95
Introduction I Preliminaries II D´ efinition III The category F iso IV Study of standard projective objects The functor category F quad associated to quadratic spaces over F 2 Christine VESPA University Paris 13 June 26, 2006 1 / 28

The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Embed Size (px)

Citation preview

Page 1: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The functor category Fquad associated toquadratic spaces over F2

Christine VESPA

University Paris 13

June 26, 2006

1 / 28

Page 2: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Motivation : The category F

Definition

F = Funct(E f , E)

E : category of F2-vector spacesE f : category of finite dimensional F2-vector spaces

The category F is closely related to general linear groups over F2

Example : Evaluation functors

FEn // F2[GLn]−mod

F� // F (F2

n)

2 / 28

Page 3: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Motivation : The category F

Definition

F = Funct(E f , E)

E : category of F2-vector spacesE f : category of finite dimensional F2-vector spaces

The category F is closely related to general linear groups over F2

Example : Evaluation functors

FEn // F2[GLn]−mod

F� // F (F2

n)

2 / 28

Page 4: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Motivation : The category F

Definition

F = Funct(E f , E)

E : category of F2-vector spacesE f : category of finite dimensional F2-vector spaces

The category F is closely related to general linear groups over F2

Example : Evaluation functors

FEn // F2[GLn]−mod

F� // F (F2

n)

2 / 28

Page 5: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

F and the stable cohomology of general linear groups

Let P and Q be two objects of F = Fonct(E f , E)

Ext∗F (P,Q)E∗n−−→ Ext∗F2[GLn]−mod(P(F2

n),Q(F2n))

= H∗(GLn,Hom(P(F2n),Q(F2

n)))

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

. . .→ H∗(GLn,Hom(P(F2n),Q(F2

n)))

→ H∗(GLn+1,Hom(P(F2n+1),Q(F2

n+1)))→ . . .

stabilizes. We denote by H∗(GL,Hom(P,Q)) the stable value.

Theorem (Suslin)

Ext∗F (P,Q)'−→ H∗(GL,Hom(P,Q))

for P and Q finite

3 / 28

Page 6: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

F and the stable cohomology of general linear groups

Let P and Q be two objects of F = Fonct(E f , E)

Ext∗F (P,Q)E∗n−−→ Ext∗F2[GLn]−mod(P(F2

n),Q(F2n))

= H∗(GLn,Hom(P(F2n),Q(F2

n)))

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

. . .→ H∗(GLn,Hom(P(F2n),Q(F2

n)))

→ H∗(GLn+1,Hom(P(F2n+1),Q(F2

n+1)))→ . . .

stabilizes. We denote by H∗(GL,Hom(P,Q)) the stable value.

Theorem (Suslin)

Ext∗F (P,Q)'−→ H∗(GL,Hom(P,Q))

for P and Q finite

3 / 28

Page 7: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

F and the stable cohomology of general linear groups

Let P and Q be two objects of F = Fonct(E f , E)

Ext∗F (P,Q)E∗n−−→ Ext∗F2[GLn]−mod(P(F2

n),Q(F2n))

= H∗(GLn,Hom(P(F2n),Q(F2

n)))

Theorem (Dwyer)

If P and Q are finite (i.e. admit finite composition series),

. . .→ H∗(GLn,Hom(P(F2n),Q(F2

n)))

→ H∗(GLn+1,Hom(P(F2n+1),Q(F2

n+1)))→ . . .

stabilizes. We denote by H∗(GL,Hom(P,Q)) the stable value.

