56

Click here to load reader

terahertz communication

Embed Size (px)

DESCRIPTION

Tadao Nagatsumateraheartz communication

Citation preview

Page 1: terahertz communication

February 11, 2013TeraHertz: New opportunities for industry

Present and Future of Terahertz Communications

Tadao Nagatsuma

Osaka University

1

February 11, 2013TeraHertz: New opportunities for industry

J. Appl. Phys. 54 (6), pp.3302-3309 (1983) .

My First “THz”

2TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 2: terahertz communication

Applied magnetic field

Quantized flux

V dc I dc

Insulator

Superconductor

Superconductor

f = Vdc/0

483.6 GHz/mVAC current

Flux‐Flow Oscillator (FFO)

Load(100GHz~700GHz)

3TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

“FFO”‐Integrated MMW/THz ReceiversIntegrated superconducting receiver for atmosphere monitoringat 500‐650 GHz (TELIS project: TErahertz and submm LImb Sounder)

ISEC 2007 “Integrated Receivers for Space” by V. Koshelets

FFO(Local

oscillator)400 x

8~16 m2

Antenna and mixer (0.8 m2)

LO

IF

RF

4TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 3: terahertz communication

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics (reviewing 120GHz band wireless)

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

5

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

6

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 4: terahertz communication

GEPON

BPONFastE

GbE

10GbE

100GbE

0.001

0.01

0.1

1

10

100

1000

1995 2000 2005 2010 2015 2020

Year

Bit

Rat

e (G

bit/s

)

10GEPON

~10 times / 5 years

Ethernet

PON(Passive Optical

Network)

Trends in Wired Line

7TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Trends in Wireless

8

802.11 802.11b

802.16(WiMAX Fixed)

802.16e(WiMAX Mobile)

802.15.3c

802.11g

802.11n

0.001

0.01

0.1

1

10

100

1000

1995 2000 2005 2010 2015 2020Year

Bit

Rat

e (

Gbi

t/s)

Fixed Wireless AccessField Pickup Unit

Wireless Backhaul

60 GHz

120 GHz(5 km)

60 GHz

??

Wireless PAN/LAN

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 5: terahertz communication

Approaches to Enhancing Speed

1) Improvement of the spectral efficiency with use of multi‐valuemodulation or MIMO (multiple input multiple output) atmicrowave and millimeter‐wave frequencies such as 60 GHz/90GHz

2) Free‐space optical link possibly with WDM technologies,which have already been established in the fiber‐opticcommunications technologies

3) Use of terahertz carrier frequency with simple modulationformat like ASK (amplitude shift keying), PSK (phase shiftkeying), and FSK (frequency shift keying)

9TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Radio comms

Marconi

Satellite comms LMDSWPAN

60 GHz LAN

1 GHz

1 THz

1 MHz

1900 1940 20201980

THz

T. S. Bird, Keynote talk at Asia‐Pacific Microwave Conference 2011, Melbourne, Australia, December 2011.

Developing Higher Carriers

Carrier Frequen

cy

LMDS:Local MultipointDistribution Service

10TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 6: terahertz communication

THz wavesMicrowaves

VS.

Increasing power, complexity and cost

Energy efficient, cost effective, and ….

Different Way of Radio Use

Frequency= Space

Shannon theoryR (bit/s) = B (Hz) log2 (1 + S/N)

11TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Carrier Frequency vs. Data Rate

Carrier Frequency (GHz)

Transfer jet(SONY etc.)0.56Gbit/s

Wireless LAN

Wireless HD3.8Gbit/s(BW:7GHz)

120GHzwireless10Gbit/s

(BW:17GHz)

Bluetooth 3.00.054Gbit/s

DataRate(Gbit/s)

275GHz

300GHzwireless24Gbit/s

UnallocatedRegion

0.1

1

10

100

10 100 1000

0.3Gbit/s

1

12TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 7: terahertz communication

13

Free‐Space Loss (1)

Loss ∝ 4r2/Ae

Ae: Antenna aperture = 2Ga/4

Ga: Antenna gain

Loss increases in proportion to square of distance, r, and frequency, f.

Ae

Point source

r

= 4r

2 4frc

2

=

The above formula is obtained when Ga = 1 (0 dBi).

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

14

Pr (Rx power)= Pt (Tx power)+ Gt (Tx antenna gain)+ Gr (Rx antenna gain)- 20 log (4rf/c)

In case of point-to-point link, free-space loss can be compensated with antenna gain, which increases with square of frequency.

Free-space loss

【Example】Free-space loss = 134 dB for 1 km at 120 GHz (= 2.5 mm),And it becomes 34 dB with 50-dBi antennas for Tx & Rx.

