27
The HAWC (High Altitude Water Cherenkov) Observatory

The HAWC ( High Altitude Water Cherenkov) Observatory

  • Upload
    bedros

  • View
    78

  • Download
    3

Embed Size (px)

DESCRIPTION

The HAWC ( High Altitude Water Cherenkov) Observatory. The HAWC Collaboration. Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE) : Alberto Carramiñana, Eduardo Mendoza, Luis Carrasco, William Wall, Daniel Rosa, Guillermo Tenorio Tagle, Sergey Silich - PowerPoint PPT Presentation

Citation preview

Page 1: The HAWC ( High Altitude Water Cherenkov) Observatory

The HAWC(High Altitude Water

Cherenkov) Observatory

Page 2: The HAWC ( High Altitude Water Cherenkov) Observatory

The HAWC CollaborationThe HAWC CollaborationUniversity of Maryland: Jordan Goodman, Andrew Smith,

Greg Sullivan, Jim Braun, David Berley

Los Alamos National Laboratory: Gus Sinnis, Brenda Dingus, John Pretz

University of Wisconsin: Teresa Montaruli, Stefan Westerhoff, Segev Ben Zvi, Juanan Aguilar, Dan Wahl

University of Utah: Dave Kieda, Wayne Springer

Univ. of California, Irvine: Gaurang Yodh’

Michigan State University: Jim Linnemann, Kirsten Tollefson, Dan Edmunds

George Mason University: Robert Ellsworth

Colorado State University: Miguel Mustafa, Dave Warner

University of New Hampshire: James Ryan

Pennsylvania State University: Tyce DeYoung, Patrick Toale, Kathryne Sparks

University of New Mexico: John Matthews, William Miller

Michigan Technical University: Petra Hüntemeyer

NASA/Goddard Space Flight Center: Julie McEnery, Elizabeth Hays, Vlasios Vasileiou

Georgia Institute of Technology: Ignacio Taboada, Andreas Tepe

HAWC Technical Staff: Michael Scheinder, Scott Delay

Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE): Alberto Carramiñana, Eduardo Mendoza, Luis Carrasco, William Wall, Daniel Rosa, Guillermo Tenorio Tagle, Sergey Silich

Universidad Nacional Autónoma de México (UNAM): Instituto de Astronomía: Octavio Valenzuela, V ladimir Avila-Reese, Marco Martos, Maria Magdalena Gonzalez, Sergio Mendoza, Dany Page, William Lee, Hector Hernández, Deborah Dultzin, Erika Benitez Instituto de Física: Arturo Menchaca, Rubén Alfaro, Varlen Grabski, Andres Sandoval, Ernesto Belmont. Arnulfo Matinez-Davalos Instituto de Ciencias Nucleares: Lukas Nellen, Gustavo Medina-Tanco, Juan Carlos D’Olivo Instituto de Geofísica: José Valdés Galicia, Alejandro Lara, Rogelio Caballero

Benemérita Universidad Autónoma de Puebla:Humberto Salazar, Arturo Fernández, Caupatitzio Ramirez, Oscar Martínez, Eduardo Moreno, Lorenzo Diaz, Alfonso Rosado,

Universidad Autónoma de Chiapas: Cesar Álvarez, Eli Santos Rodriguez, Omar Pedraza

Universidad de Guadalajara: Eduardo de la Fuente

Universidad Michoacana de San Nicolás de Hidalgo: Luis Villaseñor, Umberto Cotti, Ibrahim Torres, Juan Carlos Arteaga Velazquez

Centrode Investigacion y de Estudios Avanzados: Arnulfo Zepeda

Universidad de Guanajuato: David Delepine, Gerardo Moreno, Edgar Casimiro Linares, Marco Reyes, Luis Ureña, Mauro Napsuciale, Victor Migenes

USAMexico

Page 3: The HAWC ( High Altitude Water Cherenkov) Observatory

The HAWC CollaborationThe HAWC CollaborationUniversity of Maryland: Jordan Goodman, Andrew Smith,

Greg Sullivan, Jim Braun, David Berley

Los Alamos National Laboratory: Gus Sinnis, Brenda Dingus, John Pretz

University of Wisconsin: Teresa Montaruli, Stefan Westerhoff, Dan Wahl

University of Utah: Dave Kieda, Wayne Springer

Univ. of California, Irvine: Gaurang Yodh

Michigan State University: Jim Linnemann, Kirsten Tollefson, Dan Edmunds

George Mason University: Robert Ellsworth

University of New Hampshire: James Ryan

Pennsylvania State University: Tyce DeYoung, Patrick Toale, Kathryne Sparks

University of New Mexico: John Matthews, William Miller

Michigan Technical University: Petra Hüntemeyer

NASA/Goddard Space Flight Center: Julie McEnery, Elizabeth Hays, Vlasios Vasileiou