Theorem (Suslin)

Ext∗F (P,Q)'−→ H∗(GL,Hom(P,Q))

for P and Q finite

3 / 28

Page 8: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Aim

H : F2-vector space equipped with a non-degenerate quadratic form

O(H) ⊂ GLdim(H)

Aim : Construct a “good” category Fquad related to orthogonal groupsover F2

FquadEH // F2[O(H)]−mod

F� // F (H)

4 / 28

Page 9: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Aim

H : F2-vector space equipped with a non-degenerate quadratic form

O(H) ⊂ GLdim(H)

Aim : Construct a “good” category Fquad related to orthogonal groupsover F2

FquadEH // F2[O(H)]−mod

F� // F (H)

4 / 28

Page 10: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Preliminaries

V : finite F2-vector space

Definition

A quadratic form over V is a function q : V → F2 such that

B(x , y) = q(x + y) + q(x) + q(y)

defines a bilinear form

Remark

The bilinear form B does not determine the quadratic form q

Definition

A quadratic space (V , qV ) is non-degenerate if the associated bilinearform is non singular

5 / 28

Page 11: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Properties of quadratic forms over F2

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms

A space V equipped with a non-singular alternating bilinear form admitsa symplectic basei.e.{a1, b1, . . . , an, bn} with B(ai , bj) = δi,j and B(ai , aj) = B(bi , bj) = 0

Consequence :

A non-degenerate quadratic space (V , qV ) has even dimension

6 / 28

Page 12: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Properties of quadratic forms over F2

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms

A space V equipped with a non-singular alternating bilinear form admitsa symplectic basei.e.{a1, b1, . . . , an, bn} with B(ai , bj) = δi,j and B(ai , aj) = B(bi , bj) = 0

Consequence :

A non-degenerate quadratic space (V , qV ) has even dimension

6 / 28

Page 13: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Properties of quadratic forms over F2

Lemma

The bilinear form associated to a quadratic form is alternating

Classification of non-singular alternating bilinear forms

A space V equipped with a non-singular alternating bilinear form admitsa symplectic basei.e.{a1, b1, . . . , an, bn} with B(ai , bj) = δi,j and B(ai , aj) = B(bi , bj) = 0

Consequence :

A non-degenerate quadratic space (V , qV ) has even dimension

6 / 28

Page 14: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Classification of non-degenerate quadratic forms over F2

In dimension 2

There are two non-isometric quadratic spaces

q0 : H0 → F2

a0 7→ 0b0 7→ 0

a0 + b0 7→ 1

q1 : H1 → F2

a1 7→ 1b1 7→ 1

a1 + b1 7→ 1

Proposition

H0⊥H0 ' H1⊥H1

In dimension 2m

There are two non-isometric quadratic spaces

H⊥m0 and H

⊥(m−1)0 ⊥H1

7 / 28

Page 15: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Classification of non-degenerate quadratic forms over F2

In dimension 2

There are two non-isometric quadratic spaces

q0 : H0 → F2

a0 7→ 0b0 7→ 0

a0 + b0 7→ 1

q1 : H1 → F2

a1 7→ 1b1 7→ 1

a1 + b1 7→ 1

Proposition

H0⊥H0 ' H1⊥H1

In dimension 2m

There are two non-isometric quadratic spaces

H⊥m0 and H

⊥(m−1)0 ⊥H1

7 / 28

Page 16: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Classification of non-degenerate quadratic forms over F2

In dimension 2

There are two non-isometric quadratic spaces

q0 : H0 → F2

a0 7→ 0b0 7→ 0

a0 + b0 7→ 1

q1 : H1 → F2

a1 7→ 1b1 7→ 1

a1 + b1 7→ 1

Proposition

H0⊥H0 ' H1⊥H1

In dimension 2m

There are two non-isometric quadratic spaces

H⊥m0 and H

⊥(m−1)0 ⊥H1

7 / 28

Page 17: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Eq

Definition of EqOb(Eq) : non-degenerate quadratic spaces (V , qV )

morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace F = Func(E f , E) by Func(Eq, E)

Proposition

Any morphism of Eq is a monomorphism

Eq does not have enough morphisms : the category Func(Eq, E) doesnot have good properties

we seek to add orthogonal projections formally to Eq

8 / 28

Page 18: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Eq

Definition of EqOb(Eq) : non-degenerate quadratic spaces (V , qV )

morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace F = Func(E f , E) by Func(Eq, E)

