61
The DØ Run 2b Level 2 Trigger Upgrade Fermilab Director’s Review December 3, 2001 D D James Linnemann, Michigan State University, for the DØ collaboration

The DØ Run 2b Level 2 Trigger Upgrade Fermilab Director’s Review December 3, 2001 James Linnemann, Michigan State University, for the DØ collaboration

  • View
    221

  • Download
    5

Embed Size (px)

Citation preview

The DØ Run 2b Level 2 Trigger Upgrade

Fermilab Director’s Review

December 3, 2001

DDJames Linnemann, Michigan State University,

for the DØ collaboration

James Linnemann 2

DD

Dec. 2001 Director’s Review

DØ Trigger Architecture Level 1

Calorimeter trigger

Fiber tracker trigger

Preshower (e/ trigger

Muon trigger

Level 2Silicon track trigger

Introduce Correlations, Refine Level 1 decision

Level 3Full event information

available

Farm of high-performance computing nodes

5kHz

James Linnemann 3

DD

Dec. 2001 Director’s Review

Run 2b L2 Upgrade Goals Critical need to upgrade trigger systems

Increase trigger rejection to maintain existing rates with higher luminosityEnsure efficient triggering for full range of Higgs channels

The challenge for Level 2Input rate to Level 2 limited to ~ 5 kHz (readout time)Output to Level 3 limited to 1.8kHz by calorimeter readoutNeed to get the events to level 3, where more handles are available Need for higher L1 rejection: moved L2 algorithms to L1

How to maintain rejection in L2?Do more processing in L2!

Before L=5x1032 cm-1s-1

Beta processors to replace Alpha processors

Prepare L=5x1032 cm-1s-1

Upgrade L2STT processor to take advantage of improved SMTUpgrade L2 Processors with Faster Beta processors

James Linnemann 4

DD

Dec. 2001 Director’s Review

Why Beta Processors? Motivation: low yield of Alpha processors

Only 15/38 workedMainly fabrication problems vias; BGA handlingObsolete parts: no chance for extra production run

Need 16+8+2=26 (system + test stand + spares) for baseline systemNeed test stand to avoid deadtime for algorithm testing

Replace all Alphas with BetasCommission with Alphas

No change in high-level code to run on Betas, but 2-3 times fasterConfine software changes for maximum performance to one flavor

Simpler software: advantage of raw processor speed Pentium Linux support much better

If needed, interrupt routine much easier in Pentium Phased Introduction of Betas

38 production motherboards in 2002Designed to allow processor upgrades

26 processors in summer 200212 additional (faster) processors: Upgrade for 2003/4

James Linnemann 5

DD

Dec. 2001 Director’s Review

6U boardCompact PCI

9U board64 bit

<2MHzVME

FPGA

EC

L D

rive

rs

128 bits~20 MHzMBus

32 bits66 MHz (max)Local bus64 bits

33 MHzPCI

J1

J2

J3

J5

J4

PLX9656

UII

Dri

vers

Dri

vers

Clk(s)/roms

IDE

L2eta: 850MHz CPU; 64b 66MHz PCI

SPY

•PIII Compact PCI card

•9U card with custom devices

3 BGA’s: Universe II VME interface

PLX 64-bit PCI interface chip

MBus and other logic in FPGA

James Linnemann 6

DD

Dec. 2001 Director’s Review

L2L2eta hardware advantageseta hardware advantages Alpha is frozen in CPU power

No upgrade path

Beta benefits from Moore’s Law in cPCI marketplace 2-3 CPU speedup over alpha gains 1.5-2 in throughput

Can use tradeoff to simplify online software

More gain with more sophisticated software

hide fixed overheads by overlapping operations

Will build all Beta motherboardsMaximum flexibility in adding CPU’s (more betas than baseline)

Could add 12 CPU’s rather than just replacing 12

Incremental cost for 38 instead of 30 is only 20-30K (5%)

