310
The Chaplygin gas a model for dark energy Ugo Moschella Universit ` a dell’Insubria - Como - Italia School of Cosmology – Cargese2008 The Chaplygin gas – p. 1/69

The Chaplygin gas

Embed Size (px)

Citation preview

Page 1: The Chaplygin gas

The Chaplygin gasa model for dark energy

Ugo Moschella

Universita dell’Insubria - Como - Italia

School of Cosmology – Cargese2008

The Chaplygin gas – p. 1/69

Page 2: The Chaplygin gas

Plan of the talk

The Chaplygin gas – p. 2/69

Page 3: The Chaplygin gas

Plan of the talk

Generalities

The Chaplygin gas – p. 2/69

Page 4: The Chaplygin gas

Plan of the talk

Generalities

Some remarkable properties of the Chaplygin gas

The Chaplygin gas – p. 2/69

Page 5: The Chaplygin gas

Plan of the talk

Generalities

Some remarkable properties of the Chaplygin gas

Chaplygin cosmology: theory and observations

The Chaplygin gas – p. 2/69

Page 6: The Chaplygin gas

Plan of the talk

Generalities

Some remarkable properties of the Chaplygin gas

Chaplygin cosmology: theory and observations

Tachyon cosmological models (depending on time)

The Chaplygin gas – p. 2/69

Page 7: The Chaplygin gas

Generalities

The Chaplygin gas – p. 3/69

Page 8: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

The Chaplygin gas – p. 4/69

Page 9: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

Most of the universe energy is made of it

The Chaplygin gas – p. 4/69

Page 10: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

Most of the universe energy is made of it

It does not cluster gravitationally

The Chaplygin gas – p. 4/69

Page 11: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

Most of the universe energy is made of it

It does not cluster gravitationally

It has (effective?) negative pressure

The Chaplygin gas – p. 4/69

Page 12: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

Most of the universe energy is made of it

It does not cluster gravitationally

It has (effective?) negative pressure

The energy of the quantum vacuum?

The Chaplygin gas – p. 4/69

Page 13: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

Most of the universe energy is made of it

It does not cluster gravitationally

It has (effective?) negative pressure

The energy of the quantum vacuum?

A modification of gravity?

The Chaplygin gas – p. 4/69

Page 14: The Chaplygin gas

Dark energy: what do we know?

A new type of nonbaryonic dark "substance" totallyunknown in laboratory experiments: new physics.

Most of the universe energy is made of it

It does not cluster gravitationally

It has (effective?) negative pressure

The energy of the quantum vacuum?

A modification of gravity?

The signature of extra-dimensions?

The Chaplygin gas – p. 4/69

Page 15: The Chaplygin gas

General Relativistic Cosmology

The Chaplygin gas – p. 5/69

Page 16: The Chaplygin gas

General Relativistic Cosmology

Rµν − 1

2Rgµν = 8πGTµν

The Chaplygin gas – p. 5/69

Page 17: The Chaplygin gas

General Relativistic Cosmology

Rµν − 1

2Rgµν = 8πGTµν

Homogeneity and isotropy

The Chaplygin gas – p. 5/69

Page 18: The Chaplygin gas

General Relativistic Cosmology

Rµν − 1

2Rgµν = 8πGTµν

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

The Chaplygin gas – p. 5/69

Page 19: The Chaplygin gas

General Relativistic Cosmology

Rµν − 1

2Rgµν = 8πGTµν

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

The Chaplygin gas – p. 5/69

Page 20: The Chaplygin gas

General Relativistic Cosmology

Rµν − 1

2Rgµν = 8πGTµν

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

Tµν =

ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

in comoving coordinates

The Chaplygin gas – p. 5/69

Page 21: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν = 8πGTµν

The Chaplygin gas – p. 6/69

Page 22: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν − Λgµν = 8πGTµν

The Chaplygin gas – p. 6/69

Page 23: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν − Λgµν = 8πGTµν

Rµν − 1

2Rgµν = 8πGTµν + Λgµν

The Chaplygin gas – p. 6/69

Page 24: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν − Λgµν = 8πGTµν

Rµν − 1

2Rgµν = 8πGTµν

The Chaplygin gas – p. 6/69

Page 25: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν − Λgµν = 8πGTµν

Rµν − 1

2Rgµν = 8πGTµν

Tµν = (ρ + p)uµuν − pgµν

The Chaplygin gas – p. 6/69

Page 26: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν − Λgµν = 8πGTµν

Rµν − 1

2Rgµν = 8πGTµν

Tµν = (ρ + p)uµuν − pgµν p = −ρ

The Chaplygin gas – p. 6/69

Page 27: The Chaplygin gas

Cosmological constant

Rµν − 1

2Rgµν − Λgµν = 8πGTµν

Rµν − 1

2Rgµν = 8πGTµν

Tµν = (ρ + p)uµuν − pgµν p = −ρ

Tµν = 18πG

Λ 0 0 0

0 −Λ 0 0

0 0 −Λ 0

0 0 0 −Λ

in comoving coordinates

The Chaplygin gas – p. 6/69

Page 28: The Chaplygin gas

Cosmology

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

The Chaplygin gas – p. 7/69

Page 29: The Chaplygin gas

Cosmology

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

Raychaudhuri eq.a

a= −4

3πG(ρ + 3p) +

Λ

3

The Chaplygin gas – p. 7/69

Page 30: The Chaplygin gas

Cosmology

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

Raychaudhuri eq.a

a= −4

3πG(ρ + 3p) +

Λ

3

Friedmann eq.

(

a

a

)2

=8

3πGρ +

Λ

3− K

a2

The Chaplygin gas – p. 7/69

Page 31: The Chaplygin gas

Cosmology

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

Raychaudhuri eq.a

a= −4

3πG(ρ + 3p) +

Λ

3

Friedmann eq.

(

a

a

)2

=8

3πGρ +

Λ

3− K

a2

Together imply energy conservation for each component

The Chaplygin gas – p. 7/69

Page 32: The Chaplygin gas

Cosmology

ds2 = dt2 − a(t)2(

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2))

Tµν = (ρ + p)uµuν − pgµν

Raychaudhuri eq.a

a= −4

3πG(ρ + 3p) +

Λ

3

Friedmann eq.

(

a

a

)2

=8

3πGρ +

Λ

3− K

a2

ρi = −3a

a(ρi + pi)

The Chaplygin gas – p. 7/69

Page 33: The Chaplygin gas

Spherical universe

The Chaplygin gas – p. 8/69

Page 34: The Chaplygin gas

Spherical universe

dl2 = dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2)

= 1K

(

dχ2 + sin2 χ(dθ2 + sin2 θdφ2))

The Chaplygin gas – p. 8/69

Page 35: The Chaplygin gas

Hyperbolic universe

The Chaplygin gas – p. 9/69

Page 36: The Chaplygin gas

Hyperbolic universe

The Chaplygin gas – p. 9/69

Page 37: The Chaplygin gas

Hyperbolic universe

x0 = A cosh χ

x1 = A sinh χ sin θ sin φ

x2 = A sinh χ sin θ cos φ

x3 = A sinh χ cos θ

x20 − x2

1 − x22 − x2

3 = A2

The Chaplygin gas – p. 9/69

Page 38: The Chaplygin gas

Hyperbolic universe

x0 = A cosh χ

x1 = A sinh χ sin θ sin φ

x2 = A sinh χ sin θ cos φ

x3 = A sinh χ cos θ

x20 − x2

1 − x22 − x2

3 = A2

dl2 = 1K

(

dχ2 + sinh2 χ(dθ2 + sin2 θdφ2))

= dr2

1+Kr2 + r2(dθ2 + sin2 θdφ2)

The Chaplygin gas – p. 9/69

Page 39: The Chaplygin gas

Flat universe

The Chaplygin gas – p. 10/69

Page 40: The Chaplygin gas

Flat universe

dl2 = dr2 + r2(dθ2 + sin2 θ dφ2)

The Chaplygin gas – p. 10/69

Page 41: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

The Chaplygin gas – p. 11/69

Page 42: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

aρ + 3aρ = 0

The Chaplygin gas – p. 11/69

Page 43: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

aρ + 3aρ = 1a2

ddt(ρa3) = 0

The Chaplygin gas – p. 11/69

Page 44: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

aρ + 3aρ = 1a2

ddt(ρa3) = 0

ρdust(t)a3(t) = const

The Chaplygin gas – p. 11/69

Page 45: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

aρ + 3aρ = 1a2

ddt(ρa3) = 0

ρdust(t)a3(t) = const

ρdust(t) = ρ0a30

a3(t)

The Chaplygin gas – p. 11/69

Page 46: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

aρ + 3aρ = 1a2

ddt(ρa3) = 0

ρdust(t)a3(t) = const

ρdust(t) = ρ0a30

a3(t) = ρ0(1 + z)3

The Chaplygin gas – p. 11/69

Page 47: The Chaplygin gas

Dust: p=0

aρ + 3a(ρ + p) = 0

aρ + 3aρ = 1a2

ddt(ρa3) = 0

ρdust(t)a3(t) = const

ρdust(t) = ρ0a30

a3(t) = ρ0(1 + z)3

t0 = now

The Chaplygin gas – p. 11/69

Page 48: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

The Chaplygin gas – p. 12/69

Page 49: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

aρ + 4aρ = 0

The Chaplygin gas – p. 12/69

Page 50: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

aρ + 4aρ = 1a3

ddt(ρa4) = 0

The Chaplygin gas – p. 12/69

Page 51: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

aρ + 4aρ = 1a3

ddt(ρa4) = 0

ρradiation(t)a4(t) = const

The Chaplygin gas – p. 12/69

Page 52: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

aρ + 4aρ = 1a3

ddt(ρa4) = 0

ρradiation(t)a4(t) = const

ρradiation(t) = ρ0a40

a4(t)

The Chaplygin gas – p. 12/69

Page 53: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

aρ + 4aρ = 1a3

ddt(ρa4) = 0

ρradiation(t)a4(t) = const

ρradiation(t) = ρ0a40

a4(t) = ρ0(1 + z)4

The Chaplygin gas – p. 12/69

Page 54: The Chaplygin gas

Radiation: p =ρ3

aρ + 3a(ρ + p) = 0

aρ + 4aρ = 1a3

ddt(ρa4) = 0

ρradiation(t)a4(t) = const

ρradiation(t) = ρ0a40

a4(t) = ρ0(1 + z)4

t0 = now

The Chaplygin gas – p. 12/69

Page 55: The Chaplygin gas

Cosmological constant: p = −ρ

aρ + 3a(ρ + p) = 0

The Chaplygin gas – p. 13/69

Page 56: The Chaplygin gas

Cosmological constant: p = −ρ

aρ + 3a(ρ + p) = 0

aρ = 0

The Chaplygin gas – p. 13/69

Page 57: The Chaplygin gas

Cosmological constant: p = −ρ

aρ + 3a(ρ + p) = 0

aρ = 0

ρΛ = const

The Chaplygin gas – p. 13/69

Page 58: The Chaplygin gas

Cosmological constant: p = −ρ

aρ + 3a(ρ + p) = 0

aρ = 0

ρΛ = const

for every time

The Chaplygin gas – p. 13/69

Page 59: The Chaplygin gas

The search for Ω

A set of dimensionless parameters.