Free‐Space Loss (2)

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 8: terahertz communication

15

Friis’ Formula

Pr = Pt (Aet Aer) / (rλ)2 ∝ f 2

Aet : Effective area of Tx antennaAer : Effective area of Rx antennaPr : Transmitted powerPt : Received powerr : Link distanceλ : Wavelength

AerAet

r

Transmitter Receiver

Assuming the same antenna size, the received power increases with frequency, resulting in lower transmitted power required.

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

16

Case Study: 60GHz vs. 400GHz

10-6

10-8

10-10

10-12

0 1 2 310-14

27dBLoss due to atmospheric/rain(25mm/h)/fog

Transmitted power

60GHz 400GHz26dB

100mW 4 mW

C. M. Mann, in“Terahertz sourcesand systems”,Kluwer, 2001, p. 261.

400GHz

60GHz

Antenna Aperture: 10cmx10cm

Link Distance (km)

Rec

eive

d P

ower

(W

)

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 9: terahertz communication

17

1000 T

Fog (0.1g/m3) Visibility 50 m

Heavy Rain(25 mm/h) Visible

Light

100 T10 THz1 T100 G10 G

Frequency (Hz)

0.01

0.1

1

10

100

1000

Att

enu

atio

n

(dB

/km

) 60GHz

Dry air

Attenuation by Air/Rain/Fog

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

18

Atmospheric Attenuation: Mid. Distance

1

10

105

0.1

107

100 200 300 500 1000 2000 3000

10dB/1km

Frequency (GHz)

Atten

uation (dB/km)

103

102

104

10dB/10km

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 10: terahertz communication

19

Rain atten.: 10dB/km

1 km 1 km

100 W (inversely proportional to square of distance )

10 W 250 nW

Rain atten.: 20dB/km

Rain atten.: 30dB/km(=60dB/2km)

1 W 2.5 nW

100 nW 25 pW

Fair condition

3 orders 6 orders

25 W

Impact of Attenuation by Rain

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

1

10

102

103

104

105

0.1

106

100 200 300 500 1000 2000 3000

1dB/10m

Frequency (GHz)

Future applications

Atmospheric Attenuation: Short Distance

Atten

uation(dB/km)

20TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 11: terahertz communication

60GHz band

Array AntennaLSI for BasebandSignals

25mm

300GHz band

Reduction of size: 1/5 (area: 1/25)

2~5mm

Possible to use for consumer devicesmarket opportunity

60 GHz vs. 300 GHz

21TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

22

Usage Environment Distance

BackboneNW link

Fixed/outdoor

Fixed wirelessaccess (FWA)

Condition Beam Positioning

Board-to-board

connectionSame as above Almost

fixed

Short distancedevice

connection

IndoorMainly on desk <0.1 m LOS

Multi-passSame as above

Kioskdownload Indoor/mobile <0.1~1 m

LOSTx/Rx Multiple

reflection

Same as above(manual is OK)

WLAN/WPANLink to access

pointMainly indoor

<10~100 m Same as above

THz nanocell Mobile NWIn/outdoor <100m

Line of sightNon-LOS

(dynamicallychanged)

Automaticpositioningrequired

100 m~a few km

Line of sightAir attenuation

HighlyDirective/Manual

<0.1 mIn computers/instruments

Same as above

Usage and Requirements

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 12: terahertz communication

23

Example of Beam Steering Techniques

K. Sengupta and A. Hajimiri (Caltech), ISSCC 2012

45 nm CMOS4x4 array2.7mm x 2.7mmBW: 276‐285 GHzBeam angle: 80 degree Output power: 190 W

DividerPhase shifter

RadiatorCore

CentralVCO

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Who pays for THz Com. ??

1) Broadcasting uncompressed HD x N:1.5 Gbit/s x N uncompressed UHD (SHV): 24 Gbit/s, 42, 72…uncompressed 3D w/ HD or UHD >100 Gbit/s

2) Medical more reality in color and increased resolution for diagnosis huge image data handled at real time for surgerywireless data transfer required in surgery roomsno latency for remote medicine

3) General consumer ??cheaper and smaller

24TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 13: terahertz communication

Expected Applications

School

Conference Site

8K‐TV(12Gbps)

Super High Vision(>24Gbps)

4K‐TV

Reduction of Cost & Energy by Transportation

Hospital

4K‐TV

Office

Cloud Server

Instantaneous DataTransferHD/SHD

Optical Fiber

TV Station/Network Center

Relay Points

Event Site

Medical & HealthEducation & Work

Life & EnvironmentLife‐support Robot

Medical Sensor

E‐books

Home

HD Image

Medical Data

Remote OfficeHealth Care

ShieldedTHz Communication

Optical Network

25TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Big Wall Displays Change Our Life

Big wall-displays provide highly realistic-sensation remote communications, and a wireless will be truly user’s demand.

