42
The Crepant Resolution Conjecture. Examples Local P(1, 2) The Gromov-Witten potential of the local P(1, 2) Gueorgui Todorov University of Utah Recent Progress on the Moduli Space of Curves, BIRS Gueorgui Todorov Local P(1, 2)

The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

The Gromov-Witten potential of the localP(1, 2)

Gueorgui Todorov

University of Utah

Recent Progress on the Moduli Space of Curves, BIRS

Gueorgui Todorov Local P(1, 2)

Page 2: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Outline

1 The Crepant Resolution Conjecture.Motivations and originsGromov-Witten invariantsVersions of the Conjecture

2 ExamplesC

2/Z2

C2/Z3

3 Local P(1, 2)Set-upThe invariantsPositive degreeThe Potential

Gueorgui Todorov Local P(1, 2)

Page 3: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Physics

McKay Philosophy“Geometry on a quotient orbifold [X/G] (that is theG-equivariant geometry on X ) is equivalent to geometry on acrepant resolution Y of X/G”

Physics“Propagating strings can’t tell the difference between anorbifold and its crepant resolution”

Gueorgui Todorov Local P(1, 2)

Page 4: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Physics

McKay Philosophy“Geometry on a quotient orbifold [X/G] (that is theG-equivariant geometry on X ) is equivalent to geometry on acrepant resolution Y of X/G”

Physics“Propagating strings can’t tell the difference between anorbifold and its crepant resolution”

Gueorgui Todorov Local P(1, 2)

Page 5: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten invariants

The Gromov-Witten invariants of a projective manifold Y are

multilinear functions 〈...〉Yg,β on its cohomology H∗(Y ).

involve integrals over the space of stable maps Mg,n(Y , β)

The Gromov-Witten invariants of an orbifold X are

multilinear functions 〈...〉Xg,β of the orbifold cohomologyH∗

orb(X ).

involve integrals over the space of twisted stable mapsMg,n(X , β)

Gueorgui Todorov Local P(1, 2)

Page 6: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten invariants

The Gromov-Witten invariants of a projective manifold Y are

multilinear functions 〈...〉Yg,β on its cohomology H∗(Y ).

involve integrals over the space of stable maps Mg,n(Y , β)

The Gromov-Witten invariants of an orbifold X are

multilinear functions 〈...〉Xg,β of the orbifold cohomologyH∗

orb(X ).

involve integrals over the space of twisted stable mapsMg,n(X , β)

Gueorgui Todorov Local P(1, 2)

Page 7: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten invariants

The Gromov-Witten invariants of a projective manifold Y are

multilinear functions 〈...〉Yg,β on its cohomology H∗(Y ).

involve integrals over the space of stable maps Mg,n(Y , β)

The Gromov-Witten invariants of an orbifold X are

multilinear functions 〈...〉Xg,β of the orbifold cohomologyH∗

orb(X ).

involve integrals over the space of twisted stable mapsMg,n(X , β)

Gueorgui Todorov Local P(1, 2)

Page 8: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten invariants

The Gromov-Witten invariants of a projective manifold Y are

multilinear functions 〈...〉Yg,β on its cohomology H∗(Y ).

involve integrals over the space of stable maps Mg,n(Y , β)

The Gromov-Witten invariants of an orbifold X are

multilinear functions 〈...〉Xg,β of the orbifold cohomologyH∗

orb(X ).

involve integrals over the space of twisted stable mapsMg,n(X , β)

Gueorgui Todorov Local P(1, 2)

Page 9: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten invariants

The Gromov-Witten invariants of a projective manifold Y are

multilinear functions 〈...〉Yg,β on its cohomology H∗(Y ).

involve integrals over the space of stable maps Mg,n(Y , β)

The Gromov-Witten invariants of an orbifold X are

multilinear functions 〈...〉Xg,β of the orbifold cohomologyH∗

orb(X ).

involve integrals over the space of twisted stable mapsMg,n(X , β)

Gueorgui Todorov Local P(1, 2)

Page 10: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Ruan’s first version

Let X be a Gorenstein orbifold satisfying the hard Lefschetzcondition and admitting a crepant resolution Y .