Georgia Institute of Technology: Ignacio Taboada, Andreas Tepe

HAWC Technical Staff: Michael Scheinder, Scott Delay

Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE): Alberto Carramiñana, Eduardo Mendoza, Luis Carrasco, William Wall, Daniel Rosa, Guillermo Tenorio Tagle, Sergey Silich

Universidad Nacional Autónoma de México (UNAM): Instituto de Astronomía: Octavio Valenzuela, V ladimir Avila-Reese, Marco Martos, Maria Magdalena Gonzalez, Sergio Mendoza, Dany Page, William Lee, Hector Hernández, Deborah Dultzin, Erika Benitez Instituto de Física: Arturo Menchaca, Rubén Alfaro, Varlen Grabski, Andres Sandoval, Ernesto Belmont. Arnulfo Matinez-Davalos Instituto de Ciencias Nucleares: Lukas Nellen, Gustavo Medina-Tanco, Juan Carlos D’Olivo Instituto de Geofísica: José Valdés Galicia, Alejandro Lara, Rogelio Caballero

Benemérita Universidad Autónoma de Puebla:Humberto Salazar, Arturo Fernández, Caupatitzio Ramirez, Oscar Martínez, Eduardo Moreno, Lorenzo Diaz, Alfonso Rosado,

Universidad Autónoma de Chiapas: Cesar Álvarez, Eli Santos Rodriguez, Omar Pedraza

Universidad de Guadalajara: Eduardo de la Fuente

Universidad Michoacana de San Nicolás de Hidalgo: Luis Villaseñor, Umberto Cotti, Ibrahim Torres, Juan Carlos Arteaga Velazquez

Centrode Investigacion y de Estudios Avanzados: Arnulfo Zepeda

Universidad de Guanajuato: David Delepine, Gerardo Moreno, Edgar Casimiro Linares, Marco Reyes, Luis Ureña, Mauro Napsuciale, Victor Migenes

USA Mexico

Page 4: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Collaboration April 2010

HAWC Science ObjectivesHAWC Science Objectives

• Discover the origin of cosmic rays by measuring gamma-ray spectra to 100 TeV

– Hadronic sources have unbroken spectra beyond 30-100 TeV– Galactic diffuse gamma rays probe the distant cosmic ray flux

• Understand particle acceleration in astrophysical jets with wide field of view, high duty factor observations.

– Trigger Multi-Messenger/Multi-Wavelength Observations of Flaring Active Galactic Nuclei (including TeV orphan flares)

– Detect Short and Long Gamma-Ray Bursts

• Explore new physics via HAWC’s unbiased survey of ½ the sky.

– Increase understanding of TeV sources to search for new physics.

– Study the local TeV cosmic rays and their anisotropy.

Page 5: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC ScienceHAWC Science

• Gamma Astronomy with wide FoV and high duty cycle:– Understand particle acceleration in AGN and GRB jets through the

discovery of short and long GRBs at > 100 GeV energies and

• MWL Target of Opportunity programs on flares;– Understand the sources of Galactic CRs through the observation of galactic

sources including extended ones (SNRs in molecular clouds, superbubbles)

• Studies on EBL and diffuse gamma emissions.

• Hadronic Astronomy:– find evidence of proton acceleration in Galactic CR sources (eg

understanding Milagro regions with larger statistics)

• Exotic phenomena– photon oscillations in axion-like particles through EBL studies;

– Lorentz invariance;

– Slow Monopoles and Q-balls.

Page 6: The HAWC ( High Altitude Water Cherenkov) Observatory

Comparison of Gamma-Ray Comparison of Gamma-Ray Detectors Detectors

Large Aperture/High Duty CycleMilagro, Tibet, ARGO, HAWC

Moderate Area

Excellent Background Rejection

Large Duty Cycle/Large Aperture

Unbiased Sky Survey

Extended sources

Transients (GRB’s) > 100 GeV

High Energies up to 100 TeV

Low Energy ThresholdEGRET/Fermi

Space-based (Small Area)

“Background Free”

Large Duty Cycle/Large Aperture

Sky Survey (< 10 GeV)

AGN Physics

Transients (GRBs) < 300 GeV

High SensitivityHESS, MAGIC, VERITAS

Large Effective Area

Excellent Background Rejection

Low Duty Cycle/Small Aperture

High Resolution Energy Spectra up to ~20 TeV

Studies of known sources

Surveys of limited regions of sky

Page 7: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Collaboration April 2010

Milagro and HAWCMilagro and HAWC• Milagro was a first generation wide-field gamma-ray telescope:

– Proposed in 1990

– Operations began in 2001/04

– Developed /h separation

• Discovered:• more than a dozen TeV sources

• diffuse TeV emission from the Galactic plane

• a surprising directional excess of cosmic rays

• Showed that most bright galactic GeV sources extend to the TeV

• Best instrument for hard spectrum and extended sources

• HAWC is the next logical step– It will be 15x more sensitive than Milagro

– It can be running in 3 yrs (with Fermi)

IntroIntro

Page 8: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Science ReviewsHAWC Science Reviews

• PASAG - October 2009 – HAWC is a moderate-priced initiative that will

carry out excellent astrophysics using a novel technique; there is also the possibility of surprising results of relevance for particle physics.

• NSF Review Panel December 2007: – “There is a strong case for HAWC as a wide

field of view survey instrument at the TeV scale.” They concluded the project is well understood and technically ready with a strong collaboration.

Page 9: The HAWC ( High Altitude Water Cherenkov) Observatory

Abdo et al. ApJL (accepted)arXiv:0904.1018

15 TeV associations out

of 35 likely galactic sources

in our field of view

Milagro Results

Page 10: The HAWC ( High Altitude Water Cherenkov) Observatory

GeV Pulsars Produce TeV PWNGeV Pulsars Produce TeV PWN

GeV Emission is pulsed & due to rotation axis misaligned with Magnetic Dipole of ~1012 G

TeV Emission is produced by particles further accelerated in the shock interacting

with the ambient medium.

IMPLICATIONS• TeV PWN are prevalent with GeV pulsars

• GeV emission has broad beam

Page 11: The HAWC ( High Altitude Water Cherenkov) Observatory

Geminga (J0634.0+1745)Geminga (J0634.0+1745)

• Brightest GeV source of 34 searched is Geminga

• Old (300 kyr) PWN and nearby (250 pc)

• ~10 parsec extent is similar to HESS observations of more distant PWN

10 parsecs

68% PSFMilagro

HAWC Milagro sees Geminga at 30% of the Crab at ~20 TeVwhile IACTs have a limit of ~1% of the Crab at >200 GeV

Page 12: The HAWC ( High Altitude Water Cherenkov) Observatory

Geminga with HAWCGeminga with HAWC

• Brightest GeV source of 34 searched is Geminga

• Old (300 kyr) PWN and nearby (250 pc)

• ~10 parsec extent is similar to HESS observations of more distant PWN

10 parsecs

Milagro sees Geminga at 30% of the Crab at ~20 TeVwhile IACTs have a limit of ~1% of the Crab at >200 GeV

HAWC

68% PSFMilagro

Page 13: The HAWC ( High Altitude Water Cherenkov) Observatory

Milagro Spectrum of the CrabMilagro Spectrum of the Crab

HESS Crab data/fit

Energy reach from ~3TeV to >100 TeVPeak sensitivity for E-2 source at ~100 TeV

Milagro68%

HAWC

Milagro Results

Page 14: The HAWC ( High Altitude Water Cherenkov) Observatory

Milagro Spectrum of the Crab w/HAWCMilagro Spectrum of the Crab w/HAWC

Energy reach from ~3TeV to >100 TeVPeak sensitivity for E-2 source at ~100 TeV

Milagro68%

HAWC

HEGRA Crab data/fit

Page 15: The HAWC ( High Altitude Water Cherenkov) Observatory

In Milagro J2019+37 is 700 mCrabThe flux in γ/s >200 GeV is 95mCrab

HESS Crab fit:(Io =3.76x10-7,Γ=2.39,Ec=14.1 TeV)

MGRO J2019+37/ 0FGL J2020.8+3649MGRO J2019+37/ 0FGL J2020.8+3649

Milagro68%

HAWC

Milagro Results

This source is almost as bright as the Crab at Milagro’s energy

Page 16: The HAWC ( High Altitude Water Cherenkov) Observatory

In Milagro J2019+37 is 700 mCrabThe flux in γ/s >200 GeV is 95mCrab

HESS Crab fit:(Io =3.76x10-7,Γ=2.39,Ec=14.1 TeV)

MGRO J2019+37/ 0FGL J2020.8+3649MGRO J2019+37/ 0FGL J2020.8+3649

Milagro68%

HAWC

Page 17: The HAWC ( High Altitude Water Cherenkov) Observatory

MGRO J1908+06MGRO J1908+06

Ecut 14 40 (1σ56 (2σ

Milagro68%

HAWC

Milagro Results

A Milagro discovered source now seen by HESS and VERITASUsing HESS spectrum of -2.1 as input, Milagro requires a cut-off at <40(56) TeV(N.B. Milagro measures a larger flux, possibly because we are integrating over a larger area than HESS)