8K‐TV(>12 Gbit/s)

UHD‐TV24‐72 Gbit/s 8K‐TV School

Hospital

Office

Conference site 8K‐TV

3D‐TV

26TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 14: terahertz communication

27

Smart Phone with Wall Displays

Courtesy of David Britz, AT&T

Video

Voice

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Cloud Server

DownloadUpload

Cloud

SD memory*SSD memory

Big Data: from Store to Circulation

We will carry only “smart phone” with huge memory, when instantaneous wireless transfer of big data becomes possible

100Gbit/s (12.5GBite/s)proximity link

From Tera-Bite to Peta-Bite

28TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 15: terahertz communication

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics (reviewing 120GHz band wireless)

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

29

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

DATA signal

Post‐amplifier

Optical RF signalgenerator

Opticalmodulator

O/Econverter

Electricalmodulator

Opticalamplifier

Electrical RF signal generator

DATA signal DATA signal

Diode mixer

Gunn diode + multiplierOscillator IC, RTD, etc.

EDFASOA

EOMEAM

PhotodiodePhotocon‐ductor

Amplifier IC

Amplifier IC Infrared lasers, etc.

AntennaElectronics based Tx

Photonics (O/E) based Tx

Enabling Technologies: Tx

30TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 16: terahertz communication

Enabling Technologies: Rx

DATA signal

Pre‐amplifier

Electricaldemodulator

Diode detector Amplifier IC

Antenna

Baseband IC

DATA signal

Pre‐amplifier

Electricaldemodulator

Diode mixerAmplifier IC

Antenna

IF/baseband IC

LO signalsource

Gunn diode + multiplierPhotonics‐based, etc.

Direct detection

Heterodyne detection

31TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

CarrierFrequency

Technology Max. Bit rate(Error free)

AffiliationTx Rx

120 GHz

120 GHz

200 GHz

250 GHz

220 GHz

Photonics-based

MMIC(InP)(direct det.)

MMIC(InP)

Disc. comp.(heterodyne det.)

MMIC(GaAs)MMIC(GaAs)

Photonics-based

10 Gbit/s

20 Gbit/s(with pol.MUX)

1 Gbit/s

~15 Gbit/s

8 Gbit/s

Photonics-based

NTT

NTT

NTTOsaka-U

IEMN

MMIC(InP)(direct det.)

Disc. comp.(direct det.)

FraunhoferIAF

Photonics-based

Disc. comp.(heterodyne det.)146 GHz 1 Gbit/s

UCLIII-V LabUC3M

120 GHz MMIC(CMOS) 9 Gbit/s Hiroshima U.MMIC(CMOS)

(direct det.)

Recent Developments(1)

32TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 17: terahertz communication

CarrierFrequency

Technology Max. Bit rate(Error free)

AffiliationTx Rx

300~400GHz

300 GHz

300 GHz

Photonics-based

Resonant-tunneling diode

24 Gbit/s

~100 Mbit/s

Osaka-UNTT

Disc. comp.(direct det.)

Disc. comp.(heterodyne det.)

TU Braun-schweig

2.5 Gbit/sRohm

Osaka-UResonant-

tunneling diode

Disc. comp.(direct det.) 2.5 Gbit/s625 GHz

Frequencymultiplier

NJ ITBell Lab

Frequencymultiplier

542 GHzResonant-

tunneling diodeDisc. comp.(direct det.)

TokyoInst. Tech1~2 Gbit/s

300 GHz ~1.5 Gbit/sDisc. comp.

(heterodyne det.)ETRIFrequency

multiplier

Recent Developments(2)

33TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

“NOT” error‐free result; use of FEC was assumed.BER was estimated by off‐line signal processing.

Multi‐level modulation (16QAM) and pol. MUX using W‐band (75GHz‐110GHz)X. Pang et al., OPTICS EXPRESS, Vol. 19, No. 25, 24945(2011).

2E‐3

100 Gbit/s Wireless Reported, But…

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013 34

Page 18: terahertz communication

Pursuing “Error Free”

Bit Error Rate (BER) = number of errors / total number of bits sent

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

1E-2B

it E

rror

Rat

e

Tx/Rx Power

2E‐3

1E‐11

FEC(Forward ErrorCorrection) limit

Error free(practical)

35

???