James Linnemann 7

DD

Dec. 2001 Director’s Review

3 CPU performance 2 on-chip cache Designed for Testing

JTAG, done by assembler More I/O pins More control in interrupt/resets

CPU/MHz Specint95 Specfp95

Alpha/500 ~15 ~21

PIII/850 ~41 ~35

I/O Performance

Alpha ~100 MB/s

MBT ~160 MB/s

L2eta ~200 MB/s

SBC ~500 MB/s

New/New/Improved features of L2Improved features of L2

Cheap upgrade: add 2nd CPU(but: write new software to use)

James Linnemann 8

DD

Dec. 2001 Director’s Review

Level 2 eta Board Layout

VME Interface

FPGA (MBus)

PCI Interface

Mounting holesFor rails/stiffeners

MBus DriversVMEDrivers

HardDrive

Single Board Computer (SBC)

LEDsECL out

Voltageconverters

James Linnemann 9

DD

Dec. 2001 Director’s Review

Level 2 Silicon Track Trigger Vital for triggering on b-quarks

ZHbb

Zbb (top mass jet energy scale) Goal: 98% efficiency for tracks with

PT > 1.5 GeV

Impact parameter < 2mm L2STT 2a installation Summer 2002

1.8M NSF/DOE MRI funding (beyond 2a baseline) Upgrade to accommodate design of new silicon detector Most efficient:

build additional modules in early ’02 production

James Linnemann 10

DD

Dec. 2001 Director’s Review

CPU

1 2

spare

3

VBD

4 5 6 7 8 9 10 11 12 13 14 15 16 20191817 21

spare

terminator

spare

terminator

spare

spare

L2STT Crate

STC STC STC STC STC STCFRC STC STC TFCTFC STC

Sector 1 Sector 2LVDS serial links

for communication between boards

James Linnemann 11

DD

Dec. 2001 Director’s Review

Track Fit CardTrack Fit Card (illustration of motherboard design)(illustration of motherboard design)

main logic

L3 buffer control

link rx

max 9 LVDS in(1 from FRC8 from STC)

James Linnemann 12

DD

Dec. 2001 Director’s Review

Card Flavors GlossaryCard Flavors Glossary Fiber Road Card

receive SCL

fan out L1CTT data

manage L3 buffers

arbitrate VME bus

Silicon Trigger Cardpreprocess SMT data

cluster into hits

associate hits with CFT tracks

Track Fit Cardfit trajectory to hits

CPU (commercial)initialization

downloading

monitoring

resets

VME Buffer DriverReadout to L3

Same as all other crates in DØ

James Linnemann 13

DD

Dec. 2001 Director’s Review

STT Status Fiber Road Card being tested with real inputs at DØ STC (silicon hit clusters in track roads)

Prototype I currently being tested

Second prototype being debugged

Track Fit Card tested at Stony BrookProcessed events with multiple track input roads

Running with DSP fitting code

Buffer Controller sub-card being tested

Link Transmitter STC Prototype I

Motherboard, transmitters, receivers used by all boards

James Linnemann 14

DD

Dec. 2001 Director’s Review

STT Upgrade: use all 6 SMT layers

Reuse Run 2a STT (4 layers) Add 18 STC ( 2 new layers) 1 layer = full coverage visually: 2 “layers”

Radii in cmLayer 2a 2b

0 21 3 3.52 5 6.13 7 9.54 9.5 12.75 15.5

James Linnemann 15

DD

Dec. 2001 Director’s Review

L2STT Upgrade Staging Baseline: upgrade to use all 6 layers from new SMT

Add more Silicon Track Cards (STC)Revise firmware and software to support new detector

configuration

Add matching I/O cards to handle extra signals

Add extra track fit cards

Requires a new fanout card and replacing backplanes

Funding profile: can’t build cards during 2002 STT production run

Staging: instrument 5 layers firstRelatively inexpensive

Try to build boards from Run2a STT MRI contingency

Fewer STC and I/O cards needed

No new backplane or fanout card needed

Still need firmware and software updates

MC studies to study impact

James Linnemann 16

DD

Dec. 2001 Director’s Review

Level 2 Cost Summary

L2 Betas Estimate + contingency

Engineering (contributed in-kind) 166K

Prototypes + Boards (38 @ 2.4K) 147K

Single Board Computers (30 @ 4.3K) 130K

Total L2 Betas (Alpha Replacement) 443K 596K (+35%)