Page 18: The HAWC ( High Altitude Water Cherenkov) Observatory

Milagro 3Milagro 3σσ source detected at 20 source detected at 20σσ HAWC (3months) HAWC (3months)HAWC Simulation

Page 19: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Simulation

Milagro 3Milagro 3σσ source detected at 20 source detected at 20σσ HAWC (3months) HAWC (3months)

Page 20: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Simulation

Milagro 3Milagro 3σσ source detected at 20 source detected at 20σσ HAWC (3months) HAWC (3months)

Page 21: The HAWC ( High Altitude Water Cherenkov) Observatory

Diffuse TeV ExcessDiffuse TeV Excess• Whether or not there is a GeV excess, Milagro sees a TeV excess.

• This excess could be due to unresolved sources or hadronic cosmic rays hitting matter near their source.

• If the TeV excess has a flat spectrum, it is likely hadronic in origin and may not be detectable at GeV energies.

– With help from ACTs and Fermi we will do a source subtraction

– This will allow us to measure the spectrum and morphology of the excess

• This study could point to regionsof the galaxy with a higher concentration of cosmic raysthan near earth - pointing to sites of acceleration.

Abdo et. al ApJ 2008

Milagro Results

Page 22: The HAWC ( High Altitude Water Cherenkov) Observatory

Active Galactic Nuclei Flares Active Galactic Nuclei Flares

• HAWC makes daily observations without weather, moon, or solar constraints. • HAWC’s 5 σ sensitivity for Mrk 421 is (10,1,0.1) Crab in (3 min, 5 hrs, 1/3 yr)

• HAWC will notify multiwavelength observers in real time of flaring AGN• Study correlations with x-rays, etc to determine emission mechanisms

• Discovery potential for orphan TeV flares producing neutrinos and UHECR

1 month

Milagro’s 9σ Mrk421

X-ray flux

Mila

gro

flux

Quadratic or Linear? Synchrotron Self

Compton or External Compton?

Crab Flux

Page 23: The HAWC ( High Altitude Water Cherenkov) Observatory

Distinguishing New Physics from AstrophysicsDistinguishing New Physics from Astrophysics

• Violation of Lorentz Invariance OR Energy Dependent Particle Acceleration– HAWC will detect multiple flaring extragalactic sources (AGN and

GRBs) to resolve redshift vs source mechanisms

• Cosmological Star Formation OR Spectral Cut-offs in the source– HAWC will trigger multiwavelength observations of flaring AGN to

obtain best measured and modeled TeV spectra

• Continuum Gamma-Ray Emission from Dark Matter Annihilation OR Astrophysical Source– HAWC will search for time variability which would imply an

astrophysical source

Page 24: The HAWC ( High Altitude Water Cherenkov) Observatory

Cosmic Ray ObservationsCosmic Ray Observations

• Milagro data show an unexpected anisotropy (PRL 101, 221101, 2008)

• No weighting or cutting.

• Map dominated by charged cosmic rays.

• 10o smoothing, looking for intermediate sized features.

• Two regions of excess 15.0σ and 12.7σ. Fractional excess of 6x10-4 (4x10-4) for region A(B).

HeliotailGeminga

Significance (σ’s)

Milagro Results

Page 25: The HAWC ( High Altitude Water Cherenkov) Observatory

21http://people.roma2.infn.it/~aldo/RICAP09_trasp_Web/Vernetto_ARGO_RICAP09ar.pdf

Milagro Results

Page 26: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Collaboration April 2010

Cosmic Ray AnisotropyCosmic Ray Anisotropy

• Data are not consistent with:– Mostly gamma-rays –> data looks hadronic

– with cosmic ray spectrum –> flatter, with ~10 TeV cutoff

• HAWC with better energy resolution and gamma-hadron rejection can:– Measure the spectrum with much higher precision

– Measure the gamma-ray fraction

• Understanding this is important for Dark Matter Searches

Milagro Results

Page 27: The HAWC ( High Altitude Water Cherenkov) Observatory

HAWC Collaboration April 2010

Geminga as a Local Cosmic Ray SourceGeminga as a Local Cosmic Ray Source

• “If the observed cosmic ray excess does indeed arise from the Geminga SN explosion, the long–sought “smoking gun” connecting cosmic rays with supernovae would finally be at hand. - Salvati and Sacco (AA 09)

• The confirmed presence of a nearby, ancient source of high-energy electrons and positrons immediately suggests an explanation for the positron excess.

-Yüksel, Kistler, Stanev

arXiv:0810.2784

PAMELA’s positron excess

Fit well given Milagro’s flux from Geminga