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

BER Movie

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 19: terahertz communication

・Output power: 10 mW, ~2 km・Power consumption: 600W

Receiver

Transmitter Transmitter Core

Photonic MMWGenerator

Data Modulator

・Output power: 10 mW, 2.2 km・Power consumption: 60 W

Mobility, Portability

ControllerTransmitterTransmitter

2008/5

Easy set-up system

2000-2002

Volume: 1/6Weight: 1/2

2004/7 2005/8

2007/1

120 G: Hardware Evolution in 10 years

Battery operation

Photonics‐based Transmitter

Electronics‐based Transmitter

37TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Optical Fiber

Optical SignalSlot Antenna(774 x 95 mm2) PD Chip

Si-Lens

Antenna

Si Platform MMW Signal1 mm

Microwave Photonics 2000

Initiated by Photonics

38TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 20: terahertz communication

Powered by MMICs

OpticalInput

Output

MSL Amplifier Photodiode

Transmitter MMIC Receiver MMIC

Transistors and amplifiers change the world

Transmitter (photonics based)

39TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

0.1-m-gate InAlAs/InGaAs HEMT gm = 1.2 S/mm, ft = 170 GHz, fmax = 350 GHz MIM capacitor, double-layer interconnection process

with BCB

BCB

SiN/SiO2

0.1 m

Fully matured production level technology (NTT Electronics)

Electronic Devices: InP HEMT

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013 40

Page 21: terahertz communication

120‐GHz‐band System with Photonic Tx

A. Hirata et al., IEEE Trans. Microwave Theory Tech., vol. 54, pp.1937-1944, 2006.

Optical signal

Electrical signal

125 GHzOptical signal

Data signal(10 Gbit/s)

Basebandamplifier

Basebandamplifier

IN

OUT

125 GHz MMW signal

Opticalmodulator

Data signal(10 Gbit/s)

Optical MMW signal

generator

PD with amplifier MMIC Rx

41TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Antenna (45-cm diameter)

Optical signal generator

Optical modulator andcontrol board

PD with amplifier

A. Hirata et al., IEEE Trans. Microwave Theory Tech., vol. 54, pp.1937‐1944, 2006.

120‐GHz Band Transmitter

42TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 22: terahertz communication

Lab

ReceiverFiber:400 m

Air transmission:250 m

Fiber:50 m

Transmitter

Setup for Field Test

digital

analog

A. Hirata et al., IEEE J. Lightwave Tech., vol. 26, no. 15, pp. 2338‐2344, 2008.

43TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Transmission Characteristics

Total number of bit errors

BER

1st day 3 1X10-14

2nd day 5 2X10-14

3rd day 13 5X10-14

Fluctuations in received power: < 1 dB for 6 hours

BER of wireless link: < 1X10-13

-30

-29

-28

-27

Rec

eive

d po

wer

(dB

m)

Time11:00 12:00 13:00 14:00 15:00 16:00 17:00

Receiver power Bit error rate (BER)

Meets OC-192 and 10GbE standards

A. Hirata et al., IEEE J. Lightwave Tech., vol. 26, No. 15, pp. 2338‐2344, 2008.

44TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 23: terahertz communication

XFP module(O/E)

DA

TA IN

Transmitter module

to antenna

Optical data (10-Gbit/s)

LO:15.625 GHz

Power amp. module

Transmitter MMIC

Multiplier(x4) MMIC

120 GHz with WR-8 waveguide (>40 mW)

LO:62.5GHz

Power amp.MMIC

LO signal IN

DATA IN

120‐GHz‐band Transmitter with Electronics

Battery operated

NTT Technical Journal, Vol. 19, No. 5, pp. 48–51, 2007 (in Japanese).

45TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

10-Gbit/selectrical signal

Cassegrain anntena

Waveguide (2 mm×1 mm)

Bayonet mechanism

10-Gbit/soptical signal

HD-SDI signal

100~240 V AC

Controller

PA module

15.625 GHz

Transmitter head

Txmodule

E/O

AC/DC

Controller

O/E

Power supply

Controller

XFP

Camera cable( ~1km )

Controller Tx Frontend

Advanced All‐Electronics System

NTT Technical Review, vol. 7, no. 3, Mar. 2009

46TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 24: terahertz communication

120 G: Now

47

10 Gbit/s, >5 km, InP‐HEMT MMIC with FECBidirectional with polarization multiplex

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

‐45 ‐40 ‐35

10‐2

Bit Error Rate

Received Power (dBm)

10‐4

10‐6

10‐8

10‐10

10‐12

Data rate:10.3125 Gbit/s

Minimum receivedpower: ‐38 dBm

120 G @ Beijing Olympic

48TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 25: terahertz communication

Received power on August 8(Opening day of Olympics)