Engineering 20K

Single Board Computers (12 @ 4.3K) 52K

Total L2 Beta Upgrade Processors 72K 98K (+37%)

L2STT Stage I Estimate + contingency L2STT Upgrade Estimate + contingency

6 STC 41K 20 STC 8 TFC 20 VTM 286K

STC Firmware 34K STC Firmware 34K

Cabling 6K Cabling 19K

Echo Board, Backplane 63K

Stage I (5 layers) 81K 129K (+59%) Baseline STT (6 layers) 402K 593K (+48%)

James Linnemann 17

DD

Dec. 2001 Director’s Review

L2 Beta (Alpha Replacement)Layout Done (except holes for rails)Prototypes (w/ Firmware) February 2002 fully fundedProduction, Installation July-December 2002

L2 Beta UpgradePrototype Processor April-October 2003Buy, Assemble and Install October 2003 - March 2004

L2 Schedule: Some Highlights

Run 2a STTProduction Start January 2002 fully fundedCommissioning July 2002

Run 2b STTStage 1 Parts Acquisition December 2001 fundedEcho Board, Cables, etc. Start June 2002 9-21 mo. slackSoftware, Firmware start Start January 2003 12 mo. slack Test, Commission July-Sept 2004

James Linnemann 18

DD

Dec. 2001 Director’s Review

Conclusions

L2 Betas replacing Alpha Processors for Level 2 ProcessorsPrototypes being built to replace Alphas now

Add upgraded commercial processors for Run 2b

L2STT Staged Upgrade to utilize Run 2b Silicon Tracker

Reuse all boards from Run 2a STT Upgrade firmware, software

5 layers first (relatively small increment)

Full 6 layers installation limited by funding profile

James Linnemann 19

DD

Dec. 2001 Director’s Review

DØ Trigger Architecture Level 1

Calorimeter trigger

Fiber tracker trigger

Preshower (e/ trigger

Muon trigger

Level 2Silicon track trigger

Introduce Correlations, Refine Level 1 decision

Level 3Full event information

available

Farm of high-performance computing nodes

James Linnemann 20

DD

Dec. 2001 Director’s Review

Beta Cost Summary Motherboard: With contingency

Engineering (contributed in-kind) 166K

Prototypes (2+2) 18K

Production Boards (38 @ 2.4K) 91K

Motherboard Total 275K 346K

Single Board Computers ([email protected]) 130K 193K

Test Stands 38K 58K

Grand Total Betas 443K 596K (+35%)

Upgrade Processors

Engineering 20K 30K

Single Board Computers ([email protected]) 50K 64K

Adapters 3K 4K

Total Beta Upgrade Processors 72K 98K (+36%)

James Linnemann 21

DD

Dec. 2001 Director’s Review

L2 Beta (Alpha Replacement)Schematics - DoneLayout – Done (except holes for rails)Device driver API – November 2001Firmware – February 2002Prototypes – February 2002 Hardware Integration – March 2002System Integration – April 2002Begin production – July 2002Installation – November 2002 Engineering manpower:

Contributed by Universities

L2 Beta UpgradePrototype Processor May-October 2003Buy, Assemble and Install October 2003 to January 2004

Beta Schedule Summary

James Linnemann 22

DD

Dec. 2001 Director’s Review

L2STT Cost SummaryBaseline Upgrade (6 layers) With contingency

Extra Boards

20 STC, 8 TFC, 20 VTM

286K

Link Echo Board (new) 48K

STC Firmware 34K

New Backplane 15K

Cabling 19K

Baseline Total 402K 593K (+48%)

Stage I: 5 layers

Extra Boards (6 STC) 41K

STC Firmware 34K

Cables 6K

Total for 5 layers 81K 129K (+59%)