H2 =

(

a

a

)2

=8

3πG(ρM + ρR + ρΛ) − K

a2

The Chaplygin gas – p. 14/69

Page 60: The Chaplygin gas

The search for Ω

A set of dimensionless parameters.

H2 =

(

a

a

)2

=8

3πG(ρM + ρR + ρΛ) − K

a2

=8

3πG

(

ρM0a3

0

a3(t)+ a0

ρR0a4

0

a4(t)+ ρΛ +

ρK0a20

a2(t)

)

The Chaplygin gas – p. 14/69

Page 61: The Chaplygin gas

The search for Ω

A set of dimensionless parameters.

H2 =

(

a

a

)2

=8

3πG(ρM + ρR + ρΛ) − K

a2

=8

3πG

(

ρM0a3

0

a3(t)+ a0

ρR0a4

0

a4(t)+ ρΛ +

ρK0a20

a2(t)

)

H2

H20

= ΩM0(1 + z)3 + ΩR0(1 + z)4 + ΩΛ0 + ΩK0(1 + z)2

The Chaplygin gas – p. 14/69

Page 62: The Chaplygin gas

The search for Ω

A set of dimensionless parameters.

H2 =

(

a

a

)2

=8

3πG(ρM + ρR + ρΛ) − K

a2

=8

3πG

(

ρM0a3

0

a3(t)+ a0

ρR0a4

0

a4(t)+ ρΛ +

ρK0a20

a2(t)

)

H2

H20

= ΩM0(1 + z)3 + ΩR0(1 + z)4 + ΩΛ0 + ΩK0(1 + z)2

Ωi0 =8πG

3H20

ρi0

The Chaplygin gas – p. 14/69

Page 63: The Chaplygin gas

The search for Ω

A set of dimensionless parameters.

H2 =

(

a

a

)2

=8

3πG(ρM + ρR + ρΛ) − K

a2

=8

3πG

(

ρM0a3

0

a3(t)+ a0

ρR0a4

0

a4(t)+ ρΛ +

ρK0a20

a2(t)

)

H2

H20

= ΩM0(1 + z)3 + ΩR0(1 + z)4 + ΩΛ0 + ΩK0(1 + z)2

H20

H20

= ΩM0 + ΩR0 + ΩΛ0 + ΩK0 = 1

The Chaplygin gas – p. 14/69

Page 64: The Chaplygin gas

Ωi0 =8πG

3H20

ρi0

The Chaplygin gas – p. 15/69

Page 65: The Chaplygin gas

Ωi0 =8πG

3H20

ρi0

ΩΛ0 = Dark Energy ≃ 0.7

The Chaplygin gas – p. 15/69

Page 66: The Chaplygin gas

Ωi0 =8πG

3H20

ρi0

ΩΛ0 = Dark Energy ≃ 0.7

ΩM0 = baryons and NBDM ≃ 0.25

= ΩB0 + ΩDM0 ≃ 0.05 + 0.20

The Chaplygin gas – p. 15/69

Page 67: The Chaplygin gas

Ωi0 =8πG

3H20

ρi0

ΩΛ0 = Dark Energy ≃ 0.7

ΩM0 = baryons and NBDM ≃ 0.25

= ΩB0 + ΩDM0 ≃ 0.05 + 0.20

ΩR0 = CMB ≃ 0.0001

The Chaplygin gas – p. 15/69

Page 68: The Chaplygin gas

Ωi0 =8πG

3H20

ρi0

ΩΛ0 = Dark Energy ≃ 0.7

ΩM0 = baryons and NBDM ≃ 0.25

= ΩB0 + ΩDM0 ≃ 0.05 + 0.20

ΩR0 = CMB ≃ 0.0001

ΩK0 = Space Curvature ≃ 0

The Chaplygin gas – p. 15/69

Page 69: The Chaplygin gas

The fate of the ΛCDM universe

H2 =8

3πG

(

ρM0

a3(t)+

ρR0

a4(t)+ ρΛ +

ρK0

a2(t)

)

The Chaplygin gas – p. 16/69

Page 70: The Chaplygin gas

The fate of the ΛCDM universe

H2 =8

3πG

(

ρM0

a3(t)+

ρR0

a4(t)+ ρΛ +

ρK0

a2(t)

)

H2 → 8

3πGρΛ

The Chaplygin gas – p. 16/69

Page 71: The Chaplygin gas

Only Λ > 0

a =1

3Λ a

The Chaplygin gas – p. 17/69

Page 72: The Chaplygin gas

Only Λ > 0

a =1

3Λ a a2 =

1

3Λ a2 − K

The Chaplygin gas – p. 17/69

Page 73: The Chaplygin gas

Only Λ > 0

a =1

3Λ a a2 =

1

3Λ a2 − K

K = −1 a(t) =√

3Λ sinh

Λ3 t hyperbolic

The Chaplygin gas – p. 17/69

Page 74: The Chaplygin gas

Only Λ > 0

a =1

3Λ a a2 =

1

3Λ a2 − K

K = −1 a(t) =√

3Λ sinh

Λ3 t hyperbolic

K = 0 a(t) = exp√

Λ3 t f lat

The Chaplygin gas – p. 17/69

Page 75: The Chaplygin gas

Only Λ > 0

a =1

3Λ a a2 =

1

3Λ a2 − K

K = −1 a(t) =√

3Λ sinh

Λ3 t hyperbolic

K = 0 a(t) = exp√

Λ3 t f lat

K = 1 a(t) =√

3Λ cosh

Λ3 t spherical

The Chaplygin gas – p. 17/69

Page 76: The Chaplygin gas

de Sitter universe

Md+1 ηµν = diag(1,−1, . . . ,−1)

The Chaplygin gas – p. 18/69

Page 77: The Chaplygin gas

de Sitter universe

Md+1 ηµν = diag(1,−1, . . . ,−1)

x20 − x2

1 − x22 − x2

3 − x24 = −R2

The Chaplygin gas – p. 18/69

Page 78: The Chaplygin gas

de Sitter universe

Md+1 ηµν = diag(1,−1, . . . ,−1)

x20 − x2

1 − x22 − x2

3 − x24 = −R2

The Chaplygin gas – p. 18/69

Page 79: The Chaplygin gas

de Sitter universe

Md+1 ηµν = diag(1,−1, . . . ,−1)

x20 − x2

1 − x22 − x2

3 − x24 = −R2

The Chaplygin gas – p. 18/69

Page 80: The Chaplygin gas

Spherical de Sitter

The Chaplygin gas – p. 19/69

Page 81: The Chaplygin gas

Spherical de Sitter

X0 = R sinh tR

Xi = R cosh tR ωi

The Chaplygin gas – p. 19/69

Page 82: The Chaplygin gas

Spherical de Sitter

X0 = R sinh tR

Xi = R cosh tR ωi

|~ω|2 = 1

The Chaplygin gas – p. 19/69

Page 83: The Chaplygin gas

Spherical de Sitter

X0 = R sinh tR

Xi = R cosh tR ωi

|~ω|2 = 1

R =

3

Λ

The Chaplygin gas – p. 19/69

Page 84: The Chaplygin gas

Spherical de Sitter

X0 = R sinh tR

Xi = R cosh tR ωi

|~ω|2 = 1

R =

3

Λ

ds2 = dX20 − dX2

1 − . . . dX24 =

= dt2 − R2 cosh2 tR

(

dχ2 + sin2 χ(dθ2 + sin2 θdφ2))

The Chaplygin gas – p. 19/69

Page 85: The Chaplygin gas

Flat de Sitter

The Chaplygin gas – p. 20/69

Page 86: The Chaplygin gas

Flat de Sitter

X0 + Xd = R exp tR

The Chaplygin gas – p. 20/69

Page 87: The Chaplygin gas

Flat de Sitter

X0 + Xd = R exp tR

X0 = R sinh tR + 1

2RetR |~x|2

Xi = exp(

tR

)

xi

Xd = R cosh tR − 1

2RetR |~x|2

The Chaplygin gas – p. 20/69

Page 88: The Chaplygin gas

Flat de Sitter

X0 + Xd = R exp tR

X0 = R sinh tR + 1

2RetR |~x|2

Xi = exp(

tR

)

xi

Xd = R cosh tR − 1

2RetR |~x|2

ds2 = dX20 − dX2

1 − . . . dX24 =

= dt2 − exp 2tR

(

dx21 + dx2

2 + dx23

)

The Chaplygin gas – p. 20/69

Page 89: The Chaplygin gas

Open de Sitter

The Chaplygin gas – p. 21/69

Page 90: The Chaplygin gas

Open de Sitter

X0 = R sinh tR coshχ

X1 = R sinh tR sinh χ sin θ sin φ

X2 = R sinh tR sinh χ sin θ cos φ

X3 = R sinh tR sinh χ cos θ

X4 = R cosh tR

The Chaplygin gas – p. 21/69

Page 91: The Chaplygin gas

Open de Sitter

X0 = R sinh tR coshχ

X1 = R sinh tR sinh χ sin θ sin φ

X2 = R sinh tR sinh χ sin θ cos φ

X3 = R sinh tR sinh χ cos θ

X4 = R cosh tR

ds2 = dX20 − dX2

1 − . . . dX24 =

= dt2 − R2 sinh2 tR

(

dχ2 + sinh2 χ(dθ2 + sin2 θdφ2))

The Chaplygin gas – p. 21/69

Page 92: The Chaplygin gas

Open de Sitter

X0 = R sinh tR coshχ

X1 = R sinh tR sinh χ sin θ sin φ

X2 = R sinh tR sinh χ sin θ cos φ

X3 = R sinh tR sinh χ cos θ

X4 = R cosh tR

ds2 = dX20 − dX2

1 − . . . dX24 =

= dt2 − R2 sinh2 tR

(

dχ2 + sinh2 χ(dθ2 + sin2 θdφ2))

The Chaplygin gas – p. 21/69

Page 93: The Chaplygin gas

Candidates for dark energy

The Chaplygin gas – p. 22/69

Page 94: The Chaplygin gas

Candidates for dark energy

The cosmological constant Λ → p = −ρ

The Chaplygin gas – p. 22/69

Page 95: The Chaplygin gas

Candidates for dark energy

The cosmological constant Λ → p = −ρ

A perfect fluid → p = wρ ; −1 < w < 0;

w = −1/3 cosmic strings, w = −2/3 domain walls.