Fluctuations < 2dB

View from BMC

8/1 5 10 15 20 241

6

12

18

24

Date

Tim

eof

day

1 km

Experimental Setup

TV programs with 120-GHz system

-31

-30

-29

-28

4 8 12 16 20 24

Rec

eive

d po

wer

(dB

m)

Time (hr)

Results of 120 G @ Olympic

49TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Indoor 4‐K Digital TV Transmission (<10 m)

4-K DisplayTx Rx

Tx Rx

“Small Antenna”

Link Distance < 10 m

30 mm50TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 26: terahertz communication

NICT(Tokyo)

JGN 2 Plus(10G Ethernet system)

NTT Com Building

KDDIBuilding

・120 GHz link (10mW)・150 m (thr. Windows)・Bi‐dorectional

Media Server “cloud”

NICT(Kyoto)

NTTMusashino

Medical Dr. A Medical Dr. B

Teleconference with 10‐G Wired & Wireless

3D and 4 K data

51TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

52

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 27: terahertz communication

Photonics‐based Tx & Direct Detection

OpticalModulator

Base‐bandPhotodiode

RF Receiver

1

2

Data(OOK)

Data

Data

Fiber-optic link

Wireless link

fRF = c

1 2

RFPhotodiode

Photo‐mixing

Seamless between fiber‐optic and wireless

Unlocked

53TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Generating THz Signals

frequencyf1 f2

Tunable laser 1

Tunable laser 2

frequencyf2- f1

Photodiode

Photo mixing

Photo‐mixing

54TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 28: terahertz communication

Oscillo‐scope

Optical amp.

Schottky‐barrierdiode

Opticalmodulator

Photo‐diode

THz wave

Pulse‐patterngenerator

Wavelength tunable laser

Wavelengthtunable laser

Horn anttenaPreamp.

Limit amp.

Errordetector

Dielectric lens

Tx Rx

Optical freq.

Optical freq.

f

fRF freq.

Baseband freq.

BasebandFreq.

300‐GHz Band Experiment

55TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Dielectric Lens

ReceiverTransmitter

56

Photo of Setup

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 29: terahertz communication

UTC-PDStub

C

100 µmRF out

DCbias

“relax CR time constraint”

p-dopedabsorption layer

un-dopedcollectionlayer

n-contactlayer

p-contactlayer

diffusion block layer

(C.B.)

(V.B.)

un-dopedabsorption layer

“speed-up carrier transit”

Fast Photodiode Technology

57TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Output Power at 300‐400 GHz

0

20

40

60

80

100

120

260 300 340 380 420

6 mA

10 mA

Frequency (GHz)

Det

ecte

d P

ower

(W

)

140 GHz

270 410

90 Gbit/s w/ ASK

58TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 30: terahertz communication

PD

Combiner

Chip Structure

PD

Output

Output power (dBm)

1 10 100

0

6

Photocurrent per PD (mA)

1 mW @300 GHz@ 18 mA per PD

Increasing Output Power

‐6

‐12

‐18

59TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Horn Antenna

Optical Fiber

PD Module

Dielectric Lens

Photo of Transmitter

60TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 31: terahertz communication

New Antenna Technology

Collaboration with J. Hirokawa and M. Ando

(Tokyo Inst. Tech)

61

42 mm

300 GHz

100 mm50 mm

Photodiode

Photodiode

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Low‐profile Array Antenna

16 x 16 (256), 32 dBi

Plate-laminated waveguide slot array antenna

62

Radiating Slot

Cavity

FeedingNetwork

CouplingSlot

11.2 mm

11.2 mm

0.6 mm

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 32: terahertz communication

Receiver Configuration

63

Receiver moduleReceiver chip

Antenna

Schottky barrier diode

Baseband signal

120 mBasebandsignal

Silicon lens

Bandwidth of baseband signals~ 20 GHz

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

0 2 4 6 8 101E-14

1E-12

1E-10

1E-8

1E-6

1E-4

0.01

Bit

Err

or R

ate

Photocurrent (mA)

10 W 50 W

12.5 Gbit/s

24 Gbit/s

12.5 Gb/s

24 Gb/sMinimum data rate for UHD

24 Gbit/s Error Free

64TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 33: terahertz communication

20 Gbps

20 ps

20 ps

20 ps

20 ps

22 Gbps

24 Gbps

26 Gbps

28 Gbps

30 Gbps

PD current 10 mA

Eye Diagrams up to 30 Gbit/s

65

BER~10‐4

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

>40 GHz(24 Gbit/s)

>70 GHz(43 Gbit/s)