James Linnemann 23

DD

Dec. 2001 Director’s Review

STT Schedule Summary

Run 2a STTProduction Start January 2002 Run 2b should be at same timeCommissioning July 2002

Run 2b STTStage 1 Parts Acquisition December 2001Link Echo Board Start June 2002Backplane; Cables etc. start June 2002 about 1 year slackSoftware, Firmware start Jan 2003 about 6-8 months slackTest, Commission July-Sept 2004

James Linnemann 24

DD

Dec. 2001 Director’s Review

No Upgrade: 4 layers

Use only Run 2A STT hardwareonly instrument layers 0,2,4,5

Drop layers 1,3

James Linnemann 25

DD

Dec. 2001 Director’s Review

Staged Upgrade: 5 layers first

Use Run 2A STT + 6 STCinstrument layers 0,1,2,3,5

James Linnemann 26

DD

Dec. 2001 Director’s Review

Comparison of old, new SMT

Radii in cmLayer 2A 2B

0 21 3 3.52 5 6.13 7 9.54 9.5 12.75 15.5

James Linnemann 27

DD

Dec. 2001 Director’s Review

Acceptance

>98% of all tracks with b·2 mm and pT>1.5 GeV are contained in one 30o sector

b acc

0 97.0%

1 mm 98.5%

2 mm 99.5%

James Linnemann 28

DD

Dec. 2001 Director’s Review

Sample run 2b Trigger rates 5x1032 cm-2s-1, assuming no trigger upgrades High pT trigger menu exceeds available bandwidth

Trigger Physics Level 1 rate

(kHz)

EM tower > 10 GeV

We 5

2 Tracks (>10 & 5 GeV) +isolation + EM>2 GeV

H+- 10

2 Had+EM towers, sum > 4 GeV

ZHbb 2

James Linnemann 29

DD

Dec. 2001 Director’s Review

Calorimeter Trigger Upgrade Rate improvements from cluster thresholds vs. tower

thresholds

Single jet bbZH

3

James Linnemann 30

DD

Dec. 2001 Director’s Review

Conclusions Upgrades needed at level 1 to cope with:

need for increased rejection at level 1

Controlling rates even with multiple interactions

Triggering on correct beam crossing at 132 ns

Since last PAC meeting, extensive study of triggering options has been completed, resulting in a conceptual design for calorimeter and tracking upgradesScope has been limited due to constraints in schedule, manpower, and costs

Design offer considerable flexibility to deal with unanticipated physics requirements

We are ready to begin the detailed design and assemble the project

We request Stage 1 approval for the trigger upgrades

James Linnemann 31

DD

Dec. 2001 Director’s Review

Beta Software Issues High level software unchanged (identical user interface) However, alpha is more difficult to support than beta

Separate platform, and not supported by d0 environment

Very painful to support L2SIM if need for bit-by-bit verification

Supporting two platforms requires scarce high-level talentCould run mixed system, say alphas as administrators, to help

At very least need enough betas for all workers

Interrupt processing (max performance) exceptionally complex in alphaSimpler in beta

May not need in beta: trade CPU speed for software sophistication

Advantages to change drivers from process space to kernel spaceMuch harder in alpha

Much less community support for alpha

Example: active development for Linux Pentium process schedulerMay allow override of kernel much more simply than we could on alpha

James Linnemann 32

DD

Dec. 2001 Director’s Review

L2 Alpha BoardL2 Alpha BoardCommissioningCommissioning

• First Production2/2 pre-production work7/24 production came up (~9 months effort

UIC/UM/FNAL)– Most: multiple vias fixed and a

BGA replaced

– 17 abandoned• Broken CIA BGA not

replaceable (center of board)

– DMA patches (wires, pin lifting) performed

– PIO to Alpha not working (firmware)Aug/Sept

• concentrate on 1 Alpha/crate

Today’s score

6 up; 3 down (2 in ICU)