The Chaplygin gas – p. 22/69

Page 96: The Chaplygin gas

Candidates for dark energy

The cosmological constant Λ → p = −ρ

A perfect fluid → p = wρ ; −1 < w < 0;

w = −1/3 cosmic strings, w = −2/3 domain walls.

Dynamical dark energy: w 6= const.Quintessence scalar field: = 1

2(∇µΦ)2 − V (Φ)

“k - essence” field (tachyons?) L ∼ K(∇µΦ)

Braneworld models. DGP model

The Chaplygin gas – p. 22/69

Page 97: The Chaplygin gas

Candidates for dark energy

The cosmological constant Λ → p = −ρ

A perfect fluid → p = wρ ; −1 < w < 0;

w = −1/3 cosmic strings, w = −2/3 domain walls.

Dynamical dark energy: w 6= const.Quintessence scalar field: = 1

2(∇µΦ)2 − V (Φ)

“k - essence” field (tachyons?) L ∼ K(∇µΦ)

Braneworld models. DGP model

Dark energy with w < −1

The Chaplygin gas – p. 22/69

Page 98: The Chaplygin gas

Candidates for dark energy

The cosmological constant Λ → p = −ρ

A perfect fluid → p = wρ ; −1 < w < 0;

w = −1/3 cosmic strings, w = −2/3 domain walls.

Dynamical dark energy: w 6= const.Quintessence scalar field: = 1

2(∇µΦ)2 − V (Φ)

“k - essence” field (tachyons?) L ∼ K(∇µΦ)

Braneworld models. DGP model

Dark energy with w < −1

UDM-quartessence

The Chaplygin gas – p. 22/69

Page 99: The Chaplygin gas

Candidates for dark energy

The cosmological constant Λ → p = −ρ

A perfect fluid → p = wρ ; −1 < w < 0;

w = −1/3 cosmic strings, w = −2/3 domain walls.

Dynamical dark energy: w 6= const.Quintessence scalar field: = 1

2(∇µΦ)2 − V (Φ)

“k - essence” field (tachyons?) L ∼ K(∇µΦ)

Braneworld models. DGP model

Dark energy with w < −1

The Chaplygin gas

The Chaplygin gas – p. 22/69

Page 100: The Chaplygin gas

Some remarkable properties ofthe Chaplygin gas

The Chaplygin gas – p. 23/69

Page 101: The Chaplygin gas

The Chaplygin gas

p = −A

ρ(Chaplygin, 1904)

The Chaplygin gas – p. 24/69

Page 102: The Chaplygin gas

The Chaplygin gas

p = −A

ρ(Chaplygin, 1904)

Integrable - large symmetry group

The Chaplygin gas – p. 24/69

Page 103: The Chaplygin gas

The Chaplygin gas

p = −A

ρ(Chaplygin, 1904)

Integrable - large symmetry group

Obtainable from Nambu-Goto action for d - branesmoving in a (d + 2) - dimensional spacetime

The Chaplygin gas – p. 24/69

Page 104: The Chaplygin gas

The Chaplygin gas

p = −A

ρ(Chaplygin, 1904)

Integrable - large symmetry group

Obtainable from Nambu-Goto action for d - branesmoving in a (d + 2) - dimensional spacetime

Admits a supersymmetric generalization (only knownfluid)

The Chaplygin gas – p. 24/69

Page 105: The Chaplygin gas

Chaplygin gas from branes

J. Goldstone, M. Bordeman, J. Hoppe

The Chaplygin gas – p. 25/69

Page 106: The Chaplygin gas

Chaplygin gas from branes

Example: string in 3-dimensional spacetime.

The Chaplygin gas – p. 25/69

Page 107: The Chaplygin gas

Chaplygin gas from branes

Example: string in 3-dimensional spacetime.Light cone gauge Hamiltonian density:

H =1

2

[Π2 + (∂σx)2]dσ

The Chaplygin gas – p. 25/69

Page 108: The Chaplygin gas

Chaplygin gas from branes

Example: string in 3-dimensional spacetime.Light cone gauge Hamiltonian density:

H =1

2

[Π2 + (∂σx)2]dσ

Hamilton equations: ∂τx = Π,

The Chaplygin gas – p. 25/69

Page 109: The Chaplygin gas

Chaplygin gas from branes

Example: string in 3-dimensional spacetime.Light cone gauge Hamiltonian density:

H =1

2

[Π2 + (∂σx)2]dσ

Hamilton equations: ∂τx = Π, ∂2τx − ∂2

σx = 0

The Chaplygin gas – p. 25/69

Page 110: The Chaplygin gas

Chaplygin gas from branes

Example: string in 3-dimensional spacetime.Light cone gauge Hamiltonian density:

H =1

2

[Π2 + (∂σx)2]dσ

Hamilton equations: ∂τx = Π, ∂2τx − ∂2

σx = 0

Introduce the density ρ(x) = (∂σx)−1

The Chaplygin gas – p. 25/69

Page 111: The Chaplygin gas

Chaplygin gas from branes

Example: string in 3-dimensional spacetime.Light cone gauge Hamiltonian density:

H =1

2

[Π2 + (∂σx)2]dσ

Hamilton equations: ∂τx = Π, ∂2τx − ∂2

σx = 0

Introduce the density ρ(x) = (∂σx)−1

Introduce the velocity v = Π

The Chaplygin gas – p. 25/69

Page 112: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

The Chaplygin gas – p. 26/69

Page 113: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

The Chaplygin gas – p. 26/69

Page 114: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

The Chaplygin gas – p. 26/69

Page 115: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

t = τ

x = x(σ, τ)

The Chaplygin gas – p. 26/69

Page 116: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = ∂τx dτ + ∂σx dσ

The Chaplygin gas – p. 26/69

Page 117: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

The Chaplygin gas – p. 26/69

Page 118: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

The Chaplygin gas – p. 26/69

Page 119: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

First Hamilton’s equation: ∂τx = v

The Chaplygin gas – p. 26/69

Page 120: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

First Hamilton’s equation: ∂τx = v → ∂σ∂τx = ∂σv

The Chaplygin gas – p. 26/69

Page 121: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

First Hamilton’s equation: ∂τx = v → ∂σ∂τx = ∂σv

→ (∂t + v∂x)1ρ = 1

ρ∂xv

The Chaplygin gas – p. 26/69

Page 122: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

First Hamilton’s equation: ∂τx = v → ∂σ∂τx = ∂σv

→ (∂t + v∂x)1ρ = 1

ρ∂xv → ∂tρ + ∂x(ρv) = 0

The Chaplygin gas – p. 26/69

Page 123: The Chaplygin gas

Hodograph transformation

∂τx = v = Π, ∂σx =1

ρ, ∂2

τx − ∂2σx = 0

Hodograph transformation:

τ, σ → t, x

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

First Hamilton’s equation: ∂τx = v → ∂σ∂τx = ∂σv

→ (∂t + v∂x)1ρ = 1

ρ∂xv → ∂tρ + ∂x(ρv) = 0

Continuity equation

The Chaplygin gas – p. 26/69

Page 124: The Chaplygin gas

Hodograph transformation

∂τx = Π = v, ∂2τx − ∂2

σx = 0, ρ(x) = (∂σx)−1

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

The Chaplygin gas – p. 27/69

Page 125: The Chaplygin gas

Hodograph transformation

∂τx = Π = v, ∂2τx − ∂2

σx = 0, ρ(x) = (∂σx)−1

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

String (Hamilton’s) equation: ∂2τx − ∂2

σx = 0

The Chaplygin gas – p. 27/69

Page 126: The Chaplygin gas

Hodograph transformation

∂τx = Π = v, ∂2τx − ∂2

σx = 0, ρ(x) = (∂σx)−1

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

String (Hamilton’s) equation: ∂2τx − ∂2

σx = 0

ρ(∂t + v∂x)v = ∂x(1/ρ)

The Chaplygin gas – p. 27/69

Page 127: The Chaplygin gas

Hodograph transformation

∂τx = Π = v, ∂2τx − ∂2

σx = 0, ρ(x) = (∂σx)−1

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

String (Hamilton’s) equation: ∂2τx − ∂2

σx = 0

ρ(∂t + v∂x)v = ∂x(1/ρ)

Euler’s equation

The Chaplygin gas – p. 27/69

Page 128: The Chaplygin gas

Hodograph transformation

∂τx = Π = v, ∂2τx − ∂2

σx = 0, ρ(x) = (∂σx)−1

dt = dτ

dx = v dτ + 1ρ dσ

∂τ = ∂t + v∂x

∂σ = 1ρ∂x

String (Hamilton’s) equation: ∂2τx − ∂2

σx = 0

ρ(∂t + v∂x)v = ∂x(1/ρ)

