7
1 GLOF and glacierrelated hazards and risk in Tajikistan Tetsuya Komatsu and Teiji Watanabe Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan 1. Introduction Glaciers in high mountain regions not only give benefits to human activities in respect of water sources for drinking water, irrigation and energy generation, but also occasionally cause hazards such as glacial lake outburst floods (GLOFs) and ice avalanches. Accordingly, various assessments and mitigations to the glacierrelated hazards have been undertaken worldwide (e.g. Quincy et al. 2007). The Pamir is one of the high mountain regions in Asia, where assessment investigations to glacierrelated hazards are few (Schneider et al. 2010; Mergili & Schneider 2011) although glacierrelated hazards and their threats have been recently reported (e.g. Shodomonov 2012). More activities for reducing the potential risks of glacialrelated hazards should be required hereafter. This paper, focusing on the Tajik Pamir, aims to examine: (1) the contemporary glacial features, (2) characteristics of documented hazards associated with glaciers, and (3) the current status of the hazard assessment. 2. The Pamir, glaciers, and glacial lakes The terrain of the Tajik Pamir differs distinctly between the western and eastern areas. The western TajikPamir (west from ca. 73°E) is distinguished as a combination of the predominantly westeast trending mountain ranges in altitudes from 5,000–7,000 m, and the deep, narrow valleys. In contrast, the eastern Tajik Pamir (east from ca. 73°E) comprises the broad valleys and basins bordered by the more subdued mountain ranges with altitudes of 5,000–6,000 m. The climate of the Pamir is represented by subcontinental and arid continental climate. The moisture delivered to the Pamir is mainly from the Westerlies: twothirds of the annual precipitation occurs during the winter and spring seasons (Aizen 2011). The western Tajik Pamir generally receives greater amounts of the mean annual precipitation (200–2,000 mm/y) compared to the eastern Tajik Pamir (< 100–200 mm/y). The settlements in the Tajik Pamir are concentrated in the valley floors of the western Tajik Pamir, except for several eastern villages (e.g. Murgab); most residence, infrastructure and arable field in the western Tajik Pamir are situated on the alluvial fans/cones developing on the tributary mouths (Watanabe 2000). This situation makes the potential risk for geohazards (GLOF and flash flood) higher in the western Tajik Pamir. Glacial Flooding & Disaster Risk Management Knowledge Exchange and Field Training July 11-24, 2013 in Huaraz, Peru HighMountains.org/workshop/peru-2013

Teiji Watanabe: GLOF and glacier-related hazards and risk in Tajikistan

Embed Size (px)

DESCRIPTION

Glaciers in high mountain regions not only give benefits to human activities in respect of water sources for drinking water, irrigation and energy generation, but also occasionally cause hazards such as glacial lake outburst floods (GLOFs) and ice avalanches. Accordingly, various assessments and mitigations to the glacier-related hazards have been undertaken worldwide (e.g. Quincy et al. 2007). The Pamir is one of the high mountain regions in Asia, where assessment investigations to glacier-related hazards are few (Schneider et al. 2010; Mergili & Schneider 2011) although glacier-related hazards and their threats have been recently reported (e.g. Shodomonov 2012). More activities for reducing the potential risks of glacial-related hazards should be required hereafter. This paper, focusing on the Tajik Pamir, aims to examine: (1) the contemporary glacial features, (2) characteristics of documented hazards associated with glaciers, and (3) the current status of the hazard assessment....

Citation preview

1

GLOF  and  glacier-­‐related  hazards  and  risk  in  Tajikistan  

Tetsuya  Komatsu  and  Teiji  Watanabe  Faculty  of  Environmental  Earth  Science,  Hokkaido  University,  Sapporo,  Japan  

1. IntroductionGlaciers  in  high  mountain  regions  not  only  give  benefits  to  human  activities  in  respect  of  water  sources  for  drinking  water,  irrigation  and  energy  generation,  but  also  occasionally  cause  hazards  such  as  glacial  lake  outburst  floods  (GLOFs)  and  ice  avalanches.  Accordingly,  various  assessments  and  mitigations  to  the  glacier-­‐related  hazards  have  been  undertaken  worldwide  (e.g.  Quincy  et  al.  2007).  The  Pamir  is  one  of  the  high  mountain  regions  in  Asia,  where  assessment  investigations  to  glacier-­‐related  hazards  are  few  (Schneider  et  al.  2010;  Mergili  &  Schneider  2011)  although  glacier-­‐related  hazards  and  their  threats  have  been  recently  reported  (e.g.  Shodomonov  2012).  More  activities  for  reducing  the  potential  risks  of  glacial-­‐related  hazards  should  be  required  hereafter.  This  paper,  focusing  on  the  Tajik  Pamir,  aims  to  examine:  (1)  the  contemporary  glacial  features,  (2)  characteristics  of  documented  hazards  associated  with  glaciers,  and  (3)  the  current  status  of  the  hazard  assessment.    