But 2 are pre-pro!6/7 “good” production boards are fragile

James Linnemann 33

DD

Dec. 2001 Director’s Review

baseline 1st year "minimum" min commissionTest Stand Crate 1 2 2 2 2 "global"Test Stand Crate 2 3 3 3 3 "multiprocessor"Test Stand Crate 3 2 2 0 0 2nd preprocessor testTest Stand Crate 4 0 0 0 0 data source uses prototypesGlobal 2 2 2 2Cal 4 4 4 0 OctPS 3 3 2 0 Sept?CTT 4 2 2 0 min is no stt; L1 in Sept?Mu 4 4 2 2 one crate; L1 in Junetotal 24 22 17 9 imaginable partial production

spare/extra power 14 16 21 2938 38 38 38

pre-production 2 2 2 2 as good as final cardsspare parts 10 10 10 10 but some needed by CDF tooold prototypes 2 2 2 2 useable for testing

We don't have enough parts to build the system twice.Could build all baseline workers twice

Administrators:test stand 3real system 6

total admin 9 9 7 4workers 15 13 10 5

How many Alphas?15 + test stand in 2001

•Need 15 for nominal system (+7 for test stand)

Min. Commissioning~ 9 boards

James Linnemann 34

DD

Dec. 2001 Director’s Review

Where do we put our Alphas?Staging; rotating tests

Aug-Sept (6 to 10 s) 1 Maryland 2 Test Stand/UIC 2 Global 2 Mu/Cal (turns?)

3 in dry dock

Oct (6 to20 s) 2 Test stand 2 Global 2-4 Mu 2-4 Cal 2-5 CTT,PS

1-4 UIC/Test Stand

James Linnemann 35

DD

Dec. 2001 Director’s Review

DMA/PIO

ECL drivers 500 MHz SBC

VME Interface

L2 Alpha Board

Biggest difficulties inSBC section of board

Mfg. ProblemsObsolete partsDebugging difficulty

Separate SBC and IO

James Linnemann 36

DD

Dec. 2001 Director’s Review

L2eta people:Bob Hirosky: UVa (Management, specs., device software Alpha transparency)Pierre Petroff, Philippe Cros, Bernard Lavigne: ORSAY(Management, engineering, 9U board production, prototype$)Drew Baden: UMD (Functional reqs., 1st round designs)

-Minimize exposure to SBC difficulties-Remove dependence on short lifetime products-Maintain compatibility w/ Alpha

B. Hirosky 10/17/00

‘L2ßeta’ CPU Concept Commercial6U CPUCardW/ UII on board

FPGAMBUS P I/O + DMAECL Latch Driver

MBUSStraight pass to VME

Latches + ECL Drivers

Cable to PMC/PCI

L2eta “group” formed in Jan 2001

Proposed Oct 2000 Baden/Hirosky

James Linnemann 37

DD

Dec. 2001 Director’s Review

                         

I !like Ike!

James Linnemann 38

DD

Dec. 2001 Director’s Review

L2 Alpha BoardL2 Alpha BoardCommissioningCommissioning

•Second Production ( 2 samples ):•DMA fixes incorporated in layout

•Moved CIA BGA to a socket

–Risky, but can’t replace this BGA if it fails

•new supplier for raw boards

•better assembly (failures diagnosed; site visits)

–DØ pre-production at FNAL – no prompt

–UM board up/down CIA SOCKET PROBLEMS

–11 to follow: earliest mid-SeptemberProbable

decisi

on:

Drop sock

et, ris

k

Mountin

g CIA

James Linnemann 39

DD

Dec. 2001 Director’s Review

6U boardCompact PCI

9U board64 bit

<2MHzVME

FPGA

EC

L D

rive

rs

128 bits~20 MHzMBus

32 bits66 MHz (max)Local bus64 bits

33 MHzPCI

J1

J2

J3

J5

J4

PLX9656

UII

Dri

vers

Dri

vers

Clk(s)/roms

IDE

L2eta: 933MHz CPU; 64b 66MHz PCI

SPY

James Linnemann 40

DD

Dec. 2001 Director’s Review

SBC •Single/Dual PIII up to 933MHz•64-bit, 66MHz PCI•Mech. shock tolerance 50g for transit (immune to ‘Eisenhower effect’?)

