1 − |a|2)np−p+q+2

,

by Lemma 4 and the estimate (3.2) we have

supa∈Δ

∣∣g(0)∣∣p = sup

a∈Δ

∣∣f (n)(a)∣∣p(

1 − |a|2)np−p+q+2

≈ supa∈Δ

∣∣f (n+1)(a)∣∣p(

1 − |a|2)np+q+2

� C supa∈Δ

HK,p,q(f, a,n + 1).

Note that∫Δ

∣∣g′(z)∣∣p(

1 − |z|2)np+qK

(log

1

|z|)

dA(z) � J1 + J2,

where

J1 =∫Δ

|(f (n)(ϕa(z)))′|p

|1 − az|2(np−p+q+2)

(1 − |a|2)np−p+q+2(1 − |z|2)np+q

K

(log

1

|z|)

dA(z)

and

J2 =∫Δ

|f (n)(ϕa(z))|p(1 − |a|2)np−p+q+2

|1 − az|2(np−p+q+2)+p

(1 − |z|2)np+q

K

(log

1

|z|)

dA(z).

Obviously,

J1 � C

∫Δ

∣∣f (n+1)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np+q+2K

(log

1

|z|)

dA(z)

(1 − |z|2)2

= CHK,p,q(f, a,n + 1).

1226 H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

By Lemma 3 and the assumption (1.3) we have

J2 =∫Δ

|f (n)(ϕa(z))|p(1 − |a|2)np−p+q+2

|1 − az|2(np−p+q+2)+p

(1 − |z|2)np+q

K

(log

1

|z|)

dA(z)

=∫Δ

∣∣f (n)(ϕa(z)

)∣∣p(1 − ∣∣ϕa(z)

∣∣2)np−p+q+2 (1 − |z|2)p−2

|1 − az|p K

(log

1

|z|)

dA(z)

� supa∈Δ

{(1 − |a|2)np−p+q+2∣∣f (n)(a)

∣∣p}∫Δ

(1 − |z|2)p−2

|1 − az|p K

(log

1

|z|)

dA(z)

� C supa∈Δ

HK,p,q(f, a,n + 1).

Combining this and the estimate for J1 we obtain

supa∈Δ

HK,p,q(f, a,n) � C supa∈Δ

HK,p,q(f, a,n + 1), (3.4)

which together with (3.3) shows that (3.1) holds. Theorem 1 is proved.

4. The proof of Theorem 2

By Theorem A it suffices to prove that f ∈ QK(p,q) if and only if for any positive inte-ger n

supa∈Δ

∫Δ

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(1 − ∣∣ϕa(z)

∣∣2)dA(z) < ∞. (4.1)

We need only to prove by Theorem 1 that (4.1) is equivalent to

supa∈Δ

∫Δ

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(g(a, z)

)dA(z) < ∞. (4.2)

Indeed, since K is nondecreasing and the fact that 1 − t2 � 2 log 1t

for 0 < t � 1, (4.2) im-plies (4.1). We now show the converse. Let (4.1) hold and we divide the integral in (4.2) into twoparts on Δ(a, 1

4 ) = {z ∈ Δ: |ϕa(z)| � 14 } and Δ \ Δ(a, 1

4 ), respectively. Since

g(a, z) � 4(1 − ∣∣ϕa(z)

∣∣2),

∣∣ϕa(z)∣∣ � 1/4

and ∫Δ\Δ(a, 1

4 )

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(g(a, z)

)dA(z)

� C

∫Δ\Δ(a, 1

4 )

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(1 − ∣∣ϕa(z)

∣∣2)dA(z).

H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228 1227

On the other hand,∫Δ(a, 1

4 )

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(g(a, z)

)dA(z)

� supz∈Δ

(1 − |z|2)np−p+q+2∣∣f (n)(z)

∣∣p ∫Δ(a, 1

4 )

(1 − |z|2)−2

K(g(a, z)

)dA(z)

� supz∈Δ

(1 − |z|2)np−p+q+2∣∣f (n)(z)

∣∣p ∫Δ(0, 1

4 )

(1 − |z|2)−2

K(g(0, z)

)dA(z)

� C supz∈Δ

(1 − |z|2)np−p+q+2∣∣f (n)(z)

∣∣p.

Similar to the proof of Lemma 4 we have

supz∈Δ

(1 − |z|2)np−p+q+2∣∣f (n)(z)

∣∣p� C sup

a∈Δ

∫Δ

∣∣f (n)(z)∣∣p(

1 − |z|2)np−p+qK

(1 − ∣∣ϕa(z)

∣∣2)dA(z).

Hence, (4.1) implies (4.2). The proof is complete.

Acknowledgments

The authors thank the referees for their helpful comments.

References

[1] R. Aulaskari, P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function tobe normal, in: Complex Analysis and Its Applications, in: Pitman Res. Notes Math., vol. 305, Longman Scientific& Technical Harlow, 1994, pp. 136–146.

[2] R. Aulaskari, M. Nowak, R. Zhao, The nth derivative characterization of the Möbius bounded Dirichlet space, Bull.Austral. Math. Soc. 58 (1998) 43–56.

[3] M. Essén, H. Wulan, On analytic and meromorphic functions and spaces of QK type, Illinois J. Math. 46 (2002)1233–1258.

[4] M. Essén, H. Wulan, J. Xiao, Function-theoretic aspects of Möbius invariant QK spaces, J. Funct. Anal. 230 (2006)78–115.

[5] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1982.[6] P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.[7] T. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38

(1972) 746–765.[8] J. Rättyä, On some complex function spaces and classes, Fenn. Ann. Aced. Sci. Fenn. Math. Diss. 122, 2000.[9] J.H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of C

n ,Trans. Amer. Math. Soc. 328 (1991) 619–637.

[10] H. Wulan, P. Wu, Characterizations of QT spaces, J. Math. Anal. Appl. 254 (2001) 484–497.[11] H. Wulan, Möbius invariant Qp spaces: Results, techniques and questions, Adv. Math. (China) 34 (2005) 385–404.[12] H. Wulan, J. Zhou, QK type spaces of analytic functions, J. Funct. Spaces Appl. 4 (2006) 73–84.[13] H. Wulan, K. Zhu, QK spaces via higher order derivatives, Rocky Mountain J. Math., in press.[14] J. Xiao, Holomorphic Q Classes, Lecture Notes in Math., vol. 1767, Springer, Berlin, 2001.

1228 H. Wulan, J. Zhou / J. Math. Anal. Appl. 332 (2007) 1216–1228

[15] J. Xiao, Carleson measures, atomic decomposition and free interpolation from the Bloch space, Ann. Acad. Sci.Fenn. Ser. AI Math. 19 (1994) 35–46.

[16] R. Zhao, On a general family of function spaces, Fenn. Ann. Aced. Sci. Fenn. Math. Diss. 105, 1996.[17] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.[18] K. Zhu, Bloch type spaces of functions, Rocky Mountain J. Math. 23 (1993) 1143–1177.