Proposition

Any morphism of Eq is a monomorphism

Eq does not have enough morphisms : the category Func(Eq, E) doesnot have good properties

we seek to add orthogonal projections formally to Eq

8 / 28

Page 19: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Eq

Definition of EqOb(Eq) : non-degenerate quadratic spaces (V , qV )

morphisms are linear applications which preserve the quadratic form

Natural Idea

Replace F = Func(E f , E) by Func(Eq, E)

Proposition

Any morphism of Eq is a monomorphism

Eq does not have enough morphisms : the category Func(Eq, E) doesnot have good properties

we seek to add orthogonal projections formally to Eq

8 / 28

Page 20: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 21: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 22: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 23: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��A // D1

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 24: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 25: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1 '

AAA

AAAA

A

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 26: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category coSp(D) of Benabou

Definition

Let D be a category equipped with push-outsThe category coSp(D) is defined by :

the objects of coSp(D) are those of D

HomcoSp(D)(A,B) = {A→ D ← B}/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1 '

AAA

AAAA

A

D2

we denote by [A→ D ← B] an element of HomcoSp(D)(A,B)

9 / 28

Page 27: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ])

7→ [A→ S ← C ]

C

��B //

��

E

��A // D // S

10 / 28

Page 28: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ])

7→ [A→ S ← C ]

C

B

��

E

A // D

S

10 / 28

Page 29: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ])

7→ [A→ S ← C ]

C

��B //

��

E

A // D

S

10 / 28

Page 30: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ])

7→ [A→ S ← C ]

C

��B //

��

E

��A // D // S

10 / 28

Page 31: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category coSp(D)

HomcoSp(D)(A,B)×HomcoSp(D)(B,C )→ HomcoSp(D)(A,C )

([A→ D ← B], [B → E ← C ]) 7→ [A→ S ← C ]

C

��B //

��

E

��A // D // S

10 / 28

Page 32: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Dual construction : the category Sp(D)

Definition

Let D be a category equipped with pullbacksThe category Sp(D) is defined by :

the objects of Sp(D) are those of D

C

��B //

��

E

��A // D // S

11 / 28

Page 33: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Dual construction : the category Sp(D)

Definition

Let D be a category equipped with pullbacksThe category Sp(D) is defined by :

the objects of Sp(D) are those of D

P E C

D //

��

B

A

11 / 28

Page 34: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Dual construction : the category Sp(D)

Definition

Let D be a category equipped with pullbacksThe category Sp(D) is defined by :

the objects of Sp(D) are those of D

P

E

��

// C

D //

��

B

A

11 / 28

Page 35: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Dual construction : the category Sp(D)

Definition

Let D be a category equipped with pullbacksThe category Sp(D) is defined by :

the objects of Sp(D) are those of D

P

��

// E

��

// C

D //

��

B

A

11 / 28

Page 36: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Pseudo push-outs in Eq

Remark

The category Eq has neither push-outs nor pullbacks

Decomposition of morphisms of EqFor f : V →W , let V ′ be the orthogonal complement of f (V ) in WThen W = f (V )⊥V ′ so W ' V⊥V ′

We will writef : V → V⊥V ′

Definition of the pseudo push-out

V //

��

V⊥V ′

V⊥V ′′

V⊥V ′⊥V ′′

12 / 28

Page 37: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Pseudo push-outs in Eq

Remark

The category Eq has neither push-outs nor pullbacks

Decomposition of morphisms of EqFor f : V →W , let V ′ be the orthogonal complement of f (V ) in WThen W = f (V )⊥V ′ so W ' V⊥V ′

We will writef : V → V⊥V ′

Definition of the pseudo push-out

V //

��

V⊥V ′

V⊥V ′′

V⊥V ′⊥V ′′

12 / 28

Page 38: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Pseudo push-outs in Eq

Remark

The category Eq has neither push-outs nor pullbacks

Decomposition of morphisms of EqFor f : V →W , let V ′ be the orthogonal complement of f (V ) in WThen W = f (V )⊥V ′ so W ' V⊥V ′