Pow

er

(a) Ultra-broadband channel

Carrier

2.5 GHz(1.5 Gbit/s)

Frequency

Pow

er

(b) Multiple giga-bit channels

Carrier

UHD OC-768 HDTV

Use of Ultra‐Broadband

66TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 34: terahertz communication

280 to 400 GHz Experiments

67

280 GHz 300 GHz

320 GHz 340 GHz

360 GHz 380 GHz

400 GHz

(a) (b)

(c) (d)

(e) (f)

(g)

500 ps

1.0 Gbit/s

Usable bandwidth: 120 GHz 48 ch. HDTV

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

450 to 720 GHz Experiments

450 GHz

500 GHz

550 GHz

600 GHz

650 GHz

720 GHz

(a)

(b)

(c)

(d)

(e)

(f)

1.6 Gbit/s

68

Usable bandwidth: 270 GHz 108 ch. HDTVTeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 35: terahertz communication

Multi‐band Receivers

1.5 GbpsExperiments

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013 69

40 GbpsASK Modulation

20

30

40

10

Max 30 Gbps

2011

100

2012 2013

Data Rate

[Gbps]

Max 11.4 Gbps

Max 22 Gbps

Wired (Ethernet): 100 Gbps

201x

Multi value mod.(e.g., QPSK)

100 Gbps

Now

Future Strategy

2010

Max 16 Gbps

70TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 36: terahertz communication

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

71

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Local Oscillator

LO

Opt. Carrier 1

Opt. Carrie 2

PDIM

Data

RF IFData

IM: Intensity Modulator

Stability of RF signal is dependent on those of optical carriers Frequency difference in optical carriers should be stabilized

Towards Coherent Detection

Receiver Transmitter

72TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 37: terahertz communication

Example of Recent Studies

Carrier Recovery

IQ Separa-tion

10Gbit/s PPG

QPSK ModulatorLaser

MZM Modulator

Kanno et al., IEICE Electronics Express, vol. 8, no. 8, pp. 612‐617 (2011).

Photodiode

OpticalCoherentReceiver

EDFAEDFA

AWG Filter

LO (75 GHz)

23.125 GHz

HornRFIFI

Q

Freq. Quadrupler

73TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Receiver

OpticalFrequencyComb

Generator(OFCG)

OpticalFilter

Transmitter

Frequency is stabilized Unstable transmission

PDIM

Data LocalOscillator

LO

RF IFData

Use of Optical Frequency Comb

1.5 Gbit/s @100 GHz

Wavelength

21

74TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 38: terahertz communication

RF SignalOptical Carrier

Phase instability between optical carriers Jitter of photonically generated RF signal

PDOpticalFilter

1/f1

1/f2

Origin of Instability

FromOFCG

Coupler

75TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Slow PD

PS

FeedbackCircuit

PS:Phase shifter x ref = cos(t)

x carrier = cos(t) + (t)

cos (t)

Reference Arm

Countermeasure

Locking to the reference optical signal by feedback circuitry

Coupler

76TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 39: terahertz communication

100 GHz

PS

PS

IM

DataOpticalFilter

1.5 Gbps

UTC‐PD RF

Optimized FB Error free transmission

200 ps/div.

Transmitter

Low‐Speed PD

Feedback Signalto Each PS

OFCG

25 GHz

Stabilized Transmission

1.5 Gbit/s @ 100 GHz

77TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

10 ‐1

10 ‐11

10 ‐3

10 ‐5

10 ‐7

10 ‐9

‐50 ‐40 ‐30 ‐20

BER Characteristics

Transmitter Power (dBm)

BER

Coherent Detection Direct Detection

Theoretical

78TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 40: terahertz communication

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

79

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

High power MMW amplifier + Frequency multiplier

20~40 μW (w/ x12) @ 1.7~1.9 THz

Transistor–based oscillator IC

100‐300 μW@ 250‐350 GHz with InP DHBT,

780 μW at 290 GHz, 160 μW at 480 GHz with CMOS

Resonant tunneling diode (RTD) oscillator

200 μW@ 443 GHz, 610 μW@ 620 GHz (2 arrays),

10 μW@ 1.3 THz

T. Nagatsuma, “Terahertz Technologies; Present and Future”, IEICE Electronics, Express, Vol.8, No. 14, 1127 (2011).

Lorene A. Samoska, “An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime”, IEEE Trans. Terahertz Science Tech., Vol. 1, No. 1, 9(2011).

Output Power by Electronics

80TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 41: terahertz communication

Frequency (GHz)

InP HBT

InP HEMT

SiGe HBT

CMOS

100 200 300 400 500 600

0

-10

-20

-30

-40

-50

Out

put P

ower

(dB

m)

10 W

CMOSCMOS

RTD

Comparison

81TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

CMOS‐based Generator

45nm CMOS: ~1mW (2x2) @ 180~190GHz

M. Uzunkol et al., Tech. Dig. IMS 2013, 17‐22 June 201282TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 42: terahertz communication

2 element array610W @624GHz(S. Suzuki et al.,IEEE J. Select. QE,2012.)