2. The  Pamir,  glaciers,  and  glacial  lakes  The  terrain  of  the  Tajik  Pamir  differs  distinctly  between  the  western  and  eastern  areas.  The  western  Tajik-­‐Pamir  (west  from  ca.  73°E)  is  distinguished  as  a  combination  of  the  predominantly  west-­‐east  trending  mountain  ranges  in  altitudes  from  5,000–7,000  m,  and  the  deep,  narrow  valleys.  In  contrast,  the  eastern  Tajik  Pamir  (east  from  ca.  73°E)  comprises  the  broad  valleys  and  basins  bordered  by  the  more  subdued  mountain  ranges  with  altitudes  of  5,000–6,000  m.  

The  climate  of  the  Pamir  is  represented  by  sub-­‐continental  and  arid  continental  climate.  The  moisture  delivered  to  the  Pamir  is  mainly  from  the  Westerlies:  two-­‐thirds  of  the  annual  precipitation  occurs  during  the  winter  and  spring  seasons  (Aizen  2011).  The  western  Tajik  Pamir  generally  receives  greater  amounts  of  the  mean  annual  precipitation  (200–2,000  mm/y)  compared  to  the  eastern  Tajik  Pamir  (<  100–200  mm/y).  

The  settlements  in  the  Tajik  Pamir  are  concentrated  in  the  valley  floors  of  the  western  Tajik  Pamir,  except  for  several  eastern  villages  (e.g.  Murgab);  most  residence,  infrastructure  and  arable  field  in  the  western  Tajik  Pamir  are  situated  on  the  alluvial  fans/cones  developing  on  the  tributary  mouths  (Watanabe  2000).  This  situation  makes  the  potential  risk  for  geohazards  (GLOF  and  flash  flood)  higher  in  the  western  Tajik  Pamir.    

Glacial Flooding & Disaster Risk ManagementKnowledge Exchange and Field Training

July 11-24, 2013 in Huaraz, PeruHighMountains.org/workshop/peru-2013

2

  In  the  Tajik  Pamir,  6,730  glaciers,  of  which  the  total  area  attains  7,493  km2,  have  been  identified  by  the  Institute  of  Geography,  the  USSR  Academy  of  Sciences  (Kotlyakov  et  al.  2010a).  Scattered  cirques  and  small  valley  glaciers  dominate  in  the  western  Tajik  Pamir  (west  from  ca.  73°E).  Large  glacier  complexes  comprising  two  or  more  individual  valley-­‐glaciers  (e.g.  the  Fedchenko  Glacier)  can  be  often  found  in  the  northeastern  most  portion  of  the  western  Tajik  Pamir.  In  contrast,  smaller  valley  glaciers  or  slope  niche  glaciers  largely  occupy  in  the  arid  eastern  Tajik  Pamir.  A  notable  feature  of  the  Pamirian  glaciers  is  that  some  of  them  show  dynamic  instability,  which  can  be  regarded  as  ‘surging’:  630  surge-­‐type  glaciers  have  been  identified  in  total  in  the  Tajik  Pamir  up  until  1991  (Kotlyakov  et  al.  2010b).         Systematic  investigations  to  clarify  the  distribution,  type  and  development  of  glacial  lakes  have  been  conducted  only  in  the  southwestern  Tajik  Pamir  (the  Gunt  and  Shakhdara  valleys)  by  Mergili  &  Schneider  (2011)  and  Mergili  et  al.  (2012).  These  studies  cover  the  period  1968–2009  using  multitemporal  satellite  images:  172  glacial  lakes  (an  area  of  ≥2,500  m2)  have  been  identified  in  the  2007/2008  images.  The  172  glacial  lakes  are  mostly  located  at  4,400–4,700  m  (Mergili  et  al.  2012).  This  altitudinal  zone  is  significantly  higher  than  the  altitudes  ranging  from  3,810–4,000  m,  which  are  calculated  as  lower  boundary  of  discontinuous  permafrost  (permafrost  probable)  by  Müllebner  (2010).  This  situation  in  the  southwestern  Tajik  Pamir  is  at  least  a  favorable  factor  for  the  stability  of  the  ice  core  (dead  ice)  underneath  the  lake-­‐dammed  moraines.        3.  Glacier-­‐related  hazards  in  the  Tajik  Pamir  The  report  published  from  the  Department  of  Hydrometeorology  in  Tajikistan  (Makhmadaliev  et  al.  2008)  indicates  that  9  GLOFs  and  1  glacier-­‐related  debris-­‐flow  have  occurred  in  the  western  Tajik  Pamir.  On  the  other  hand,  7  GLOFs  are  confirmed  from  the  website  of  the  MNV  Consulting  Ltd.,  which  shows  the  historical  records  of  the  major  floods  in  Tajikistan  during  the  period  1894–2000.  The  detailed  information  about  cause  and  occurrence  location  of  such  glacier-­‐related  hazards  has  been  obtained  from  only  five  events.  These  hazardous  events  are  closely  associated  with  either  glacier  surge  or  glacial  lake  on  moraines.    3.1.  Hazard  related  to  glacier  surge  A  well-­‐known  case  of  the  surge-­‐related  hazard  in  the  Tajik  Pamir  is  the  outburst  of  the  glacial-­‐dammed  lake,  which  occurs  as  a  consequence  that  the  tributary  glacier  advances  into  the  ice-­‐free  trunk  valley  and  blocks  the  main  river.  For  instance,  such  a  hazardous  surge  took  place  at  the  Medvezhiy  (Bear)  Glacier  (N38°39’,  E72°09’37”),  located  in  the  upper  reaches  of  the  Vanch  Valley,  the  western  Tajik  Pamir.  Surges  of  this  glacier  have  been  identified  six  times  (1951,  1963,  1973,  1989,  2001,  and  2011)  (Kotlyakov  et  al.  2010b).  Among  these  surges,  the  events  in  1963,  1973,  1989,  and  2011  have  induced  the  glacier  terminus  to  block  the  main  valley,  and  close  the  Abdukagor  River.        