ConjectureYongbin Ruan (2002)

There is an isomorphism between H∗(Y ) and H∗

orb(X ) thatidentifies the Gromov-Witten theories.

Gueorgui Todorov Local P(1, 2)

Page 11: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Ruan’s first version

Let X be a Gorenstein orbifold satisfying the hard Lefschetzcondition and admitting a crepant resolution Y .

ConjectureYongbin Ruan (2002)

There is an isomorphism between H∗(Y ) and H∗

orb(X ) thatidentifies the Gromov-Witten theories.

Gueorgui Todorov Local P(1, 2)

Page 12: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten Potential

1 Let {β1, . . . , βr} be a positive basis of H2(Y ). Encodegenus zero Gromov-Witten invariants of Y in the Potentialfunction

F Y (y0, . . . , ya, q1, . . . , qr ) =

∞∑

n0,...,na=0

β

γn00 · · · γna

a

⟩Yβ

yn00

n0!· · · yna

a

na!qd1

1 · · ·qdrr

where β = d1β1 + · · · + drβr is summed over allnon-negative β.

2 Analogously for an orbifold X can define a FX .

Gueorgui Todorov Local P(1, 2)

Page 13: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Gromov-Witten Potential

1 Let {β1, . . . , βr} be a positive basis of H2(Y ). Encodegenus zero Gromov-Witten invariants of Y in the Potentialfunction

F Y (y0, . . . , ya, q1, . . . , qr ) =

∞∑

n0,...,na=0

β

γn00 · · · γna

a

⟩Yβ

yn00

n0!· · · yna

a

na!qd1

1 · · ·qdrr

where β = d1β1 + · · · + drβr is summed over allnon-negative β.

2 Analogously for an orbifold X can define a FX .

Gueorgui Todorov Local P(1, 2)

Page 14: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Bryan-Graber’s precise version

ConjectureBryan-Graber (2005)

The orbifold Gromov-Witten potential FX is equal to the(ordinary) Gromov-Witten potential FY of a crepant resolutionafter a change of variables induced by:

a linear isomorphism

L : H∗

orb(X ) → H∗(Y );

an analytic continuation of the potential to a specializationof the excess quantum parameters (on the resolution side)to roots of unity.

Gueorgui Todorov Local P(1, 2)

Page 15: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Bryan-Graber’s precise version

ConjectureBryan-Graber (2005)

The orbifold Gromov-Witten potential FX is equal to the(ordinary) Gromov-Witten potential FY of a crepant resolutionafter a change of variables induced by:

a linear isomorphism

L : H∗

orb(X ) → H∗(Y );

an analytic continuation of the potential to a specializationof the excess quantum parameters (on the resolution side)to roots of unity.

Gueorgui Todorov Local P(1, 2)

Page 16: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Motivations and originsGromov-Witten invariantsVersions of the Conjecture

Bryan-Graber’s precise version

ConjectureBryan-Graber (2005)

The orbifold Gromov-Witten potential FX is equal to the(ordinary) Gromov-Witten potential FY of a crepant resolutionafter a change of variables induced by:

a linear isomorphism

L : H∗

orb(X ) → H∗(Y );

an analytic continuation of the potential to a specializationof the excess quantum parameters (on the resolution side)to roots of unity.