We will writef : V → V⊥V ′

Definition of the pseudo push-out

V //

��

V⊥V ′

V⊥V ′′

V⊥V ′⊥V ′′

12 / 28

Page 39: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Pseudo push-outs in Eq

Remark

The category Eq has neither push-outs nor pullbacks

Decomposition of morphisms of EqFor f : V →W , let V ′ be the orthogonal complement of f (V ) in WThen W = f (V )⊥V ′ so W ' V⊥V ′

We will writef : V → V⊥V ′

Definition of the pseudo push-out

V //

��

V⊥V ′

��V⊥V ′′ // V⊥V ′⊥V ′′

12 / 28

Page 40: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Tq

In the definition of coSp(D) : universality of the push-out plays no role

Definition of the category Tqthe objects of Tq are those of Eq

HomTq (V ,W ) = {V → X ←W }/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1

D2

∼ : equivalence relation generated by this relation

13 / 28

Page 41: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Tq

In the definition of coSp(D) : universality of the push-out plays no role

Definition of the category Tqthe objects of Tq are those of EqHomTq (V ,W ) = {V → X ←W }/ ∼

B

��

��000

0000

0000

0000

A //

''PPPPPPPPPPPPPPP D1

D2

∼ : equivalence relation generated by this relation

13 / 28

Page 42: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Tq

In the definition of coSp(D) : universality of the push-out plays no role

Definition of the category Tqthe objects of Tq are those of EqHomTq (V ,W ) = {V → X ←W }/ ∼

W

��V // X1

X2

∼ : equivalence relation generated by this relation

13 / 28

Page 43: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Tq

In the definition of coSp(D) : universality of the push-out plays no role

Definition of the category Tqthe objects of Tq are those of EqHomTq (V ,W ) = {V → X ←W }/ ∼

W

��

��000

0000

0000

0000

V //

''PPPPPPPPPPPPPPP X1

X2

∼ : equivalence relation generated by this relation

13 / 28

Page 44: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Tq

In the definition of coSp(D) : universality of the push-out plays no role

Definition of the category Tqthe objects of Tq are those of EqHomTq (V ,W ) = {V → X ←W }/ ∼

W

��

��000

0000

0000

0000

V //

''PPPPPPPPPPPPPPP X1 � p

AAA

AAAA

A

X2

∼ : equivalence relation generated by this relation

13 / 28

Page 45: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category Tq

HomTq (V ,W )×HomTq (W ,Y )→ HomTq (V ,Y )

([V →W⊥W ′ ←W ], [W →W⊥W ′′ ← Y ]) 7→ [V →W⊥W ′⊥W ′′ ← Y ]

Y

��W //

��

W⊥W ′′

V // W⊥W ′

W⊥W ′⊥W ′′

14 / 28

Page 46: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Composition in the category Tq

HomTq (V ,W )×HomTq (W ,Y )→ HomTq (V ,Y )

([V →W⊥W ′ ←W ], [W →W⊥W ′′ ← Y ]) 7→ [V →W⊥W ′⊥W ′′ ← Y ]

Y

��W //

��

W⊥W ′′

��V // W⊥W ′ // W⊥W ′⊥W ′′

14 / 28

Page 47: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Retractions in Tq

Proposition

For f : V →W a morphism of Eq, we have :

[WId−→W

f←− V ] ◦ [Vf−→W

Id←−W ] = IdV

that is [WId−→W

f←− V ] is a retraction of [Vf−→W

Id←−W ]

15 / 28

Page 48: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

II Definition and properties of the category Fquad

Definition

Fquad = Funct(Tq, E)

Theorem

The category Fquad is abelian, equipped with a tensor product and hasenough projective and injective objects.

Question

Classification of the simple objects of Fquad

Reminder : A functor S is simple if it is not the zero functor and if itsonly subfunctors are 0 and S

16 / 28

Page 49: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

II Definition and properties of the category Fquad

Definition

Fquad = Funct(Tq, E)

Theorem

The category Fquad is abelian, equipped with a tensor product and hasenough projective and injective objects.