Euler’s equation provided p = −1ρ

The Chaplygin gas – p. 27/69

Page 129: The Chaplygin gas

The multidimensional scenario

L.Randall, R. Sundrum, 1999

The Chaplygin gas – p. 28/69

Page 130: The Chaplygin gas

The multidimensional scenario

Idea: a warped universe

The Chaplygin gas – p. 28/69

Page 131: The Chaplygin gas

The multidimensional scenario

Idea: a warped universe

ds2 = e−2|y|/l(dt2 − dx21 − dx2

2 − dx23) − dy2

The Chaplygin gas – p. 28/69

Page 132: The Chaplygin gas

The multidimensional scenario

Idea: a warped universe

ds2 = e−2|y|/l(dt2 − dx21 − dx2

2 − dx23) − dy2

AdS geometry

The Chaplygin gas – p. 28/69

Page 133: The Chaplygin gas

The multidimensional scenario

Idea: a warped universe

ds2 = e−2|y|/l(dt2 − dx21 − dx2

2 − dx23) − dy2

l = AdS radius; Λ = − 6l2

The Chaplygin gas – p. 28/69

Page 134: The Chaplygin gas

The multidimensional scenario

Idea: a warped universe

ds2 = e−2|y|/l(dt2 − dx21 − dx2

2 − dx23) − dy2

l = AdS radius; Λ = − 6l2

y - fifth additionalnon-compact coordinate

The Chaplygin gas – p. 28/69

Page 135: The Chaplygin gas

The multidimensional scenario

Idea: a warped universe

ds2 = e−2|y|/l(dt2 − dx21 − dx2

2 − dx23) − dy2

l = AdS radius; Λ = − 6l2

y - fifth additionalnon-compact coordinate

At y = 0: orbifoldconditions

The Chaplygin gas – p. 28/69

Page 136: The Chaplygin gas

The brane

Christoffel symbols have jumps at y = 0

The Chaplygin gas – p. 29/69

Page 137: The Chaplygin gas

The brane

Christoffel symbols have jumps at y = 0

The curvature tensor has δ terms

The Chaplygin gas – p. 29/69

Page 138: The Chaplygin gas

The brane

Christoffel symbols have jumps at y = 0

The curvature tensor has δ terms

Must introduce a brane at y = 0

The Chaplygin gas – p. 29/69

Page 139: The Chaplygin gas

The brane

Christoffel symbols have jumps at y = 0

The curvature tensor has δ terms

Must introduce a brane at y = 0

Brane tension: λ = 6l

The Chaplygin gas – p. 29/69

Page 140: The Chaplygin gas

Brane in adS-BH background

A. Kamenshchik, U. M., V. Pasquier, Phys. Lett. B487(2000)

The Chaplygin gas – p. 30/69

Page 141: The Chaplygin gas

Brane in adS-BH background

Another type of foliation

The Chaplygin gas – p. 30/69

Page 142: The Chaplygin gas

Brane in adS-BH background

Another type of foliation

Instead of a Minkowski brane take a brane with R × Sd

topology in a (d + 2)-dimensional adS bulk

The Chaplygin gas – p. 30/69

Page 143: The Chaplygin gas

Brane in adS-BH background

Another type of foliation

Instead of a Minkowski brane take a brane with R × Sd

topology in a (d + 2)-dimensional adS bulk

Tension not enough

The Chaplygin gas – p. 30/69

Page 144: The Chaplygin gas

Brane in adS-BH background

Another type of foliation

Instead of a Minkowski brane take a brane with R × Sd

topology in a (d + 2)-dimensional adS bulk

Tension not enough: need matter on the brane. A fluid?

The Chaplygin gas – p. 30/69

Page 145: The Chaplygin gas

Brane in adS-BH background

Another type of foliation

Instead of a Minkowski brane take a brane with R × Sd

topology in a (d + 2)-dimensional adS bulk

Tension not enough: need matter on the brane. A fluid?

Equation of state p = −(d − 1)ρ

d− 4d

ρl2

The Chaplygin gas – p. 30/69

Page 146: The Chaplygin gas

Brane in adS-BH background

Another type of foliation

Instead of a Minkowski brane take a brane with R × Sd

topology in a (d + 2)-dimensional adS bulk

Tension not enough: need matter on the brane. A fluid?

Equation of state p = −(d − 1)ρ

d− 4d

ρl2

For d = 1 p = − 4

l21

ρ

The Chaplygin gas – p. 30/69

Page 147: The Chaplygin gas

Chaplygin gas from branes II

The Chaplygin gas – p. 31/69

Page 148: The Chaplygin gas

Chaplygin gas from branes II

Embedding of a 3 + 1 brane in a 4 + 1 bulk is describedby coordinates xM = (xµ, x4)

The Chaplygin gas – p. 31/69

Page 149: The Chaplygin gas

Chaplygin gas from branes II

Embedding of a 3 + 1 brane in a 4 + 1 bulk is describedby coordinates xM = (xµ, x4)

Bulk metric is gMN

The Chaplygin gas – p. 31/69

Page 150: The Chaplygin gas

Chaplygin gas from branes II

Embedding of a 3 + 1 brane in a 4 + 1 bulk is describedby coordinates xM = (xµ, x4)

Bulk metric is gMN

The induced metric on the 3 + 1 brane is

gµν = gµν − θ,µθ,ν

The Chaplygin gas – p. 31/69

Page 151: The Chaplygin gas

Chaplygin gas from branes II

Embedding of a 3 + 1 brane in a 4 + 1 bulk is describedby coordinates xM = (xµ, x4)

Bulk metric is gMN

The induced metric on the 3 + 1 brane is

gµν = gµν − θ,µθ,ν

θ(xµ) is a scalar field describing the embedding of thebrane into the bulk.

The Chaplygin gas – p. 31/69

Page 152: The Chaplygin gas

Chaplygin gas from branes II

Embedding of a 3 + 1 brane in a 4 + 1 bulk is describedby coordinates xM = (xµ, x4)

Bulk metric is gMN

The induced metric on the 3 + 1 brane is

gµν = gµν − θ,µθ,ν

The action for the brane (f is the brane tension):

Sbrane =

d4x√

−g(−f + . . .)

The Chaplygin gas – p. 31/69

Page 153: The Chaplygin gas

Chaplygin gas from branes II

Embedding of a 3 + 1 brane in a 4 + 1 bulk is describedby coordinates xM = (xµ, x4)

Bulk metric is gMN

The induced metric on the 3 + 1 brane is

gµν = gµν − θ,µθ,ν

The action for the brane (f is the brane tension):

Sbrane =

d4x√

−g(−f + . . .)

=

d4x√−g

1 − gµνθ,µθ,ν(−f + . . .)

The Chaplygin gas – p. 31/69

Page 154: The Chaplygin gas

Tµν = f

(

θ,µθ,ν√

1 − gµνθ,µθ,ν+ gµν

1 − gµνθ,µθ,ν

)

= (ρ + p)uµuν − pgµν

The Chaplygin gas – p. 32/69

Page 155: The Chaplygin gas

Tµν = f

(

θ,µθ,ν√

1 − gµνθ,µθ,ν+ gµν

1 − gµνθ,µθ,ν

)

= (ρ + p)uµuν − pgµν

with the following identifications:

The Chaplygin gas – p. 32/69

Page 156: The Chaplygin gas

Tµν = f

(

θ,µθ,ν√

1 − gµνθ,µθ,ν+ gµν

1 − gµνθ,µθ,ν

)

= (ρ + p)uµuν − pgµν

Four-velocity uµ = θ,µ√gµνθ,µθ,ν

The Chaplygin gas – p. 32/69

Page 157: The Chaplygin gas

Tµν = f

(

θ,µθ,ν√

1 − gµνθ,µθ,ν+ gµν

1 − gµνθ,µθ,ν

)

= (ρ + p)uµuν − pgµν

Four-velocity uµ = θ,µ√gµνθ,µθ,ν

Pressure p = −f√

1 − gµνθ,µθ,ν

The Chaplygin gas – p. 32/69

Page 158: The Chaplygin gas

Tµν = f

(

θ,µθ,ν√

1 − gµνθ,µθ,ν+ gµν

1 − gµνθ,µθ,ν

)

= (ρ + p)uµuν − pgµν

Four-velocity uµ = θ,µ√gµνθ,µθ,ν

Pressure p = −f√

1 − gµνθ,µθ,ν

Energy density: ρ = f 1√1−gµνθ,µθ,ν

The Chaplygin gas – p. 32/69

Page 159: The Chaplygin gas

Tµν = f

(

θ,µθ,ν√

1 − gµνθ,µθ,ν+ gµν

1 − gµνθ,µθ,ν

)

= (ρ + p)uµuν − pgµν

Four-velocity uµ = θ,µ√gµνθ,µθ,ν

Pressure p = −f√

1 − gµνθ,µθ,ν

Energy density: ρ = f 1√1−gµνθ,µθ,ν

Chaplygin’s gas with A = f2.

The Chaplygin gas – p. 32/69

Page 160: The Chaplygin gas

Chaplygin cosmology: theoryand observations

The Chaplygin gas – p. 33/69

Page 161: The Chaplygin gas

FRW-Chaplygin Cosmology

A. Kamenshchik, U. M., V. Pasquier, Phys. Lett. B (2001)

The Chaplygin gas – p. 34/69

Page 162: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a(ρ + p) = 0

The Chaplygin gas – p. 34/69

Page 163: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a

(

ρ − A

ρ

)

= 0

The Chaplygin gas – p. 34/69

Page 164: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a

(

ρ − A

ρ

)

= 0 ρ =

A +B

a6

The Chaplygin gas – p. 34/69

Page 165: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a

(

ρ − A

ρ

)

= 0 ρ =

A +B

a6

B is an integration constant chosen positive

The Chaplygin gas – p. 34/69

Page 166: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a

(

ρ − A

ρ

)

= 0 ρ =

A +B

a6

For small a(t) (early times): dust-like behavior

ρ ∼√

B

a3

The Chaplygin gas – p. 34/69

Page 167: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a

(

ρ − A

ρ

)

= 0 ρ =

A +B

a6

For small a(t) (early times): dust-like behavior

ρ ∼√

B

a3

For large a(t) (late times): cosmological constant -likebehavior

ρ ∼√

A, p ∼ −√

A

The Chaplygin gas – p. 34/69

Page 168: The Chaplygin gas

FRW-Chaplygin Cosmology

aρ + 3a

(

ρ − A

ρ

)

= 0 ρ =

A +B

a6

For small a(t) (early times): dust-like behavior

ρ ∼√

B

a3

For large a(t) (late times): cosmological constant -likebehavior

ρ ∼√

A, p ∼ −√

A

Λ =√

A is the asymptotic cosmological constant

The Chaplygin gas – p. 34/69

Page 169: The Chaplygin gas

FRW-Chaplygin Cosmology

The subleading terms at large values of a give

ρ ≈√

A +

B

4Aa−6 p ≈ −

√A +

B

4Aa−6

The Chaplygin gas – p. 35/69

Page 170: The Chaplygin gas

FRW-Chaplygin Cosmology

The subleading terms at large values of a give

ρ ≈√

A +

B

4Aa−6 p ≈ −

√A +

B

4Aa−6

Mixture of c.c. Λ =√

A and stiff matter p = ρ

The Chaplygin gas – p. 35/69

Page 171: The Chaplygin gas

FRW-Chaplygin Cosmology

The subleading terms at large values of a give

ρ ≈√

A +

B

4Aa−6 p ≈ −

√A +

B

4Aa−6

Mixture of c.c. Λ =√

A and stiff matter p = ρ

Chaplygin’s cosmic evolution:

The Chaplygin gas – p. 35/69

Page 172: The Chaplygin gas

FRW-Chaplygin Cosmology

The subleading terms at large values of a give

ρ ≈√

A +

B

4Aa−6 p ≈ −

√A +

B

4Aa−6

Mixture of c.c. Λ =√

A and stiff matter p = ρ

Chaplygin’s cosmic evolution:

dust − like

matter

The Chaplygin gas – p. 35/69

Page 173: The Chaplygin gas

FRW-Chaplygin Cosmology

The subleading terms at large values of a give

ρ ≈√

A +

B

4Aa−6 p ≈ −

√A +

B

4Aa−6

Mixture of c.c. Λ =√

A and stiff matter p = ρ

Chaplygin’s cosmic evolution:

dust − like

matter→

cosmological

constant

+

stiff matter

The Chaplygin gas – p. 35/69

Page 174: The Chaplygin gas

FRW-Chaplygin Cosmology

The subleading terms at large values of a give

ρ ≈√

A +

B

4Aa−6 p ≈ −

√A +

B

4Aa−6

Mixture of c.c. Λ =√

A and stiff matter p = ρ

Chaplygin’s cosmic evolution:

dust − like

matter→

cosmological

constant

+

stiff matter

→ deSitter

universe

The Chaplygin gas – p. 35/69

Page 175: The Chaplygin gas

Λ will increase

Now:

p = pΛ0+ pM = − 3

4πGΛ0

ρ = ρΛ0+ ρM = 3

4πGΛ0 + ρMρM

ρΛ0∼ 3

7

The Chaplygin gas – p. 36/69

Page 176: The Chaplygin gas

Λ will increase

Now:

p = pΛ0+ pM = − 3

4πGΛ0

ρ = ρΛ0+ ρM = 3

4πGΛ0 + ρMρM

ρΛ0∼ 3

7

Comparing these data with the Chaplygin gas model onehas:

Λ∞ ∼ 1.2Λ0

The Chaplygin gas – p. 36/69

Page 177: The Chaplygin gas

Λ will increase

Now:

p = pΛ0+ pM = − 3

4πGΛ0

ρ = ρΛ0+ ρM = 3

4πGΛ0 + ρMρM

ρΛ0∼ 3

7

Comparing these data with the Chaplygin gas model onehas:

Λ∞ ∼ 1.2Λ0

Comological constant may be increasing

The Chaplygin gas – p. 36/69

Page 178: The Chaplygin gas

Time evolution

Friedmann eq.(

aa

)2= 8

3πGρ + Λ3 − K

a2

The Chaplygin gas – p. 37/69

Page 179: The Chaplygin gas

Time evolution

Friedmann eq.(

aa

)2= 8

3πG√

A + Ba6 − K

a2

The Chaplygin gas – p. 37/69

Page 180: The Chaplygin gas

Time evolution

Friedmann eq.(

aa

)2= 8

3πG√

A + Ba6 − K

a2

for the flat case K=0 it can be solved

The Chaplygin gas – p. 37/69

Page 181: The Chaplygin gas

Time evolution

Friedmann eq.(

aa

)2= 8

3πG√

A + Ba6 − K

a2

t = 1

6 A14

(

ln(1+ B

Aa6 )14 +1

(1+ B

Aa6 )14−1

− 2 arctan(

1 + BAa6

)

14 + π

)

The Chaplygin gas – p. 37/69

Page 182: The Chaplygin gas

For open or flat space (K = −1, 0) the universealways evolves from deceleration to acceleration

The Chaplygin gas – p. 38/69

Page 183: The Chaplygin gas

For open or flat space (K = −1, 0) the universealways evolves from deceleration to acceleration

For the closed models (K = 1), there exists a staticEinstein universe solution

a0 = (3A)−14 , B =

2

3√

3A

The Chaplygin gas – p. 38/69

Page 184: The Chaplygin gas

For open or flat space (K = −1, 0) the universealways evolves from deceleration to acceleration

For the closed models (K = 1), there exists a staticEinstein universe solution

a0 = (3A)−14 , B =

2

3√

3A

When B > 23√

3Aa(t) can take any value

The Chaplygin gas – p. 38/69

Page 185: The Chaplygin gas

For open or flat space (K = −1, 0) the universealways evolves from deceleration to acceleration

For the closed models (K = 1), there exists a staticEinstein universe solution

a0 = (3A)−14 , B =

2

3√

3A

When B > 23√

3Aa(t) can take any value

When B < 23√

3Athere are forbidden radii; either

a < a1 = 1√3A

(√3 sin ϕ

3 − cos ϕ3

)

or a > a2 = 2√3A

cos ϕ3 ,

ϕ = π − arccos 3√

3AB/2.

The Chaplygin gas – p. 38/69

Page 186: The Chaplygin gas

The inhomogeneous C. G.

Mixed component of the energy-momentumT ν

µ = (ρ + p)uµuν − δνµp

The Chaplygin gas – p. 39/69

Page 187: The Chaplygin gas

The inhomogeneous C. G.

Mixed component of the energy-momentumT ν

µ = (ρ + p)uµuν − δνµp

In comoving coordinates u0 = 1/√

g00 ui = 0

The Chaplygin gas – p. 39/69

Page 188: The Chaplygin gas

The inhomogeneous C. G.

Mixed component of the energy-momentumT ν

µ = (ρ + p)uµuν − δνµp

In comoving coordinates u0 = 1/√

g00 ui = 0

T 00 = ρ, T j

i = −δji p, T i

0 = 0

The Chaplygin gas – p. 39/69

Page 189: The Chaplygin gas

The inhomogeneous C. G.

Mixed component of the energy-momentumT ν

µ = (ρ + p)uµuν − δνµp

In comoving coordinates u0 = 1/√

g00 ui = 0

T 00 = ρ, T j

i = −δji p, T i

0 = 0

T 0i = (ρ + p)uiu

0 = (ρ + p)gi0(u0)2 = (ρ + p)gi0/g00

The Chaplygin gas – p. 39/69

Page 190: The Chaplygin gas

The inhomogeneous C. G.

Mixed component of the energy-momentumT ν

µ = (ρ + p)uµuν − δνµp

In comoving coordinates u0 = 1/√

g00 ui = 0

T 00 = ρ, T j

i = −δji p, T i

0 = 0

T 0i = (ρ + p)uiu

0 = (ρ + p)gi0(u0)2 = (ρ + p)gi0/g00

Energy conservation Tµ0 ;µ = 0 reads

ρ = −12

γγ (ρ + p)

The Chaplygin gas – p. 39/69

Page 191: The Chaplygin gas

The inhomogeneous C. G.

Mixed component of the energy-momentumT ν

µ = (ρ + p)uµuν − δνµp

In comoving coordinates u0 = 1/√

g00 ui = 0

T 00 = ρ, T j

i = −δji p, T i

0 = 0

T 0i = (ρ + p)uiu

0 = (ρ + p)gi0(u0)2 = (ρ + p)gi0/g00

Energy conservation Tµ0 ;µ = 0 reads

ρ = −12

γγ (ρ + p)

γij = gi0gj0

g00− gij , γij = −gij

The Chaplygin gas – p. 39/69

Page 192: The Chaplygin gas

ρ = −12

γγ (ρ + p)

The Chaplygin gas – p. 40/69

Page 193: The Chaplygin gas

ρ = −12

γγ (ρ + p)

Chaplygin gas p = −Aρ

The Chaplygin gas – p. 40/69

Page 194: The Chaplygin gas

ρ = −12

γγ (ρ + p)

ρ = −1

2

γ

γ(ρ − A

ρ)

The Chaplygin gas – p. 40/69

Page 195: The Chaplygin gas

ρ = −12

γγ (ρ + p)

ρ = −1

2

γ

γ(ρ − A

ρ)

This equation can be integrated

ρ(~x, t) =

A +B(~x)

γ(~x, t)

The Chaplygin gas – p. 40/69

Page 196: The Chaplygin gas

ρ = −12

γγ (ρ + p)

ρ = −1

2

γ

γ(ρ − A

ρ)

This equation can be integrated

ρ(~x, t) =

A +B(~x)

γ(~x, t)

B(~x) is an arbitrary function of the spatial coordinates

The Chaplygin gas – p. 40/69

Page 197: The Chaplygin gas

The "statefinder" diagnostic 1

V. Gorini, A. Kamenshchik, U. M. (2003)

The Chaplygin gas – p. 41/69

Page 198: The Chaplygin gas

The "statefinder" diagnostic 1

Proliferation of models explaining cosmic acceleration.How to discriminate between them?

The Chaplygin gas – p. 41/69

Page 199: The Chaplygin gas

The "statefinder" diagnostic 1

Proliferation of models explaining cosmic acceleration.How to discriminate between them?

Statefinder parameters

The Chaplygin gas – p. 41/69

Page 200: The Chaplygin gas

The "statefinder" diagnostic 1

Proliferation of models explaining cosmic acceleration.How to discriminate between them?

Statefinder parameters

Sahni, Saini, Starobinsky, Alam 2002

The Chaplygin gas – p. 41/69

Page 201: The Chaplygin gas

The "statefinder" diagnostic 1

Proliferation of models explaining cosmic acceleration.How to discriminate between them?

Statefinder parameters

r ≡···a

aH3, s ≡ r − 1

3(q − 1/2)

q ≡ − a

aH2− the deceleration parameter

The Chaplygin gas – p. 41/69

Page 202: The Chaplygin gas

The "statefinder" diagnostic 1

Proliferation of models explaining cosmic acceleration.How to discriminate between them?

Statefinder parameters

r ≡···a

aH3, s ≡ r − 1

3(q − 1/2)

q ≡ − a

aH2− the deceleration parameter

Involve the third time derivative of the cosmological radiusa

The Chaplygin gas – p. 41/69

Page 203: The Chaplygin gas

The "statefinder" diagnostic 2

p = ∂p∂ρ ρ = −3

√ρ (ρ + p)∂p

∂ρ

The Chaplygin gas – p. 42/69

Page 204: The Chaplygin gas

The "statefinder" diagnostic 2

p = ∂p∂ρ ρ = −3

√ρ (ρ + p)∂p

∂ρ

r = 1 + 92

(

1 + pρ

)

∂p∂ρ , s =

(

1 + ρp

)

∂p∂ρ

The Chaplygin gas – p. 42/69

Page 205: The Chaplygin gas

The "statefinder" diagnostic 2

p = ∂p∂ρ ρ = −3

√ρ (ρ + p)∂p

∂ρ

r = 1 + 92

(

1 + pρ

)

∂p∂ρ , s =

(

1 + ρp

)

∂p∂ρ

For the Chaplygin gas one has:

v2s =

∂p

∂ρ=

A

ρ2= −p

ρ= 1 + s

The Chaplygin gas – p. 42/69

Page 206: The Chaplygin gas

The "statefinder" diagnostic 2

p = ∂p∂ρ ρ = −3

√ρ (ρ + p)∂p

∂ρ

r = 1 + 92

(

1 + pρ

)

∂p∂ρ , s =

(

1 + ρp

)

∂p∂ρ

For the Chaplygin gas one has:

v2s =

∂p

∂ρ=

A

ρ2= −p

ρ= 1 + s

r = 1 − 9

2s (1 + s)

The Chaplygin gas – p. 42/69

Page 207: The Chaplygin gas

The "statefinder" diagnostic 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.2

1.4

1.6

1.8

2

2.2

ΛCDM fixed point →

today →

0.2

The Chaplygin gas – p. 43/69

Page 208: The Chaplygin gas

The "statefinder" diagnostic 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.2