Gueorgui Todorov Local P(1, 2)

Page 17: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

C2/Z2

C2/Z3

The first example (Bryan-Graber)

For the pair:

X = [C2/Z2] Y = OP1(−2)

FXxxx = −1

2 tan( x

2

)

F Yst =

d1

d3 edyqd

After the change of variables:

y = ixq = −1

We have that

F Yxxx =

12i

[

1 − eix

1 + eix

]

Gueorgui Todorov Local P(1, 2)

Page 18: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

C2/Z2

C2/Z3

The first example (Bryan-Graber)

For the pair:

X = [C2/Z2] Y = OP1(−2)

FXxxx = −1

2 tan( x

2

)

F Yst =

d1

d3 edyqd

After the change of variables:

y = ixq = −1

We have that

F Yxxx =

12i

[

1 − eix

1 + eix

]

Gueorgui Todorov Local P(1, 2)

Page 19: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

C2/Z2

C2/Z3

Another example (Bryan-Graber-Pandharipande)

X = [C2/Z3] Y = two −2 curves

The third derivatives of the Potential for XSum of tan

The third derivatives of the Potential for Y

Sum of expChange of variables:

y0 = x0

y1 =i√3

(ωx1 + ωx2)

y2 =i√3

(ωx1 + ωx2)

qi = ω

Gueorgui Todorov Local P(1, 2)

Page 20: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Intermediate case

Let Z be the weighted blow-up of C2/Z3 at the origin with

weights one and two.1 Z ∼= O(KP(1,2)) is Local P(1, 2)

2 Z is not a global quotient3 Possible insertions

The fundamental class 1 with dual z0

Divisorial class H with dual z1

Stacky class S with dual z2

Gueorgui Todorov Local P(1, 2)

Page 21: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Intermediate case

Let Z be the weighted blow-up of C2/Z3 at the origin with

weights one and two.1 Z ∼= O(KP(1,2)) is Local P(1, 2)

2 Z is not a global quotient3 Possible insertions

The fundamental class 1 with dual z0

Divisorial class H with dual z1

Stacky class S with dual z2

Gueorgui Todorov Local P(1, 2)

Page 22: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Intermediate case

Let Z be the weighted blow-up of C2/Z3 at the origin with

weights one and two.1 Z ∼= O(KP(1,2)) is Local P(1, 2)

2 Z is not a global quotient3 Possible insertions

The fundamental class 1 with dual z0

Divisorial class H with dual z1

Stacky class S with dual z2

Gueorgui Todorov Local P(1, 2)

Page 23: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Intermediate case

Let Z be the weighted blow-up of C2/Z3 at the origin with

weights one and two.1 Z ∼= O(KP(1,2)) is Local P(1, 2)

2 Z is not a global quotient3 Possible insertions

The fundamental class 1 with dual z0

Divisorial class H with dual z1

Stacky class S with dual z2

Gueorgui Todorov Local P(1, 2)

Page 24: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Intermediate case

Let Z be the weighted blow-up of C2/Z3 at the origin with

weights one and two.1 Z ∼= O(KP(1,2)) is Local P(1, 2)

2 Z is not a global quotient3 Possible insertions

The fundamental class 1 with dual z0

Divisorial class H with dual z1

Stacky class S with dual z2

Gueorgui Todorov Local P(1, 2)

Page 25: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Intermediate case

Let Z be the weighted blow-up of C2/Z3 at the origin with

weights one and two.1 Z ∼= O(KP(1,2)) is Local P(1, 2)

2 Z is not a global quotient3 Possible insertions

The fundamental class 1 with dual z0

Divisorial class H with dual z1

Stacky class S with dual z2

Gueorgui Todorov Local P(1, 2)

Page 26: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Degree zero

Given by the triple intersection in (equivariant) cohomology

〈a, b, c〉0 =

Z

Za ∪ b ∪ c

which are computed by Atiyah-Bott localization formula. Except the degreezero invariant with all stacky insertions. We have

˙

Sn¸

0= −

Z

Admg

2→0,(t1,...,t2g+2)

λgλg−1.

Theorem

Faber and Pandharipande (Bryan and Pandharipande, and also Bertram,Cavalieri, –) If G is the contribution to the potential then we have that

G′′′ =12

tan“ z2

2

.