Question

Classification of the simple objects of Fquad

Reminder : A functor S is simple if it is not the zero functor and if itsonly subfunctors are 0 and S

16 / 28

Page 50: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

II Definition and properties of the category Fquad

Definition

Fquad = Funct(Tq, E)

Theorem

The category Fquad is abelian, equipped with a tensor product and hasenough projective and injective objects.

Question

Classification of the simple objects of Fquad

Reminder : A functor S is simple if it is not the zero functor and if itsonly subfunctors are 0 and S

16 / 28

Page 51: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The forgetful functor

Definition of the forgetful functor ε

ε : Tq → E f

On objects :ε(V , qV ) = V

On morphisms :

ε([Vf−→W⊥W ′ g←−W ]) = pg ◦ f

where pg is the orthogonal projection associated to g

17 / 28

Page 52: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The forgetful functor

Definition of the forgetful functor ε

ε : Tq → E f

On objects :ε(V , qV ) = V

On morphisms :

ε([Vf−→W⊥W ′ g←−W ]) = pg ◦ f

where pg is the orthogonal projection associated to g

17 / 28

Page 53: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The forgetful functor

Definition of the forgetful functor ε

ε : Tq → E f

On objects :ε(V , qV ) = V

On morphisms :

ε([Vf−→W⊥W ′ g←−W ]) = pg ◦ f

where pg is the orthogonal projection associated to g

17 / 28

Page 54: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tqε−→ E f

F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad

18 / 28

Page 55: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tqε−→ E f F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad

18 / 28

Page 56: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tqε−→ E f F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad

18 / 28

Page 57: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tqε−→ E f F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad

18 / 28

Page 58: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tqε−→ E f F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad

18 / 28

Page 59: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Relating F = Funct(E f , E) and Fquad = Funct(Tq, E)

Tqε−→ E f F−→ E

for F an object of F = Funct(E f , E)

Theorem

The functor ι : F → Fquad defined by ι(F ) = F ◦ ε

is exact and fully faithful

ι(F) is a thick sub-category of Fquad

If S is a simple object of F , ι(S) is a simple object of Fquad

18 / 28

Page 60: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

III The category Fiso

Definition of Edegq

Ob(Edegq ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadraticform

Edegq contains objects of odd dimension

Proposition

Edegq has pullbacks

Consequence

Sp(Edegq ) is defined

19 / 28

Page 61: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

III The category Fiso

Definition of Edegq

Ob(Edegq ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadraticform

Edegq contains objects of odd dimension

Proposition

Edegq has pullbacks

Consequence

Sp(Edegq ) is defined

19 / 28

Page 62: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

III The category Fiso

Definition of Edegq

Ob(Edegq ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadraticform

Edegq contains objects of odd dimension

Proposition

Edegq has pullbacks

Consequence

Sp(Edegq ) is defined

19 / 28

Page 63: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

III The category Fiso

Definition of Edegq

Ob(Edegq ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadraticform

Edegq contains objects of odd dimension

Proposition

Edegq has pullbacks

Consequence

Sp(Edegq ) is defined

19 / 28

Page 64: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

III The category Fiso

Definition of Edegq

Ob(Edegq ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadraticform

Edegq contains objects of odd dimension

Proposition

Edegq has pullbacks

Consequence

Sp(Edegq ) is defined

19 / 28

Page 65: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

III The category Fiso

Definition of Edegq

Ob(Edegq ) : F2-quadratic spaces (V , qV ) (possibly degenerate)

morphisms : linear monomorphisms which preserve the quadraticform

Edegq contains objects of odd dimension

Proposition

Edegq has pullbacks

Consequence

Sp(Edegq ) is defined

19 / 28

Page 66: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Definition

Fiso = Funct(Sp(Edegq ), E)

Theorem

There exists a functorκ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edegq )

F−→ E

for F an object of Fiso

20 / 28

Page 67: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Definition

Fiso = Funct(Sp(Edegq ), E)