1.4

1.6

1.8

2

2.2

ΛCDM fixed point →

today →

The Chaplygin gas statefinder s takes negative values (incontrast with quintessence).For q ≈ −0.5 the current values of the statefinder (withinour model) are s ≈ −0.3, r ≈ 1.9

The Chaplygin gas – p. 43/69

Page 209: The Chaplygin gas

The "statefinder" diagnostic 3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.2

1.4

1.6

1.8

2

2.2

ΛCDM fixed point →

today →

The Chaplygin gas statefinder s takes negative values (incontrast with quintessence).For q ≈ −0.5 the current values of the statefinder (withinour model) are s ≈ −0.3, r ≈ 1.9

Future experiments will discriminate the pure Chaplygingas model from ΛCDM model

The Chaplygin gas – p. 43/69

Page 210: The Chaplygin gas

Chaplygin gas + Dust

r = 1 +9(ρ + p)

2(ρ + ρd)

∂p

∂ρ, s =

ρ + p

p

∂p

∂ρ

The Chaplygin gas – p. 44/69

Page 211: The Chaplygin gas

Chaplygin gas + Dust

r = 1 +9(ρ + p)

2(ρ + ρd)

∂p

∂ρ, s =

ρ + p

p

∂p

∂ρ

If the second fluid is the Chaplygin gas

r = 1 − 9

2

s(s + 1)

1 + ρd

ρ

The Chaplygin gas – p. 44/69

Page 212: The Chaplygin gas

Chaplygin gas + Dust

r = 1 +9(ρ + p)

2(ρ + ρd)

∂p

∂ρ, s =

ρ + p

p

∂p

∂ρ

If the second fluid is the Chaplygin gas

r = 1 − 9

2

s(s + 1)

1 + ρd

ρ

Dust: ρ1 = Ca3

The Chaplygin gas – p. 44/69

Page 213: The Chaplygin gas

Chaplygin gas + Dust

r = 1 +9(ρ + p)

2(ρ + ρd)

∂p

∂ρ, s =

ρ + p

p

∂p

∂ρ

If the second fluid is the Chaplygin gas

r = 1 − 9

2

s(s + 1)

1 + ρd

ρ

Dust: ρ1 = Ca3 Chaplygin gas: ρ2 =

A + Ba6

The Chaplygin gas – p. 44/69

Page 214: The Chaplygin gas

Chaplygin gas + Dust

r = 1 +9(ρ + p)

2(ρ + ρd)

∂p

∂ρ, s =

ρ + p

p

∂p

∂ρ

If the second fluid is the Chaplygin gas

r = 1 − 9

2

s(s + 1)

1 + ρd

ρ

ρd

ρ=

√−sκ

The Chaplygin gas – p. 44/69

Page 215: The Chaplygin gas

Chaplygin gas + Dust

r = 1 +9(ρ + p)

2(ρ + ρd)

∂p

∂ρ, s =

ρ + p

p

∂p

∂ρ

If the second fluid is the Chaplygin gas

r = 1 − 9

2

s(s + 1)

1 + ρd

ρ

ρd

ρ=

√−sκ

κ ≡ C√B

is the ratio between the energy densities of dust

and of the Chaplygin gas at the beginning of thecosmological evolution

The Chaplygin gas – p. 44/69

Page 216: The Chaplygin gas

Chaplygin gas + Dust

r = 1 − 92

s(s+1)

1+κ√−s

The Chaplygin gas – p. 45/69

Page 217: The Chaplygin gas

Chaplygin gas + Dust

r = 1 − 92

s(s+1)

1+κ√−s

The Chaplygin gas – p. 45/69

Page 218: The Chaplygin gas

Chaplygin gas + Dust

r = 1 − 92

s(s+1)

1+κ√−s

Possible solution of thecosmic coincidence co-nundrum. Here initial val-ues of ρd and ρ can havssame order of magnitude.

−1 −0.8 −0.6 −0.4 −0.2 0

1

1.2

1.4

1.6

1.8

2

2.2 κ = 0

κ = 1

κ = 2

κ = 3

κ = 10

The Chaplygin gas – p. 45/69

Page 219: The Chaplygin gas

The generalized Chaplygin gas

A. Kamenshick, U.M., V. Pasquier (2001)

p = − A

ρα0 ≤ α ≤ 1

The Chaplygin gas – p. 46/69

Page 220: The Chaplygin gas

The generalized Chaplygin gas

p = − A

ραρ =

(

A +B

a3(1+α)

)1

1+α

The Chaplygin gas – p. 46/69

Page 221: The Chaplygin gas

The generalized Chaplygin gas

p = − A

ραρ =

(

A +B

a3(1+α)

)1

1+α

wα = −[

1 +B

A

1

a3(α+1)

]−1

,

The Chaplygin gas – p. 46/69

Page 222: The Chaplygin gas

The generalized Chaplygin gas

p = − A

ραρ =

(

A +B

a3(1+α)

)1

1+α

wα = −[

1 +B

A

1

a3(α+1)

]−1

, c2α =

dp

dρ= −αwα.

The Chaplygin gas – p. 46/69

Page 223: The Chaplygin gas

The generalized Chaplygin gas

p = − A

ραρ =

(

A +B

a3(1+α)

)1

1+α

wα = −[

1 +B

A

1

a3(α+1)

]−1

, c2α =

dp

dρ= −αwα.

Comes from a (rather artificial) Born-Infeld action:

L = −A1

1+α [1 − (gµνθ,µθ,ν)1+α2α ]

α1+α

Bento, Bertolami, Sen 2002

The Chaplygin gas – p. 46/69

Page 224: The Chaplygin gas

The generalized Chaplygin gas

p = − A

ραρ =

(

A +B

a3(1+α)

)1

1+α

wα = −[

1 +B

A

1

a3(α+1)

]−1

, c2α =

dp

dρ= −αwα.

dust − like

matter→

cosm.const.

+

a perfectfluid

p = αρ

→ deSitter

universe

The Chaplygin gas – p. 46/69

Page 225: The Chaplygin gas

The generalized Chaplygin gas

p = − A

ραρ =

(

A +B

a3(1+α)

)1

1+α

wα = −[

1 +B

A

1

a3(α+1)

]−1

, c2α =

dp

dρ= −αwα.

dust − like

matter→

cosm.const.

+

a perfectfluid

p = αρ

→ deSitter

universe

The Chaplygin gas – p. 46/69

Page 226: The Chaplygin gas

The gCg: superluminal case

p = − A

ραα ≥ 1

The Chaplygin gas – p. 47/69

Page 227: The Chaplygin gas

The gCg: superluminal case

p = − A

ραα ≥ 1

H2

H20

=

(

A +1 − A

a3(1+α)

)

11+α

a2,

A = A/(A + B) and H0 is the Hubble constant.

The Chaplygin gas – p. 47/69

Page 228: The Chaplygin gas

The gCg: superluminal case

p = − A

ραα ≥ 1

H2

H20

=

(

A +1 − A

a3(1+α)

)

11+α

a2,

A = A/(A + B) and H0 is the Hubble constant.Redshift of the transition to the superluminal gCg:

zsl =

[

A (α − 1)

1 − A

]

13(α+1)

− 1.

The Chaplygin gas – p. 47/69

Page 229: The Chaplygin gas

The gCg: superluminal case

p = − A

ραα ≥ 1

H2

H20

=

(

A +1 − A

a3(1+α)

)

11+α

a2,

A = A/(A + B) and H0 is the Hubble constant.Redshift of the transition to the superluminal gCg:

zsl =

[

A (α − 1)

1 − A

]

13(α+1)

− 1.

A and α are not independent

The Chaplygin gas – p. 47/69

Page 230: The Chaplygin gas

The gCg: superluminal case

p = − A

ραα ≥ 1

H2

H20

=

(

A +1 − A

a3(1+α)

)

11+α

a2,

A = A/(A + B) and H0 is the Hubble constant.Redshift of the transition to the superluminal gCg:

zsl =

[

A (α − 1)

1 − A

]

13(α+1)

− 1.

A and α are not independentRedshift the transition to the accelerated phase

ztr =

[

2A

1 − A

]

13(α+1)

− 1 ≃ 0.4

The Chaplygin gas – p. 47/69

Page 231: The Chaplygin gas

The gCg: superluminal case

p = − A

ραα ≥ 1

H2

H20

=

(

A +1 − A

a3(1+α)

)

11+α

a2,

A = A/(A + B) and H0 is the Hubble constant.Redshift of the transition to the superluminal gCg:

zsl =

[

A (α − 1)

1 − A

]

13(α+1)

− 1.

A and α are not independentRedshift the transition to the accelerated phase

A =(1 + ztr)

3(1+α)

2 + (1 + ztr)3(1+α)

≈ (1.45)3(1+α)

2 + (1.45)3(1+α).

The Chaplygin gas – p. 47/69

Page 232: The Chaplygin gas

Comparison with observations

Observations seem to favor the generalised Chaplygingas over other models

The Chaplygin gas – p. 48/69

Page 233: The Chaplygin gas

Comparison with observations

Observations seem to favor the generalised Chaplygingas over other models

TABLE 1

Summary of the Information Criteria Results

χ2/ dof GoF (%) ∆AIC ∆BIC

Flat cosmo. const. 194.5 / 192 43.7 0 0Flat Gen. Chaplygin 193.9 / 191 42.7 1 5Cosmological const. 194.3 / 191 42.0 2 5Flat constant w 194.5 / 191 41.7 2 5Flat w(a) 193.8 / 190 41.0 3 10Constant w 193.9 / 190 40.8 3 10Gen. Chaplygin 193.9 / 190 40.7 3 10Cardassian 194.1 / 190 40.4 4 10DGP 207.4 / 191 19.8 15 18Flat DGP 210.1 / 192 17.6 16 16Chaplygin 220.4 / 191 7.1 28 30Flat Chaplygin 301.0 / 192 0.0 30 30

Note. — From Davis et al. astro-ph:0701510The flat cosmological constant (flat Λ) model is preferred by boththe AIC and the BIC. The ∆AIC and ∆BIC values for all othermodels in the table are then measured with respect to these lowestvalues. The goodness of fit (GoF) approximates the probability offinding a worse fit to the data. The models are given in order ofincreasing ∆AIC.

The Chaplygin gas – p. 48/69

Page 234: The Chaplygin gas

Perturbations

The pure gCg has passed many tests of standardcosmology. However the behaviour of the gCg underperturbations is still problematic [Tegmark et al. , Bean etal.]

The Chaplygin gas – p. 49/69

Page 235: The Chaplygin gas

Perturbations

Power spectrum of large scale structures seems toindicate [Tegmark et al] that the best fit value of α isvery close to zero, rendering the gCgindistinguishable from ΛCDM (but see previousremarks on the ccp).