Single~10W @1.4 THz(H. Kanaya et al.,IPRM 2012)

Progress in Resonant Tunneling Diode

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013 83

Tapered Slot Antenna

RTD

InP Substrate

RTD Chip

n+InGaAs 400nmElectrode

Quantum WellTunnel Barrier

Tunnel Barrier

n-InGaAs 25nmun-InGaAs 2nmun-AlAs 1.1nm

un-InGaAs 4.5nmun-AlAs 1.1nm

un-InGaAs 20nmn-InGaAs 25nmn+InGaAs 15nmn+InGaAs 8nm

Electrode

Antenna‐integrated RTD

84TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 43: terahertz communication

BarrierBarrierWell

Resonant level

DC Voltage

DCCurrent

V V

Layer Structure

I-V Characteristics

①② ③

Electron

Energy Band

CommonDiode

電極Au/Pd/Ti

n+InGaAs

n-InGaAs

un-InGaAs

un-AlAs

un-InGaAs

un-AlAs

un-InGaAs

n-InGaAs

n+InGaAs

電極Au/Pd/Ti

半絶縁 InP sub

Au/Pd/Ti

n+InGaAs

n-InGaAs

un-InGaAs

un-AlAs

un-InGaAs

un-AlAs

un-InGaAs

n-InGaAs

n+InGaAs

Au/Pd/Ti

InP sub

Quantum WellTunnel Barrier

Tunnel BarrierThin layers(~1 nm)

Principle of RTD

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013 85

電圧(V)

電流

Operation pointfor transmitter

Operation pointfor receiver

10

0

-10

-1.0 -0.5 0 0.5 1.0DC Voltage (V)

A

B

DC

Cur

rent

(mA

)

Operation Points

86TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 44: terahertz communication

Input Data Signal

0

1

1

0

0

I

V

Output

01 00 1OscillationNon‐Oscillation

Negative Differential Resistance (NDR) Region

Transmitter Operation

87TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

0

2

22

4)(

VVdV

IdaVI

Square law detection

I

V

Input

Output

0 1 0 01 1

01

01

01

Receiver Operation

Strong non-linear region !

88TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 45: terahertz communication

RTD Transceiver

89

Pulse Pattern

Generator

Preamp.

Limit amp.

DC Bias

RTD

DC Bias

VariableAttenuator

To oscilloscope and error detector

Transmitter Receiver

Blocking Capacitor

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

10-2

10-8

10-10

10-12

10-6

1

10-4

BE

R

0.7 0.8 0.9

DC bias voltage (V)

1.5 Gbit/s

BER and Eye Diagram

90

2.5 Gbit/s

250 ps

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 46: terahertz communication

120GHz/140GHz Rx IC (Hiroshima U)

Data rate: 3~4 Gb/s, Distance: 30~40 cm w/ 25‐dBi horn

SSCS Distinguish Lecture (Prof. Fujishima)

92TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 47: terahertz communication

Noël Deferm, Patrick Reynaert, ISSCC2011, 16.7

120 GHz Tx IC (KULeuven)

65nm LP CMOS Technology Supply voltage: 1VPower consumption: 200 mW

Data rate: 10 Gb/s(QPSK), 6 Gbit/s(8QAM)

93TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

220 GHz‐band System with MMICs

I. Kallfass et al., “All active MMIC‐based wireless communication at 220 GHz”, IEEE Trans. Terahertz Science and Technology, Vol. 1, 577(2011).

Fraunhofer IAF

94TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 48: terahertz communication

300‐GHz Band Wireless Link (TUBraunschweig)

C. Jastrow, S. Priebe, B. Spitschan, J. Hartmann, M. Jacob, T. Kürner, T. Schrader and T. Kleine‐Ostmann, Wireless digital data transmission at 300 GHz, Electron. Lett. 46, 661‐663 (2010).

broadcasttester

broadcasttester

signal generator

125 dBc/Hz(20 kHz offset)

amplifier and 2 tripler

amplifier and 2 tripler

x 9

x 9

16.40 GHz

16.38 GHz

147.60 GHz

147.42 GHz

295.2 ± 1 GHz3.2 µW

1000 ± 4 MHz32 µW

295.2 ± 1 GHz

LCDLCD

1360 ± 4 MHz

a)

b)

signal generator

105 dBc/Hz(20 kHz offset)

G = 32 dBF = 3.5 dB

LNA

TVanalyser

TVanalyser

DVB-S2receiverDVB-S2receiver

95TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

ETRI Journal, Volume 33, Number 6, December 2011.