3

3.2.  Hazard  related  to  glacial  lake  on  moraines     Only  one  event  has  been  recognized  as  a  hazard  related  to  a  glacial  lake  on  moraines  in  the  Tajik  Pamir  up  to  now,  i.e.,  a  debris  flow  named  ‘the  Dasht  2002  event’,  which  occurred  in  the  tributary  headwaters  of  the  Shakhdara  valley  (the  southwestern  Tajik  Pamir)  on  7  August  2002.  This  hazardous  debris  flow  originated  from  a  glacial  lake  (the  Dasht  Lake;  N37°13’12”,  E71°44’03”,  4,400  m),  which  had  formed  on  the  ice-­‐cored  end  moraine  and  gained  its  size  to  an  area  of  32,000  m2.  The  volume  of  the  released  water  from  this  lake  and  that  of  the  entrained  debris  into  the  water  were  estimated  to  be  32,000  m3  and  1.0–1.5  million  m3,  respectively  (Mergili  &  Schneider  2011).  This  debris  flow  traveled  10.5  km  downstream  the  valley,  and  attacked  the  Dasht  village  (2,620—2,600  m)  situated  on  the  alluvial  fan;  its  travel  time  to  the  village  was  considered  to  be  at  least  45  minutes  based  on  the  voice  of  the  local  people  (Mergili  &  Schneider  2011).  Eventually,  this  event  destroyed  a  large  part  of  the  village  and  killed  approx.  25  local  people.           The  changes  of  the  Dasht  Lake  before  and  after  the  event  can  be  traced  from  the  observation  of  the  multitemporal  satellite  images  covering  the  years  of  1968,  1973,  1992,  2000,  2002  and  2008,  and  a  1:50,000  Russian  map  compiled  in  1983–84.  The  development  history  of  the  Dasht  Lake  suggests  that  the  lake  is  characterized  by  the  ‘no  surface  outlet’,  ‘repeatedly  appeared’,  ‘rapidly  enlarged’,  and  ‘short-­‐lived’  lake  on  the  ice-­‐cored  end  moraine.  Considering  these  characteristics,  the  appearance  and  expansion  of  this  glacial  lake  are  most  likely  attributed  to  the  temporal  blockage  of  the  drainage  channel  through  or  beneath  the  dead-­‐ice/till  complex,  caused  by  the  ice  deformation  and/or  ice-­‐debris  collapses  into  the  channel,  which  was  observed  in  Tien  Shan  (Narama  et  al.  2010);  the  sudden  discharge  (outburst)  from  the  lake  is  probably  due  to  the  blockage  failure  assigned  to  the  increasing  water  pressure  and/or  the  atmospheric  warming  in  summer.          4.  Applied  hazards  assessment:  A  review    4-­‐1.  Assessment  by  Schneider  and  Mergili  (2010)  Schneider  et  al.  (2010)  focused  on  the  potential  risk  rating  of  geohazards  to  each  of  the  selected  209  villages  in  the  Jirgital  and  Gorno-­‐Badakhshan  Autonomous  Oblast  (GBAO)  areas,  as  well  in  the  Zarafshan  range,  and  to  provide  the  proper  hazard  mitigation  recommendations  to  the  respective  villages  by  (1)  remote  sensing  survey,  (2)  field  observation  at  several  key  areas  including  observations  from  helicopter,  and  (3)  estimates  of  hazard  impacts  using  computer  modeling.  The  potential  hazard  risk  to  the  villages  is  rated  to  be  either  of  six  classes  (1:  very  low  hazard  to  6:  very  high  hazard),  depending  on  the  calculated  score;  and  the  confidence  level  (A:  vey  high  confidence  to  E:  no  information)  is  given  to  each  of  such  rating  results.  They  showed  that  34  villages  in  the  Tajik  Pamir  (the  GBAO  and  Jirgital  area)  were  rated  as  over  ‘medium  hazard  (Class  4)’.  