Theorem

There exists a functorκ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edegq )

F−→ E

for F an object of Fiso

20 / 28

Page 68: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Definition

Fiso = Funct(Sp(Edegq ), E)

Theorem

There exists a functorκ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edegq )

F−→ E

for F an object of Fiso

20 / 28

Page 69: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Definition

Fiso = Funct(Sp(Edegq ), E)

Theorem

There exists a functorκ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edegq )

F−→ E

for F an object of Fiso

20 / 28

Page 70: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Definition

Fiso = Funct(Sp(Edegq ), E)

Theorem

There exists a functorκ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edegq )

F−→ E

for F an object of Fiso

20 / 28

Page 71: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Definition

Fiso = Funct(Sp(Edegq ), E)

Theorem

There exists a functorκ : Fiso → Fquad

κ is exact and fully faithful

If S is a simple object of F , ι(S) is a simple object of Fquad

Tq → Sp(Edegq )

F−→ E

for F an object of Fiso

20 / 28

Page 72: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Theorem

There is a natural equivalence of categories

Fiso '∏V∈S

F2[O(V )]−mod

where S is a set of representatives of isometry classes of quadratic spaces(possibly degenerate)

Definition

IsoV is the functor of Fiso corresponding to F2[O(V )] by this equivalence

21 / 28

Page 73: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The category Fiso

Theorem

There is a natural equivalence of categories

Fiso '∏V∈S

F2[O(V )]−mod

where S is a set of representatives of isometry classes of quadratic spaces(possibly degenerate)

Definition

IsoV is the functor of Fiso corresponding to F2[O(V )] by this equivalence

21 / 28

Page 74: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Do we have all the simple objects of Fquad ?

F� _

ι

��Fiso

� � κ // Fquad

there exist simple objects of Fquad which are not in the image of thefunctors ι and κ

standard way to obtain a classification of the simple objects of acategory : decompose the projective generators

22 / 28

Page 75: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Do we have all the simple objects of Fquad ?

F� _

ι

��Fiso

� � κ // Fquad

there exist simple objects of Fquad which are not in the image of thefunctors ι and κ

standard way to obtain a classification of the simple objects of acategory : decompose the projective generators

22 / 28

Page 76: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Do we have all the simple objects of Fquad ?

F� _

ι

��Fiso

� � κ // Fquad

there exist simple objects of Fquad which are not in the image of thefunctors ι and κ

standard way to obtain a classification of the simple objects of acategory : decompose the projective generators

22 / 28

Page 77: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

IV Study of standard projective objects

Proposition (Yoneda lemma)

For V an object of Tq, the functor defined by

PV (W ) = F2[HomTq (V ,W )]

is a projective object of Fquad

{PV |V ∈ S} : set of projective generators of Fquad

S : set of representative of isometry classes of Ob(Tq)

Projective generators of FFor E an object of E f

PFE (X ) = F2[HomE f (E ,X )]

is a projective object of F

23 / 28

Page 78: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

IV Study of standard projective objects

Proposition (Yoneda lemma)

For V an object of Tq, the functor defined by

PV (W ) = F2[HomTq (V ,W )]

is a projective object of Fquad

{PV |V ∈ S} : set of projective generators of Fquad

S : set of representative of isometry classes of Ob(Tq)

Projective generators of FFor E an object of E f

PFE (X ) = F2[HomE f (E ,X )]

is a projective object of F

23 / 28

Page 79: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Rank of morphisms

Definition

Let [Vf−→ Y

g←−W ] be an element of HomTq (V ,W )

D //

��

W

g

��V

f// Y

D ∈ Ob(Edegq )

the rank of [Vf−→ Y

g←−W ] is the dimension of D

Notation

Hom(i)Tq

(V ,W ) the set of morphisms of HomTq (V ,W ) of rank ≤ i

24 / 28

Page 80: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Rank of morphisms

Definition

Let [Vf−→ Y

g←−W ] be an element of HomTq (V ,W )

