14
Term Paper Term Paper OLOMOLA,Afolabi OLOMOLA,Afolabi (101-80024) (101-80024)

Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Embed Size (px)

Citation preview

Page 1: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Term PaperTerm Paper

OLOMOLA,AfolabiOLOMOLA,Afolabi

(101-80024)(101-80024)

Page 2: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Dependability Modellling

Page 3: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

IntroductionIntroduction

• With today’s large and complex distributed software systems, building and maintaining dependable software systems is becoming more and more challenging

• We are in the period where more emphasis must be placed on developing systems that meet both functional and non functional requirements.

• Software's increasing role creates both requirements for being able to trust it more than before, and for more people to know how much they can trust their software .

Page 4: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

What is Dependability?What is Dependability?

• The international Federation for Information Processing (IFIP) defines dependability as the trustworthiness of a computing system that allows reliance to be justifiable placed on the services it delivers.

• Why is there a problem with software reliability?

• Human intellectual failures and inability to follow proper development plan.

Page 5: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Dependability ModellingDependability Modelling

• Framework that accommodates different philosophies, methods and techniques for analyzing dependability requirements of a system

• There are several tools to model dependability of a system

• Unified model of Dependability• Unified Model Language• Dependability Evaluation of multiple-phased systems

(DEEM)

Page 6: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Dependability ConceptsDependability Concepts

Dependability

Threats:

FAULTSERRORSFAILURES

Means:

FAULT PREVENTIONFAULT TOLERANCEFAULT REMOVALFAULT FORECASTING

Attributes:AVAILABILITYRELIABILITYSAFETYCONFIDENTIALITYINTEGRITYMAINTAINABILITY

Page 7: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

ThreatsThreats

• Threats are things that can affect a system and cause a drop in Dependability. There are three main terms that must be clearly understood:

• Fault: A fault (which is usually referred to as a bug for historic reasons) is a defect in a system. The presence of a fault in a system may or may not lead to a failure.

• Error: An error is a discrepancy between the intended behavior of a system and its actual behavior inside the system boundary. Errors occur at runtime when some part of the system enters an unexpected state due to the activation of a fault.

• Failure: A failure is an instance in time when a system displays behavior that is contrary to its specification. An error may not necessarily cause a failure

Page 8: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

MeansMeans

• Fault Prevention deals with preventing faults being incorporated into a system. This can be accomplished by use of development methodologies and good implementation techniques.

• Fault Removal can be sub-divided into two sub-categories:• Removal During Development • Removal During Use

• Fault Forecasting predicts likely faults so that they can be removed or their effects can be circumvented.

• Fault Tolerance deals with putting mechanisms in place that will allow a system to still deliver the required service in the presence of faults, although that service may be at a degraded level.

Page 9: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Dependability Attributes:Dependability Attributes:

• Reliability is the continuity of correct service (a service is correct when implements the system function) [Laprie01].

• Accuracy is the capability to minimize the difference between delivered computational results and the real world quantities that they represent [Boehm03].

• Availability is the ability of the system to provide service at any given time. It is the probability of being operational, under given use condition, at a given instant in time [Melhart00].

Page 10: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

AttributesAttributes

• Performance is concerned with quantifiable attributes of the system, such as response time (how quickly the system reacts to a user input), throughput (how much work the system can accomplish within a specified amount of time), availability (the degree to witch a system or component is operational or accessible when required for use), and accuracy [Bruegge04].

• • Safety is the ability of the system to deliver service under given

use conditions with no catastrophic effect [Melhar00]. • Confidentiality is the absence of unauthorized disclosure of

information [Laprie01].

• Integrity is the absence of improper system state alteration [Laprie01].

Page 11: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

The Unified Model of DependabilityThe Unified Model of Dependability

• The Unified Model of Dependability (UMD) is a modeling framework for discussing and reasoning about dependability. By providing a structured language for eliciting and modeling dependability requirements.

• UMD helps stakeholders to clearly identify the measurable and implementable properties a system

should possess in order to be dependable.

Page 12: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

• The “Unified Model of Dependability” Modeling framework (designed around the concept of failure) that helps stakeholders to express their dependability requirements by defining the issues (failures) with respect to the system or a service (scope), and the possible responsible external events.

Page 13: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

Measuring Dependability:Measuring Dependability:

• It is important to introduce the possibility of measuring dependability by allowing the stakeholders not to only identify the undesired failure, but to quantify what they assume could be tolerable corresponding manifestations.

• Measures Types:• Time-based (probability) measures, such as Mean Time to

Failure (MTTF)• Absolute measure, such as number of occurrence (in a given

time frame)• Ordinal measures, for example by introducing an ordinal scale

such as” very rarely”/”rarely”/”sometimes”

Page 14: Term Paper OLOMOLA,Afolabi(101-80024). Dependability Modellling

ReferencesReferences

• Automatic Dependability Modelling of Systems Described in UML• István Majzik BME-DMIS.H-1521 Pisa, Italy• http://bonda.cnuce.cnr.it/Documentation/Papers/file-MB98-ISSRE-115.pdf

• Dependability Modeling & Evaluation of Multiple-Phased Systems using DEEM• Andrea Bondavalli1, Silvano Chiaradonna2, Felicita Di Giandomenico2, Ivan• http://bonda.cnuce.cnr.it/Documentation/Papers/file-BCDGM04-TRDEEM-3.pdf

• Towards Sound Architectural Dependability Models• Hichem Boudali Boudewijn R. Haverkort Matthias Kuntz Mari¨elle Stoelinga• University of Twente, Department of Computer Science, Enschede, Netherlands.• http://eprints.eemcs.utwente.nl/11030/01/PMCCS-final-Boudali.pdf