Gueorgui Todorov Local P(1, 2)

Page 27: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Degree zero

Given by the triple intersection in (equivariant) cohomology

〈a, b, c〉0 =

Z

Za ∪ b ∪ c

which are computed by Atiyah-Bott localization formula. Except the degreezero invariant with all stacky insertions. We have

˙

Sn¸

0= −

Z

Admg

2→0,(t1,...,t2g+2)

λgλg−1.

Theorem

Faber and Pandharipande (Bryan and Pandharipande, and also Bertram,Cavalieri, –) If G is the contribution to the potential then we have that

G′′′ =12

tan“ z2

2

.

Gueorgui Todorov Local P(1, 2)

Page 28: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Degree zero

Given by the triple intersection in (equivariant) cohomology

〈a, b, c〉0 =

Z

Za ∪ b ∪ c

which are computed by Atiyah-Bott localization formula. Except the degreezero invariant with all stacky insertions. We have

˙

Sn¸

0= −

Z

Admg

2→0,(t1,...,t2g+2)

λgλg−1.

Theorem

Faber and Pandharipande (Bryan and Pandharipande, and also Bertram,Cavalieri, –) If G is the contribution to the potential then we have that

G′′′ =12

tan“ z2

2

.

Gueorgui Todorov Local P(1, 2)

Page 29: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Degree zero

Given by the triple intersection in (equivariant) cohomology

〈a, b, c〉0 =

Z

Za ∪ b ∪ c

which are computed by Atiyah-Bott localization formula. Except the degreezero invariant with all stacky insertions. We have

˙

Sn¸

0= −

Z

Admg

2→0,(t1,...,t2g+2)

λgλg−1.

Theorem

Faber and Pandharipande (Bryan and Pandharipande, and also Bertram,Cavalieri, –) If G is the contribution to the potential then we have that

G′′′ =12

tan“ z2

2

.

Gueorgui Todorov Local P(1, 2)

Page 30: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Reductions

Use the Euler sequence on P(1, 2) to reduce from Z to the totalspace of a CY threefold Z ′ = L1 ⊕ L2 (the total space of abundle over P(1, 2)).The image of non-constant maps to Z ′ must lie in the zerosection E ∼= P(1, 2). We can identify

M0,n(Z′, d [E ]) ∼= M0,n(P(1, 2), d)

BUT keep in mind the difference of virtual fundamental classesgiven by

e(R•π∗f ∗NE/Z ) = e(R•π∗f ∗L1 ⊕ L2)

where f and π are the universal map and family.

Gueorgui Todorov Local P(1, 2)

Page 31: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Reductions

Use the Euler sequence on P(1, 2) to reduce from Z to the totalspace of a CY threefold Z ′ = L1 ⊕ L2 (the total space of abundle over P(1, 2)).The image of non-constant maps to Z ′ must lie in the zerosection E ∼= P(1, 2). We can identify

M0,n(Z′, d [E ]) ∼= M0,n(P(1, 2), d)

BUT keep in mind the difference of virtual fundamental classesgiven by

e(R•π∗f ∗NE/Z ) = e(R•π∗f ∗L1 ⊕ L2)

where f and π are the universal map and family.

Gueorgui Todorov Local P(1, 2)

Page 32: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Reductions

Use the Euler sequence on P(1, 2) to reduce from Z to the totalspace of a CY threefold Z ′ = L1 ⊕ L2 (the total space of abundle over P(1, 2)).The image of non-constant maps to Z ′ must lie in the zerosection E ∼= P(1, 2). We can identify

M0,n(Z′, d [E ]) ∼= M0,n(P(1, 2), d)

BUT keep in mind the difference of virtual fundamental classesgiven by

e(R•π∗f ∗NE/Z ) = e(R•π∗f ∗L1 ⊕ L2)

where f and π are the universal map and family.

Gueorgui Todorov Local P(1, 2)

Page 33: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Odd d case

Problem 1

The moduli spaces M0,n(P(1, 2), d) are very complicated.