James Linnemann 41

DD

Dec. 2001 Director’s Review

PLX9656

ECL

Secondary PCI BUS

J1

UII PIO DMA TSI

pcidev

API

HardwareInterface

Tundra

UIIB

J2

J3

PCI Front End64bit Master/Target

Add-on Bus

MDusAD/DA

VMEnode

FIFOsMBus

A/D + Control

Bridgedevice

Scalernode

Add-onBus Interface

Linux

-software compatibility!-programmer conservation

PLX CFG ROM

Xilinx FPGA/Verilog

James Linnemann 42

DD

Dec. 2001 Director’s Review

mb_clk_ingmb_clk_inpci_clk_ingpci_clk_in

alen_bigendn_blastbreqi

n_ads

n_dendmpaf_eotdp<3..0>

breqon_bterm

lad<31..0>n_lbe<3..0>lholdlholda

n_readyn_waitn_linto

n_lw_rn_lserr

n_dt_r

n_ccslclkn_linti

n_dack<1..0>n_dreq<1..0>

n_lb_resetuseri_llockiusero_llockopmereq

mba<31..0>mod_done<18..0>ev_loaded<3..0>n_bossreq

bossgrinn_bossoutbossgrout

n_dstroben_bossin

doneoutn_ddoneoutn_rd_wrn_startload

n_bufout1n_bufout0fifoemptyin

n_bufin1n_bufin0

n_ddonein

n_resetoutn_mbmastern_crmaster

n_fifoemptyoutn_resetin

n_mbenn_mbdatdirn_mbadddir

mbd<127..0>

vbddonel2_answer_readyext_tsi_int_reqj2_resv_out<7..0>

n_ga<4..0>test_out<3..0>

j2_resv_in<7..0>n_gap

tsi_out<31..0>

vbd_start_req

XCV405E

LOCAL BUS INTERFACE

Address decoder

State machine

TSI Block

TSI registers

State machine

Address decoder

State machine

MAGIC BUS

PIO Block

PIO registers

State machine

Address translator

Add mapper

Add translator

fifo_fullfifo_emptydma_accessecl_access

pci_accessmb_access

plx_accessvme_access

vme_activity

n_vme_rst_inn_sw_rst_offn_sw_rst_on

n_vme_rst_out

n_led_reset

test_pt<31..0>TEST POINTS

Rst & Display & Clock

Reset management

Display management

Clock management

James Linnemann 43

DD

Dec. 2001 Director’s Review

LOCAL BUS INTERFACE

Address decoder

State machine

PCI In Address Register

32

PCI Out Address Register

32ale

n_bigendn_blastbreqi

n_ads

n_dendmpaf_eotdp<3..0>

breqon_bterm

lad<31..0>

n_lbe<3..0>lholdlholda

n_readyn_waitn_linto

n_lw_rn_lserr

n_dt_r

n_ccslclkn_linti

n_dack<1..0>n_dreq<1..0>

n_lb_resetuseri_llockiusero_llockopmereq

pci_en_wr_mem_1

pci_ en_rd_mem_1

pci_ en_buf_mem_1

pci_ en_buf_mem_n

CombinatorialLogics

pci_ en_wr

pci_ en_rd

int_pci_mb

int_mb_pci

dma_pci_mb

dma_pci_mb

data_in<31..0>

data_out<31..0>

pci_add_out<31..0>

pci_add_in<31..0>

James Linnemann 44

DD

Dec. 2001 Director’s Review

Address decoder

State machine

32

32

mb_en_wr_mem_1

mb_en_rd_mem_1

mb_en_buf_mem_1

mb_en_buf_mem_n

CombinatorialLogics

mb_en_wr

mb_en_rd

int_pci_mb

int_mb_pci

dma_pci_mb

dma_pci_mb

MAGIC BUS INTERFACE

mod_done<18..0>ev_loaded<3..0>n_bossreq

bossgrinn_bossoutbossgrout

n_dstroben_bossin

doneoutn_ddoneoutn_rd_wrn_startload

n_bufout1n_bufout0fifoemptyin

n_bufin1n_bufin0

n_ddonein

n_resetoutn_mbmastern_crmaster