The Chaplygin gas – p. 49/69

Page 236: The Chaplygin gas

Perturbations

Power spectrum of large scale structures seems toindicate [Tegmark et al] that the best fit value of α isvery close to zero, rendering the gCgindistinguishable from ΛCDM (but see previousremarks on the ccp).

This behaviour has to be attributed to the gCg soundvelocity which, during the cosmic evolution, growsfrom 0 to

√α driving inhomogeneities to oscillate (if

α > 0) or to blow–up (if α < 0).

The Chaplygin gas – p. 49/69

Page 237: The Chaplygin gas

Perturbations

Power spectrum of large scale structures seems toindicate [Tegmark et al] that the best fit value of α isvery close to zero, rendering the gCgindistinguishable from ΛCDM (but see previousremarks on the ccp).

This behaviour has to be attributed to the gCg soundvelocity which, during the cosmic evolution, growsfrom 0 to

√α driving inhomogeneities to oscillate (if

α > 0) or to blow–up (if α < 0).

This feature seems to be common to all UDM models[Tegmark et al.] that might appear to be ruled out.

The Chaplygin gas – p. 49/69

Page 238: The Chaplygin gas

Gauge invariant perturbations

V. Gorini, A. Kamenshick, U.M., O. Piattella, A.Starobinsky work in progress

The Chaplygin gas – p. 50/69

Page 239: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

The Chaplygin gas – p. 50/69

Page 240: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

a(η) is the scale factor as a function of the conformal timeη. Its present epoch value is normalized to unity

The Chaplygin gas – p. 50/69

Page 241: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

H(η) = a′/a, where the prime denotes derivation withrespect to the conformal time

The Chaplygin gas – p. 50/69

Page 242: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

Φ is the Bardeen gauge–invariant potentials (no shear)

The Chaplygin gas – p. 50/69

Page 243: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

V is the gauge–invariant expression of the scalarpotential of the velocity field

The Chaplygin gas – p. 50/69

Page 244: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

ρi and pi are the background energy and pressure of thecomponent i.

The Chaplygin gas – p. 50/69

Page 245: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

δρi and δpi are the gauge–invariant expressions of theperturbations of the energy density and pressure

The Chaplygin gas – p. 50/69

Page 246: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

δpi = c2siδρi, c2

si ≡∂pi

∂ρi, δi ≡

δρi

ρi,

The Chaplygin gas – p. 50/69

Page 247: The Chaplygin gas

Gauge invariant perturbations

−k2Φ − 3aH2Φ − 3H2Φ = a2∑N

i=1 ρiδi

HΦ + aHΦ = a∑N

i=1 (ρi + pi) Vi

(aH)2 Φ +(

4aH2 + a2HH)

Φ +(

2aHH + H2)

Φ =

= a2∑N

i=1 c2siρiδi,

δpi = c2siδρi, c2

si ≡∂pi

∂ρi, δi ≡

δρi

ρi,

The spatial Fourier transform allows us to treat eachmode independently in the linear approximation.

The Chaplygin gas – p. 50/69

Page 248: The Chaplygin gas

N = 1 - Density contrast

The system can be solved by eliminating δ and byextracting a second order equation for Φ:

Φ +

(

HH +

4 + 3c2s

a

)

Φ +

(

2HaH +

1 + 3c2s

a2+

k2c2s

a2H2

)

Φ = 0.

The Chaplygin gas – p. 51/69

Page 249: The Chaplygin gas

N = 1 - Density contrast

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−5

0

5

10

15

20x 10

9

gCg

dens

ity c

ontr

ast δ C

h

Scale factor a

α = 0α = 10−7

α = 10−5

α = 0.1α = 1α = 2α = 3

Evolution of the density contrast in the gCg k = 100 h

Mpc−1 scale of a protogalaxy. Oscillations take place tooearly for α & 10−5, thus preventing structure formation.

The Chaplygin gas – p. 51/69

Page 250: The Chaplygin gas

N = 1 - Density contrast

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1−5

0

5

10

15

20x 10

9

gCg

dens

ity c

ontr

ast δ C

h

Scale factor a

α = 0α = 10−7

α = 10−5

α = 0.1α = 1α = 2α = 3

The Chaplygin gas – p. 51/69

Page 251: The Chaplygin gas

N = 1 - Sound velocity

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10−30

10−25

10−20

10−15

10−10

10−5

Scale factor a

gCg

squa

re s

ound

vel

ocity

cs2

α = 10−7

α = 10−5

α = 0.1α = 1α = 2α = 3

For α ∼ 0.1 the sound velocity becomes non negligiblemuch earlier than at other values of α. The range10−7 . α . 3 appears thus to be ruled out since structureformation is prevented.

The Chaplygin gas – p. 52/69

Page 252: The Chaplygin gas

N = 1 - Power spectrum

10−1

102

103

104

105

k [h Mpc−1]

P(k

) [(

h−1 M

pc)3 ]

σP(k)α = 0α = 10−7

α = 10−5

α = 3α = 5

The plots for α = 0 and α = 10−7 are superposed Atlarger α the power spectrum tends to a limiting behaviourwhich is systematically below that of the ΛCDM one.

The Chaplygin gas – p. 53/69

Page 253: The Chaplygin gas

N = 2 - gCg + Baryons

In the matter dominated–regime we obtain the system

δb +(

HH + 2

a

)

δb = 1H2 (ρbδb + ρChδCh)

δCh +(

HH + 2

a

)

δCh + k2

a2H2 c2s δCh = 1

H2 (ρbδb + ρChδCh) ,

where c2s is the gCg square sound velocity.

The Chaplygin gas – p. 54/69

Page 254: The Chaplygin gas

N = 2 - gCg + Baryons

In the matter dominated–regime we obtain the system

δb +(

HH + 2

a

)

δb = 1H2 (ρbδb + ρChδCh)

δCh +(

HH + 2

a

)

δCh + k2

a2H2 c2s δCh = 1

H2 (ρbδb + ρChδCh) ,

where c2s is the gCg square sound velocity.

Following Solov’eva and Starobinsky we introduce thevariables

x = kγ−2a−32γ , γ = −2α − 8

3

The system is reduced to a fourth-order equation

The Chaplygin gas – p. 54/69

Page 255: The Chaplygin gas

N = 2 - gCg + Baryons

In the matter dominated–regime we obtain the system

δb +(

HH + 2

a

)

δb = 1H2 (ρbδb + ρChδCh)

δCh +(

HH + 2

a

)

δCh + k2

a2H2 c2s δCh = 1

H2 (ρbδb + ρChδCh) ,

where c2s is the gCg square sound velocity.

[(

∆ +2

)

(

∆ − 1

)(

∆ − 1

γ

)

+

x

(

∆2 +2γ − 1/3

γ∆ +

1

γ2

(

γ

(

γ − 1

3

)

− 2

3Ωb0

))]

δCh = 0

∆ = x · d/dx.

The Chaplygin gas – p. 54/69

Page 256: The Chaplygin gas

N = 2 - Power spectrum

10−1

102

103

104

105

k [h Mpc−1]

P(k

) [(

h−1 M

pc)3 ]

σP(k)α = 0α = 10−5

α = 0.1α = 1α = 3α = 5

The Chaplygin gas – p. 55/69

Page 257: The Chaplygin gas

N = 2 - Power spectrum

10−1

102

103

104

105

k [h Mpc−1]

P(k

) [(

h−1 M

pc)3 ]

σP(k)α = 0α = 10−5

α = 0.1α = 1α = 3α = 5

Power spectra of baryons. For all α good agreement withthe observed spectrum. Better for small α = 0, 10−5

(≃ ΛCDM) and for α = 3, 5 (superluminal).

The Chaplygin gas – p. 55/69

Page 258: The Chaplygin gas

Conclusions

The generalized Chaplygin gas cosmological model,with no additional fluid components, is compatiblewith structure formation and large scale structureonly for α sufficiently small (α < 10−5), in which caseit is indistinguishable from the ΛCDM model.

The Chaplygin gas – p. 56/69

Page 259: The Chaplygin gas

Conclusions

The generalized Chaplygin gas cosmological model,with no additional fluid components, is compatiblewith structure formation only for α sufficiently small(α < 10−5), in which case it is indistinguishable fromthe ΛCDM model.

Adding to the generalized Chaplygin gas model abaryon component large scale structures arecompatible with observations for all values of α.However very small values of α and α & 3 arefavoured.

The Chaplygin gas – p. 56/69

Page 260: The Chaplygin gas

Conclusions

The generalized Chaplygin gas cosmological model,with no additional fluid components, is compatiblewith structure formation only for α sufficiently small(α < 10−5), in which case it is indistinguishable fromthe ΛCDM model.

Adding to the generalized Chaplygin gas model abaryon component large scale structures arecompatible with observations for all values of α.However very small values of α and α & 3 arefavoured.

A coincidence(?): the transition from the subluminalto the superluminal regime and the transition to theaccelerated expansion of the universe may have thesame redshift; zsl = ztr for α ≃ 3.

The Chaplygin gas – p. 56/69

Page 261: The Chaplygin gas

Tachyonic models

The Chaplygin gas – p. 57/69

Page 262: The Chaplygin gas

"Equivalent" scalar field

Want a homogeneous scalar field with same cosmicevolution as the Chaplygin gas

The Chaplygin gas – p. 58/69

Page 263: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

The Chaplygin gas – p. 58/69

Page 264: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

The Chaplygin gas – p. 58/69

Page 265: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

The Chaplygin gas – p. 58/69

Page 266: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6

A+ B

a6

The Chaplygin gas – p. 58/69

Page 267: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6√

A+ B

a6

V (φ) =2a6(A+ B

a6 )−B

2a6√

A+ B

a6

The Chaplygin gas – p. 58/69

Page 268: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6√

A+ B

a6

V (φ) =2a6(A+ B

a6 )−B

2a6√

A+ B

a6

dφdt

The Chaplygin gas – p. 58/69

Page 269: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6√

A+ B

a6

V (φ) =2a6(A+ B

a6 )−B

2a6√

A+ B

a6

dφdt = dφ

daaaa

The Chaplygin gas – p. 58/69

Page 270: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6√

A+ B

a6

V (φ) =2a6(A+ B

a6 )−B

2a6√

A+ B

a6

dφda =

√B

a(Aa6+B)1/2

The Chaplygin gas – p. 58/69

Page 271: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6√

A+ B

a6

V (φ) =2a6(A+ B

a6 )−B

2a6√

A+ B

a6

dφda =

√B

a(Aa6+B)1/2

a6 =4B exp(6φ)

A(1 − exp(6φ))2

The Chaplygin gas – p. 58/69

Page 272: The Chaplygin gas

"Equivalent" scalar field

L(φ) = 12 φ2 − V (φ)