D //

��

W

g

��V

f// Y

D ∈ Ob(Edegq )

the rank of [Vf−→ Y

g←−W ] is the dimension of D

Notation

Hom(i)Tq

(V ,W ) the set of morphisms of HomTq (V ,W ) of rank ≤ i

24 / 28

Page 81: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Rank of morphisms

Definition

Let [Vf−→ Y

g←−W ] be an element of HomTq (V ,W )

D //

��

W

g

��V

f// Y

D ∈ Ob(Edegq )

the rank of [Vf−→ Y

g←−W ] is the dimension of D

Notation

Hom(i)Tq

(V ,W ) the set of morphisms of HomTq (V ,W ) of rank ≤ i

24 / 28

Page 82: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Rank of morphisms

Definition

Let [Vf−→ Y

g←−W ] be an element of HomTq (V ,W )

D //

��

W

g

��V

f// Y

D ∈ Ob(Edegq )

the rank of [Vf−→ Y

g←−W ] is the dimension of D

Notation

Hom(i)Tq

(V ,W ) the set of morphisms of HomTq (V ,W ) of rank ≤ i

24 / 28

Page 83: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Rank filtration of the projective objects

Proposition

The functors P(i)V for i = 0, . . . ,dim(V ) :

P(i)V (W ) = F2[Hom(i)

Tq(V ,W )]

define an increasing filtration of the functor PV

0 ⊂ P(0)V ⊂ P

(1)V ⊂ . . . ⊂ P

(dim(V )−1)V ⊂ P

(dim(V ))V = PV

25 / 28

Page 84: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The extremities of the filtration

0 ⊂ P(0)V ⊂ P

(1)V ⊂ . . . ⊂ P

(dim(V )−1)V ⊂ P

(dim(V ))V = PV

Theorem

1 P(0)V ' ι(PFε(V )) where ι : F → Fquad

2 The functor P(0)V is a direct summand of PV

Theorem

PV /P(dim(V )−1)V ' κ(IsoV )

where κ : Fiso → Fquad

26 / 28

Page 85: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The extremities of the filtration

0 ⊂ P(0)V ⊂ P

(1)V ⊂ . . . ⊂ P

(dim(V )−1)V ⊂ P

(dim(V ))V = PV

Theorem

1 P(0)V ' ι(PFε(V )) where ι : F → Fquad

2 The functor P(0)V is a direct summand of PV

Theorem

PV /P(dim(V )−1)V ' κ(IsoV )

where κ : Fiso → Fquad

26 / 28

Page 86: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The extremities of the filtration

0 ⊂ P(0)V ⊂ P

(1)V ⊂ . . . ⊂ P

(dim(V )−1)V ⊂ P

(dim(V ))V = PV

Theorem

1 P(0)V ' ι(PFε(V )) where ι : F → Fquad

2 The functor P(0)V is a direct summand of PV

Theorem

PV /P(dim(V )−1)V ' κ(IsoV )

where κ : Fiso → Fquad

26 / 28

Page 87: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Decomposition of the functors PH0and PH1

0 ⊂ P(0)Hε⊂ P

(1)Hε⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = P(0)H0⊕ P

(1)H0

/P(0)H0⊕ P

(2)H0

/P(1)H0

PH1 = P(0)H1⊕ P

(1)H1

/P(0)H1⊕ P

(2)H1

/P(1)H1

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixedfunctors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} orS(H1) 6= {0}

27 / 28

Page 88: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Decomposition of the functors PH0and PH1

0 ⊂ P(0)Hε⊂ P

(1)Hε⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = P(0)H0⊕ P

(1)H0

/P(0)H0⊕ P

(2)H0

/P(1)H0

PH1 = P(0)H1⊕ P

(1)H1

/P(0)H1⊕ P

(2)H1

/P(1)H1

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixedfunctors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} orS(H1) 6= {0}

27 / 28

Page 89: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Decomposition of the functors PH0and PH1