n_fifoemptyoutn_resetin

n_mbenn_mbdatdirn_mbadddir

mbd<127..0>

Magic Bus In Address Register

Magic Bus Out Address Register

mb_add_in<31..0>

data_out<127..0>

mba<31..0>

data_in<127..0>

mb_add_out<31..0>

James Linnemann 45

DD

Dec. 2001 Director’s Review

Production/Assembly

Assembly by Thomson (Thales) of France• produce PCB (subcontract)• assemble components• component acquisition under study• design/manufacture of mechanical components

• rails for 6U card• stiffeners for 9U card• front panel (ORSAY design)(Mech. drawings in early December)

• electrical testing (JTAG scans)•Xilinx / PLX / UII support interface

James Linnemann 46

DD

Dec. 2001 Director’s Review

Cost to build L2eta system

9U PCB + Mech. $1200

9U Components $1050

9U Assembly $200

9U Total $2450

SBC $3000

Production prototypes (2) $12,500

30 boards ~$165,000

~$5450/board

James Linnemann 47

DD

Dec. 2001 Director’s Review

number of STCs/TFCs

STT J3 backplane

CPU

VBD

TFC

STC

STC

STC

STC

STC

FRC

STC

STC

STC

STC

TFC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

modified J3 backplane

CPU

VBD

TFC

STC

STC

STC

STC

STC

STC

STC

STC

STC

FRC

STC

STC

STC

STC

STC

STC

STC

TFC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

14 TFC/STC slots/crate

2 TFC slots, 16 TFC/STC slots/crate

James Linnemann 48

DD

Dec. 2001 Director’s Review

FRC outputsmain logic

L3 buffer control

link tx

SCL receiver

max 15 LVDS

out(1 each for STC/TFC)

James Linnemann 49

DD

Dec. 2001 Director’s Review

Geometry 1 6 layers rmin = 15 mm layer 0: 128/256 strips 44 fibers/crate 11 STCs

layer HDI/

0 12 6

1 18 6

2 12 4

3 18 4

4 24 4

5 30 4

b 0 1 mm 2 mm

pT = 100.0% 99.2% 97.3%

pT = 1.5 GeV 99.0% 98.6% 97.2%

b 0 1 mm 2 mm

pT = 91.8% 90.3% 83.5%

pT = 1.5 GeV 91.1% 89.2% 83.2%

James Linnemann 50

DD

Dec. 2001 Director’s Review

Geometry 2 6 layers rmin = 20 mm layer 0: 256 strips 44 fibers/crate 11 STCs

layer HDI/

0 12 6

1 18 6

2 12 4

3 18 4

4 24 4

5 30 4

b 0 1 mm 2 mm

pT = 99.4% 98.2% 96.3%

pT = 1.5 GeV 98.3% 97.7% 96.0%

James Linnemann 51

DD

Dec. 2001 Director’s Review

Geometry 3 6 layers rmin = 19 mm layer 0: 256 strips layer 1: 384 strips 40 fibers/crate 10 STCs

layer HDI/

0 12 6

1 12 6

2 12 4

3 18 4

4 24 4

5 30 4

b 0 1 mm 2 mm

pT = 100% 100% 100%

pT = 1.5 GeV 100% 100% 100%

James Linnemann 52

DD

Dec. 2001 Director’s Review

Does it work?

crate 6 1

sectors 12&1 1 1&2 2 2&3

fibers 14 8 10 8 14

STCs 4 2 3 1* 4

* 2 fibers to other STCs

9 STCs 8 STCs

NO

James Linnemann 53

DD

Dec. 2001 Director’s Review

18 Sectors

b 0 1 mm 2 mm

pT = 100% 100% 100%

pT = 1.5 GeV 100% 100% 100%

crate 6 1 sectors 18 & 1 1 & 2 2 2 & 3 3 & 4 HDIs/side 14 8 10 8 14 fibers 14 8 10 8 14 STCs 4 2 3 2 4

