10
The algebraic dichotomy conjecture for infinite domain CSPs Libor Barto 0 Michael Pinsker 0 Univerzita Karlova v Praze Univerzita Karlova v Praze + Technische Universität Wien Funded by Austrian Science Fund (FWF) grant P27600 LICS 2016, New York City Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

The algebraic dichotomy conjecturefor infinite domain CSPs

Libor Barto 0 Michael Pinsker ∞

0 Univerzita Karlova v Praze

∞ Univerzita Karlova v Praze + Technische Universität WienFunded by Austrian Science Fund (FWF) grant P27600

LICS 2016, New York City

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 2: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

Constraint Satisfaction Problems (CSPs)

Let Γ = (D; R1, . . . ,Rn) be a relational structure (finite signature).

Definition CSP(Γ)

INPUT: A primitive positive sentence

φ ≡ ∃x1 · · · ∃xn Ri1(. . .) ∧ · · · ∧ Rim (. . .)

QUESTION: Γ |= φ ???

Γ (i.e., its domain) can be finite or infinite.Γ finite =⇒ CSP(Γ) in NP.Γ infinite =⇒ CSP(Γ) can be anything.Γ finite =⇒ “algebraic approach".Γ infinite + ω-categorical =⇒ “algebraic-topological approach".

Γ is ω-categorical: countable and Γn/Aut(Γ) is finite for all n ≥ 1.

Our result: Topology is irrelevant.

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 3: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

Thank you!

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 4: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

The algebraic-topological approach: clones

Computational problem↓

CSP(Γ)↓

Pol(Γ) = {h : Γn → Γ | n ≥ 1, h homomorphism}

The polymorphism clone Pol(Γ) has algebraic structure:composition of functionsprojections πn

i (x1, . . . , xn) = xi

Pol(Γ) has topology: (fi)i∈ω → f iff fi(c) = f (c) for all c, eventually.

Theorem (for ω-categorical Γ) (by Bodirsky + P)

Pol(Γ) ∼= Pol(∆) =⇒ CSP(Γ) ∼polytime CSP(∆).

Pol(Γ) ∼= Pol(∆): there is a bijection preserving algebra and topology.

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 5: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

Stabilizers

Computational problem↓

CSP(Γ)↓

Pol(Γ)

Consider stabilizer of c = (c1, . . . , cn) ∈ Γn:

Pol(Γ, c) := {f ∈ Pol(Γ) | f (ci , . . . , ci) = ci for all i }

Fact (for ω-categorical cores Γ, i.e., Aut(Γ) = End(Γ)):

CSP(Γ, c) ∼polytime CSP(Γ) .

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 6: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

The projection clone Proj

Computational problem↓

CSP(Γ)↓

Pol(Γ)↓

Pol(Γ, c1)↓

Pol(Γ, c1, c2). . .

Let Proj be the clone of projections on any ≥ 2-element set.

∃c̄ (Pol(Γ, c̄)→ Proj) =⇒ CSP(Γ) is NP-hard (Bodirsky + P).

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 7: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

The algebraic-topological dichotomy conjecture

Conjecture (for reducts of finitely bounded homogeneous structures)

1 ∃c̄ (Pol(Γ, c̄)→ Proj) =⇒ CSP(Γ) is NP-hard.

2 ¬∃c̄ (Pol(Γ, c̄)→ Proj) =⇒ CSP(Γ) is in P.

Problems

Statements non-algebraic (unless Γ finite).

Second statement negative.For finite Γ equivalent to positive statements:existence in Pol(Γ) of Taylor, weak nu, Siggers,cyclic function.

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 8: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

Topology is irrelevant

Computational problem↓

CSP(Γ)↓

Pol(Γ)↓

Pol(Γ, c̄)

Theorem (Barto + P)

Let Γ be an ω-categorical core. TFAE:

¬∃c̄ (Pol(Γ, c̄)→ Proj)

¬∃c̄ (Pol(Γ, c̄)→ Proj) even ignoring the topology

Pol(Γ) is pseudo-Siggers, i.e., contains α, β, f satisfyingα(f (x , y , x , z, y , z)) = β(f (y , x , z, x , z, y))

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 9: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

The algebraic dichotomy conjecture

Remarks:Proof: “Pseudoloop lemma" via Bulatov’s approach plus infinity.Non-trivial statement about all ω-categorical structures.

The Algebraic-Topological Dichotomy Conjecture(for reducts of finitely bounded homogeneous structures)

1 ∃c̄ (Pol(Γ, c̄)→ Proj) =⇒ CSP(Γ) is NP-hard.2 ¬∃c̄ (Pol(Γ, c̄)→ Proj) =⇒ CSP(Γ) is in P.

The Algebraic Dichotomy Conjecture(for reducts of finitely bounded homogeneous structures)

1 Pol(Γ) is not pseudo-Siggers =⇒ CSP(Γ) is NP-hard.2 Pol(Γ) is pseudo-Siggers =⇒ CSP(Γ) is in P.

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker

Page 10: The algebraic dichotomy conjecture *1mmfor infinite domain ... · Thank you! Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker. Title: The algebraic dichotomy conjecture

Thank you!

Algebraic dichotomy conjecture for infinite CSPs Michael Pinsker