Solution: Use localization under a lifting of a C∗ action on

P(1, 2).

Problem 2

The fixed loci are very complicated.

Solution: Use different lifting of the action to L1 ⊕ L2 to reduceto a single fixed loci.

Gueorgui Todorov Local P(1, 2)

Page 34: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Odd d case

Problem 1

The moduli spaces M0,n(P(1, 2), d) are very complicated.

Solution: Use localization under a lifting of a C∗ action on

P(1, 2).

Problem 2

The fixed loci are very complicated.

Solution: Use different lifting of the action to L1 ⊕ L2 to reduceto a single fixed loci.

Gueorgui Todorov Local P(1, 2)

Page 35: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Odd d case

Problem 1

The moduli spaces M0,n(P(1, 2), d) are very complicated.

Solution: Use localization under a lifting of a C∗ action on

P(1, 2).

Problem 2

The fixed loci are very complicated.

Solution: Use different lifting of the action to L1 ⊕ L2 to reduceto a single fixed loci.

Gueorgui Todorov Local P(1, 2)

Page 36: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Odd d case

Problem 1

The moduli spaces M0,n(P(1, 2), d) are very complicated.

Solution: Use localization under a lifting of a C∗ action on

P(1, 2).

Problem 2

The fixed loci are very complicated.

Solution: Use different lifting of the action to L1 ⊕ L2 to reduceto a single fixed loci.

Gueorgui Todorov Local P(1, 2)

Page 37: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Odd d case

Problem 1

The moduli spaces M0,n(P(1, 2), d) are very complicated.

Solution: Use localization under a lifting of a C∗ action on

P(1, 2).

Problem 2

The fixed loci are very complicated.

Solution: Use different lifting of the action to L1 ⊕ L2 to reduceto a single fixed loci.

Gueorgui Todorov Local P(1, 2)

Page 38: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Odd d case

Problem 1

The moduli spaces M0,n(P(1, 2), d) are very complicated.

Solution: Use localization under a lifting of a C∗ action on

P(1, 2).

Problem 2

The fixed loci are very complicated.

Solution: Use different lifting of the action to L1 ⊕ L2 to reduceto a single fixed loci.

Gueorgui Todorov Local P(1, 2)

Page 39: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

...and the winner is...

Reduce everything to computing integrals of the type∫

Admg

d→0,(t1,...,t2g+2)

λgλg−iψi−1d i−1

which in generating function by Cavalieri contributes

cos2d(z2

2

)

.

Gueorgui Todorov Local P(1, 2)

Page 40: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

The Potential

Theorem

F Z =z3

0

36t1t2+

2t1 + t212t1t2

z20 z1 +

(t1 − t2)(4t1 − t2)3tt t2

z0z21

+14

z0z22 +

t2 − t14

z1z22 +

(t1 − t2)3(8t1 + t2)36t1t2

z31 − (2t1 + t2)G

+(2t1 + t2)X

d odd

14d2

(d − 2)!!

(d − 1)!!edz1 qd

Z

cos2d“ z2

2

dz2

+(2t1 + t2)X

d even

12d3

edZ1 qd.

where G′′′ = 12 tan( z2

2 ).

Gueorgui Todorov Local P(1, 2)

Page 41: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

But the third partial derivatives...

After analytic continuation and specialization we have

F Zz1z1z2

=α√

1 + α2,

whereα = ez1 cos2

(z2

2

)

.

Gueorgui Todorov Local P(1, 2)

Page 42: The Gromov-Witten potential of the local P(1,2)todorov/banff.pdfThe Crepant Resolution Conjecture. Examples Local P(1,2) The Gromov-Witten potential of the local P(1,2) Gueorgui Todorov

The Crepant Resolution Conjecture.Examples

Local P(1, 2)

Set-upThe invariantsPositive degreeThe Potential

Gueorgui Todorov Local P(1, 2)