0 ⊂ P(0)Hε⊂ P

(1)Hε⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = ι(PFF2⊕2)⊕ P

(1)H0

/P(0)H0⊕ P

(2)H0

/P(1)H0

PH1 = ι(PFF2⊕2)⊕ P

(1)H1

/P(0)H1⊕ P

(2)H1

/P(1)H1

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixedfunctors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} orS(H1) 6= {0}

27 / 28

Page 90: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Decomposition of the functors PH0and PH1

0 ⊂ P(0)Hε⊂ P

(1)Hε⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = ι(PFF2⊕2)⊕ P

(1)H0

/P(0)H0⊕ κ(IsoH0)

PH1 = ι(PFF2⊕2)⊕ P

(1)H1

/P(0)H1⊕ κ(IsoH1)

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixedfunctors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} orS(H1) 6= {0}

27 / 28

Page 91: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Decomposition of the functors PH0and PH1

0 ⊂ P(0)Hε⊂ P

(1)Hε⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = ι(PFF2⊕2)⊕ (Mix0,1

⊕2 ⊕Mix1,1)⊕ κ(IsoH0)

PH1 = ι(PFF2⊕2)⊕Mix1,1

⊕3 ⊕ κ(IsoH1)

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixedfunctors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} orS(H1) 6= {0}

27 / 28

Page 92: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

Decomposition of the functors PH0and PH1

0 ⊂ P(0)Hε⊂ P

(1)Hε⊂ PHε for ε ∈ {0, 1}

Theorem

For the functors PH0 and PH1 the rank filtration splits

PH0 = ι(PFF2⊕2)⊕ (Mix0,1

⊕2 ⊕Mix1,1)⊕ κ(IsoH0)

PH1 = ι(PFF2⊕2)⊕Mix1,1

⊕3 ⊕ κ(IsoH1)

Mix0,1, Mix1,1 : two elements of a new family of functors called “mixedfunctors”

Corollary

Classification of simple objects S of Fquad such that S(H0) 6= {0} orS(H1) 6= {0}

27 / 28

Page 93: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The functors Mix0,1 and Mix1,1

ε ∈ {0, 1}(x , ε) : the degenerate quadratic space generated by x such that q(x) = ε

Proposition

Mixε,1 is isomorphic to a sub-functor of ι(PFF2)⊗ κ(Iso(x,ε))

The composition factors of Mixε,1 are sub-quotients of

ι(Λn)⊗ κ(Iso(x,ε)) for n ≥ 0

Conjecture

Simple objects of Fquad are sub-quotients of tensor products between asimple functor of F and a simple functor of Fiso

28 / 28

Page 94: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The functors Mix0,1 and Mix1,1

ε ∈ {0, 1}(x , ε) : the degenerate quadratic space generated by x such that q(x) = ε

Proposition

Mixε,1 is isomorphic to a sub-functor of ι(PFF2)⊗ κ(Iso(x,ε))

The composition factors of Mixε,1 are sub-quotients of

ι(Λn)⊗ κ(Iso(x,ε)) for n ≥ 0

Conjecture

Simple objects of Fquad are sub-quotients of tensor products between asimple functor of F and a simple functor of Fiso

28 / 28

Page 95: The functor category Fquad associated to quadratic spaces over F2selinger/ct2006/slides/CT06-Vespa.pdf · Christine VESPA University Paris 13 June 26, 2006 1/28. Introduction I Preliminaries

Introduction I Preliminaries II Definition III The category Fiso IV Study of standard projective objects

The functors Mix0,1 and Mix1,1

ε ∈ {0, 1}(x , ε) : the degenerate quadratic space generated by x such that q(x) = ε

Proposition

Mixε,1 is isomorphic to a sub-functor of ι(PFF2)⊗ κ(Iso(x,ε))

The composition factors of Mixε,1 are sub-quotients of

ι(Λn)⊗ κ(Iso(x,ε)) for n ≥ 0

Conjecture

Simple objects of Fquad are sub-quotients of tensor products between asimple functor of F and a simple functor of Fiso

28 / 28