Crate 1

CP

U

VB

D

term

ina

tors

TF

C-C

TF

C-B

S T C

S T C

S T C

S T C

S T C

FR

C

S T C

S T C

S T C

S T C

S T C

S T C

TF

C-A

term

ina

tors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Crate 6

CP

U

VB

D

term

ina

tors

TF

C

TF

C

S T C

S T C

S T C

S T C

S T C

FR

C

S T C

S T C

S T C

S T C

S T C

S T C

TF

C

term

ina

tors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

6 or 7 STC inputs OK

James Linnemann 54

DD

Dec. 2001 Director’s Review

Geometry 4 6 layers rmin = 15 mm layer 0: 384 strips (pinwheel) layer 3,5: 80 m or 768 strips 34 fibers/crate 9 STCs

layer HDI/

0 6 6

1 12 6

2 12 4

3 12 4

4 24 4

5 24 4

b 0 1 mm 2 mm

pT = 100% 100% 98.4%

pT = 1.5 GeV 100% 99.6% 98.1%

OK

James Linnemann 55

DD

Dec. 2001 Director’s Review

Pinwheel Option Alayer HDI fiberscra

teSTCscra

te

0 6 12 6

1 12 6 6

2 12 4 4

3 18 4 6

4 24 4 8

5 30 4 10

total 40 10

not OK with 12 or 18 sectors

layer 0 sensors must go to 3 (12 sectors) or 4 (18 sectors) TFCs else acceptance too low

James Linnemann 56

DD

Dec. 2001 Director’s Review

Pinwheel Option B

layer HDI fiberscrate

STCscrate

0 8 12 8

1 12 6 6

2 12 4 4

3 18 4 6

4 24 4 8

5 30 4 10

total 42 11

don’t know yet

James Linnemann 57

DD

Dec. 2001 Director’s Review

Castellated Geometry Option

layer HDI fiberscrate

STCscrate

0 12 12 (6) 12 (6)

1 12 6 6

2 12 4 4

3 18 4 6

4 24 4 8

5 30 4 10

total 46 (40) 12 (10)

similar to geometry 3 18 sectors OK?

James Linnemann 58

DD

Dec. 2001 Director’s Review

Other Issues increase in layers/HDIs per sector

need bigger tables in TFC memory

more roads/layersmore/upgraded TFCs

higher silicon occupancymodify fit algorithm

new stage to select patterns?

determination of z-vertexbenefits (?)

dedicated hardware in STT or in L2CTT

James Linnemann 59

DD

Dec. 2001 Director’s Review

Summary of Constraints max 15 STC+TFC

more than 14 STC+TFC require new backplane

max 8 STC inputs per TFCaffects sector definitions

20-degree sectors (3 TFC/crate)

resources in TFC daughterboardLUT memory

processing power

James Linnemann 60

DD

Dec. 2001 Director’s Review

As of yesterday… layers 2-5

640 strips, 60 m, 12-18-24-30

layer 1 384 strips, 12 , 6 HDI/

layer 0rmin = 18 mm

12 HDI/pinwheel

A: 384 strips, 6 B: 256 strips, 8

castellated geometry?

James Linnemann 61

DD

Dec. 2001 Director’s Review

6U boardCompact PCI

9U board64 bit

<2MHzVME

FPGA

EC

L D

rive

rs

128 bits~20 MHzMBus

32 bits66 MHz (max)Local bus64 bits

33 MHzPCI

J1

J2

J3

J5

J4

PLX9656

UII

Dri

vers

Dri

vers

Clk(s)/roms

•PIII Compact PCI card

•9U card with “custom” devices (3 BGA’s)

–Universe Chip VME interface

–commercial 64-bit PCI interface chip

–MBus and other logic in FPGA

Basic Idea