300 GHz Band Link (ETRI/Korea)

96TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 49: terahertz communication

600 GHz Band Link (Bell Lab/NJIT)

doc.: IEEE 802.15‐11‐0777‐01‐0thzdoc.: IEEE 802.15‐11‐0777‐01‐0thz

1mW

97TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

• Background and motivation

needs for high‐speed wireless

why THz?

who pays for THz wireless?

• Enabling Technologies photonics vs. electronics

• Photonics‐base approachdirect detection

coherent detection

• Electronics‐based approach

• Future issues

• Summary

98

Outline

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 50: terahertz communication

3rd Phase: integrationSmaller & cheaper for mass-production/use

1st Phase: diodeTechnology demonstrationInvestigate advantages, disadvantages, usefulness of THz Modeling THz propagation, reflection…

2nd Phase: transistor & passivesMore performance & functionalActive: THz amplifiers and oscillatorsPassive: THz antennas, filters, absorbers

WE ARE HERE

Towards THz ICs

99TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Hollow Waveguide Metallic

Size

Loss

Cost

PhC Waveguide

Transmission Lines for THz ICs

100TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 51: terahertz communication

10 100 1000 100000.01

0.1

1

10

100

Si Resistivity [Ωcm]

Pro

pag

atio

nL

oss

[dB

/cm

]

Planar Metallic

THz PhCWaveguide

Hollow Waveguide

@0.32 THz

Comparison (Theoretical)

101TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

300 μm

300 μm

200 μm

Fabrication on Si

102TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 52: terahertz communication

0.28 0.30 0.32 0.34 0.36 0.38-80

-60

-40

-20

0

Frequency [THz]

Transm

ission

[dB

] PhC Waveguide

PhC

Preliminary Experiments

103TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Professional use (Broadcast, medical) LAN, Interconnections, etc

2010 20202015

10G

100G

40G

1G

Photonics-based

Electronics-based

(GaAs/InP)

Near-field wireless

Key milestoneElectronics-

based (Si/Ge)

(bit/s)

Roadmap

104TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 53: terahertz communication

105

ITU‐RInternational Telecomm. Union Radiocomm. Sector

WRCWorld Radiocomm . Conference

IEEE802.15(IEEE820.11)

THz Interest Gr.Since 2008

2012 2014 2016 2018 2020 2022

WRC2012 WRC2015 WRC2018

RA RA RA

Allocation forCommunication ?

(RA:. Radio-communication Assembly)

Agenda for WRC2018is determined

SG‐1 TG‐1

SG‐2 TG‐2

SG‐3 TG‐3

Timeline towards Freq. Allocations

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

106

IEEE802.15

IEEE 802 LAN/MAN Standards Committee

802.1Higher LayerLAN ProtocolsWorking Group

802.11Wireless LocalArea NetworkWorking Group

… …

802.15Wireless PersonalArea NetworkWorking Group

802.22Wireless Regional Area Networks

TG9Key Management Protocol

TG8Peer Aware Communications

TG4mTV White Space

TG4kLow Energy Critical Infrastructure Monitoring

TG4jMedical Body Area Networks

… … …

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 54: terahertz communication

On‐going Discussions (1)

doc.: IEEE 802.15‐15‐12‐0324‐00‐0thz

107TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013 108

Page 55: terahertz communication

On‐going Discussions (2)

doc.: IEEE 802.15‐15‐12‐0324‐00‐0thz

109TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

110

S. Priebe et al., IEEE Trans. Terahertz Sci. Tech., vol. 2, no. 5, 525(2012).

Study on Interference Effects

Operational heights of Earth exploration satellites: 705 – 850 km

60dBi

TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013

Page 56: terahertz communication

Summary

• Use of high frequency carriers such as millimeter waves andterahertz waves is effective to increase the bit rate.

• Photonics‐based signal generation and modulationtechnique enables seamless connections between wired andwireless networks.

• 300‐GHz band wireless link with direct detection scheme hasreached error‐free 30 Gbit/s. 600‐GHz band ensures higher.

• To increase the bit rate and receiver sensitivity, coherentdetection scheme has been examined; a proof‐of‐conceptexperiment has been demonstrated at 100‐GHz band.

• For low‐cost and/or consumer applications, electronics‐based approach is essential, and use of RTDs has beendemonstrated at 300‐GHz band, in addition to Si‐basedTx/Rx.

111TeraHertz: New opportunities for industry, EPFL, FEB 11‐13, 2013