ρφ = 12 φ2 + V (φ) =

A + Ba6

pφ = 12 φ2 − V (φ) = − A

A+ B

a6

φ2 = B

a6√

A+ B

a6

V (φ) =2a6(A+ B

a6 )−B

2a6√

A+ B

a6

dφda =

√B

a(Aa6+B)1/2

V (φ) =1

2

√A

(

cosh 3φ +1

cosh 3φ

)

The Chaplygin gas – p. 58/69

Page 273: The Chaplygin gas

The cosmological evolution of the model with a scalarfield with this potential coincides with that of theChaplygin gas model provided the initial values φ(t0) andφ(t0) satisfy the relation

φ4(t0) = 4(V 2(φ(t0)) − A)

The Chaplygin gas – p. 59/69

Page 274: The Chaplygin gas

Chapygin = "Free" Tachyons

Sen’s action:

S = −∫

d4x√−gV (T )

1 − gµνT,µT,ν

The Chaplygin gas – p. 60/69

Page 275: The Chaplygin gas

Chapygin = "Free" Tachyons

For a spatially homogeneous model

L = −V (T )√

1 − T 2

The Chaplygin gas – p. 60/69

Page 276: The Chaplygin gas

Chapygin = "Free" Tachyons

For a spatially homogeneous model

L = −V (T )√

1 − T 2

ρ =V (T )

1 − T 2

The Chaplygin gas – p. 60/69

Page 277: The Chaplygin gas

Chapygin = "Free" Tachyons

For a spatially homogeneous model

L = −V (T )√

1 − T 2

ρ =V (T )

1 − T 2p = −V (T )

1 − T 2

The Chaplygin gas – p. 60/69

Page 278: The Chaplygin gas

Chapygin = "Free" Tachyons

For a spatially homogeneous model

L = −V (T )√

1 − T 2

ρ =V (T )

1 − T 2p = −V (T )

1 − T 2

If the tachyon potential is constant V (T ) = V0

The Chaplygin gas – p. 60/69

Page 279: The Chaplygin gas

Chapygin = "Free" Tachyons

For a spatially homogeneous model

L = −V (T )√

1 − T 2

ρ =V (T )

1 − T 2p = −V (T )

1 − T 2

If the tachyon potential is constant V (T ) = V0

p = −A

ρ,

where A = V 20

The Chaplygin gas – p. 60/69

Page 280: The Chaplygin gas

Chapygin = "Free" Tachyons

For a spatially homogeneous model

L = −V (T )√

1 − T 2

ρ =V (T )

1 − T 2p = −V (T )

1 − T 2

If the tachyon potential is constant V (T ) = V0

p = −A

ρ,

where A = V 20

Frolov, Kofman, Starobinsky 2002

The Chaplygin gas – p. 60/69

Page 281: The Chaplygin gas

A simple example

p = wρ w < 0

The Chaplygin gas – p. 61/69

Page 282: The Chaplygin gas

A simple example

p = wρ w < 0

a = a0t2

3(1+w)

The Chaplygin gas – p. 61/69

Page 283: The Chaplygin gas

A simple example

p = wρ w < 0

a = a0t2

3(1+w)

One can reconstruct a potential:

V (T ) =4√−k

9(1 + w)T 2

The Chaplygin gas – p. 61/69

Page 284: The Chaplygin gas

A simple example

p = wρ w < 0

a = a0t2

3(1+w)

One can reconstruct a potential:

V (T ) =4√−k

9(1 + w)T 2

Field equation: T + 3(1 − T 2) aa T + (1 − T 2)V,T

V = 0

The Chaplygin gas – p. 61/69

Page 285: The Chaplygin gas

A simple example

p = wρ w < 0

a = a0t2

3(1+w)

One can reconstruct a potential:

V (T ) =4√−k

9(1 + w)T 2

Field equation: T + 3(1 − T 2) aa T + (1 − T 2)V,T

V = 0

An exact solution that gives back the above cosmicevolution T =

√1 + wt

The Chaplygin gas – p. 61/69

Page 286: The Chaplygin gas

A simple example

p = wρ w < 0

a = a0t2

3(1+w)

One can reconstruct a potential:

V (T ) =4√−k

9(1 + w)T 2

Field equation: T + 3(1 − T 2) aa T + (1 − T 2)V,T

V = 0

An exact solution that gives back the above cosmicevolution T =

√1 + wt

Feinstein, Padhmanhaban 2002

The Chaplygin gas – p. 61/69

Page 287: The Chaplygin gas

A simple example

p = wρ w < 0

a = a0t2

3(1+w)

One can reconstruct a potential:

V (T ) =4√−k

9(1 + w)T 2

Field equation: T + 3(1 − T 2) aa T + (1 − T 2)V,T

V = 0

An exact solution that gives back the above cosmicevolution T =

√1 + wt

Feinstein, Padhmanhaban 2002

The Chaplygin gas – p. 61/69

Page 288: The Chaplygin gas

If w > 0 (standard fluids) it seems impossible toreproduce the power-law cosmological evolution using atachyon field

The Chaplygin gas – p. 62/69

Page 289: The Chaplygin gas

If w > 0 (standard fluids) it seems impossible toreproduce the power-law cosmological evolution using atachyon field because tachyons have negative pressure

The Chaplygin gas – p. 62/69

Page 290: The Chaplygin gas

If w > 0 (standard fluids) it seems impossible toreproduce the power-law cosmological evolution using atachyon field because tachyons have negative pressure

Introduce a ‘modified action

The Chaplygin gas – p. 62/69

Page 291: The Chaplygin gas

If w > 0 (standard fluids) it seems impossible toreproduce the power-law cosmological evolution using atachyon field because tachyons have negative pressure

Introduce a ‘modified action

L = V (T )√

T 2 − 1

The Chaplygin gas – p. 62/69

Page 292: The Chaplygin gas

If w > 0 (standard fluids) it seems impossible toreproduce the power-law cosmological evolution using atachyon field because tachyons have negative pressure

Introduce a ‘modified action

L = V (T )√

T 2 − 1

ρ =V (T )

T 2 − 1p = V (T )

T 2 − 1

The Chaplygin gas – p. 62/69

Page 293: The Chaplygin gas

If w > 0 (standard fluids) it seems impossible toreproduce the power-law cosmological evolution using atachyon field because tachyons have negative pressure

Introduce a ‘modified action

L = V (T )√

T 2 − 1

ρ =V (T )

T 2 − 1p = V (T )

T 2 − 1

The potential has the same form: V (T ) = 4√

k9(1+k)T 2

The Chaplygin gas – p. 62/69

Page 294: The Chaplygin gas

A more complicated example

A two-fluid cosmological modelV. Gorini, A. Kamenshchik, U. Moschella, V. Pasquierhep-th/0311111 PRD 2004

The Chaplygin gas – p. 63/69

Page 295: The Chaplygin gas

A more complicated example

A two-fluid cosmological model

p1 = −ρ1 = −Λ p2 = kρ2, −1 < k < 0

a(t) = a0

(

sinh 3√

Λ(1+k)t2

)

23(1+k)

The Chaplygin gas – p. 63/69

Page 296: The Chaplygin gas

A more complicated example

A two-fluid cosmological model

p1 = −ρ1 = −Λ p2 = kρ2, −1 < k < 0

a(t) = a0

(

sinh 3√

Λ(1+k)t2

)

23(1+k)

V (T ) = Λ

sin2

(

3√

Λ(1+k)T

2

)

(

1 − (1 + k) cos2(

3√

Λ(1+k)T2

))1/2

The Chaplygin gas – p. 63/69

Page 297: The Chaplygin gas

A more complicated example

A two-fluid cosmological model

p1 = −ρ1 = −Λ p2 = kρ2, −1 < k < 0

a(t) = a0

(

sinh 3√

Λ(1+k)t2

)

23(1+k)

V (T ) = Λ

sin2

(

3√

Λ(1+k)T

2

)

(

1 − (1 + k) cos2(

3√

Λ(1+k)T2

))1/2

An exact field solution that gives a(t):

T (t) = 2

3√

Λ(1+k)arctan sinh 3

√Λ(1+k)t

2

The Chaplygin gas – p. 63/69

Page 298: The Chaplygin gas

Tachyon Potential k < 0

0 0.5 1 1.5 2 2.50

5

10

15

20

25

30

T

V

The Chaplygin gas – p. 64/69

Page 299: The Chaplygin gas

Time evolution k < 0

0 0.5 1 1.5 2 2.5−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

T

s

f

f′

σ

σ′

The Chaplygin gas – p. 65/69

Page 300: The Chaplygin gas

Tachyon Potential k > 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.2

0.4

0.6

0.8

1

1.2

T

V

I M A G I N A R Y

I M A G I N A R Y

The Chaplygin gas – p. 66/69

Page 301: The Chaplygin gas

Time evolution k > 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

T

s

P

P′

Q

Q′

I II III

IV

V III

IV

IV

I

II

IV

σ

ψ χ

τ ξ

IV

III V

I II III

I

II

IV

The Chaplygin gas – p. 67/69

Page 302: The Chaplygin gas

When k > 0 need to use the modified action.Technically: Arnold’s theory of singularities

The Chaplygin gas – p. 68/69

Page 303: The Chaplygin gas

When k > 0 need to use the modified action.Technically: Arnold’s theory of singularities

There are two types of trajectories: infinitelyexpanding universes

The Chaplygin gas – p. 68/69

Page 304: The Chaplygin gas

When k > 0 need to use the modified action.Technically: Arnold’s theory of singularities

There are two types of trajectories: infinitelyexpanding universes

universes, hitting a cosmological singularity of aspecial type that we have called Big Brake

a(tB) = −∞, a(tB) = 0,

0 < a(tB) < ∞

The Chaplygin gas – p. 68/69

Page 305: The Chaplygin gas

The future of the universe

An infinite expansion

The Chaplygin gas – p. 69/69

Page 306: The Chaplygin gas

The future of the universe

An infinite expansion

Big Crunch

The Chaplygin gas – p. 69/69

Page 307: The Chaplygin gas

The future of the universe

An infinite expansion

Big Crunch

Big. Rip a(tR) = ∞

The Chaplygin gas – p. 69/69

Page 308: The Chaplygin gas

The future of the universe

An infinite expansion

Big Crunch

Big. Rip a(tR) = ∞Bouncing universe

The Chaplygin gas – p. 69/69

Page 309: The Chaplygin gas

The future of the universe

An infinite expansion

Big Crunch

Big. Rip a(tR) = ∞Bouncing universe

Big Brake

The Chaplygin gas – p. 69/69

Page 310: The Chaplygin gas

The future of the universe

An infinite expansion

Big Crunch

Big. Rip a(tR) = ∞Bouncing universe

Big Brake

The Chaplygin gas – p. 69/69