Regarding  the  significant  glacier-­‐related  hazards,  the  following  three  cases  can  be  extracted  from  their  assessment:  (1)  ice  avalanches  caused  by  glacier  

4

detachment,  (2)  GLOFs,  and  (3)  compounded-­‐GLOFs  induced  by  cascade  effect.  The  potentiality  of  (1)  was  detected  in  a  hanging-­‐glacier  (N38°01’,  E71°55’),  which  occupies  uppermost  reaches  of  a  tributary  valley  in  the  Bartnag  valley.  Both  of  Bartang  and  Ravivd  villages,  located  near  the  mouth  of  the  tributary,  were  rated  ‘medium  hazard  (Class  4)’.  The  risks  of  (2)  have  been  pointed  out  particularly  in  the  following  glacial  lakes:  (a)  glacial  lakes  proximal  to  glacier  snouts  (e.g.  supraglacial  lakes  and  moraine-­‐dammed  lakes)  (N37°42’26”,  E72°12’34”)  and  Shadzud  village  (N37°42’45”,  E72°21’40”)  in  the  Gunt  valley;  (b)  the  distal  glacial  lake  named  Nimatskul     (N37°40’30”,  E72°04’07”),  located  in  a  tributary  of  the  Gunt  valley;  and  (c)  the  lake  dammed  by  rock-­‐glacierized  glacier-­‐terminus  (N38°34’,  E72°36’30”),  located  in  the  headwaters  of  Pasor  village,  the  upper  Bartang  valley.  Villages  in  the  downstream  of  these  glacial  lakes  were  assigned  to  the  rate  up  to  the  ‘medium  hazard  (Class  4)’.  The  case  of  (3)  can  occur  when  a  GLOF  triggers  one  or  more  cascading  outburst  floods  of  the  downstream  lakes.  Such  cases  have  been  assumed  in  two  glacial  lakes  in  the  headwater  of  Varshedz  village  (N37°42’,  E72°20’50”)  and  the  landslide-­‐dammed  lake  named  Rivakkul  (N37°36’55”,  E72°04’40”)  and  the  glacial  lakes  in  its  upstream.  In  particular,  the  former  lakes  have  been  assessed  as  the  most  hazardous  glacial  lakes  in  the  GBAO,  and  therefore  the  Varshedz  village,  located  at  the  valley  mouth,  was  rated  ‘high  hazard  (Class  5)’.    

 4-­‐2.  Assessment  by  Mergili  and  Schneider  (2011)  Mergili  &  Schneider  (2011),  based  on  the  GIS  and  Remote  Sensing  approaches,  focused  on  assessment  of  each  of  the  identified  alpine  lakes  about  the  potentiality  and  impact  of  lake  outburst  hazard.  The  study  area  of  this  assessment  covers  the  Gunt  and  Shakhdara  valleys  only.  In  their  assessment,  408  alpine  lakes  were  firstly  identified  in  the  study  area.  Secondary,  both  of  the  potentially  hazardous  lakes  and  possible  hazard-­‐impact  areas  were  evaluated  thorough  the  rating  and  scouring  systems.  Their  results  show  that  122  lakes  were  identified  as  ‘negligible  (Class  0)’,  35  lakes  as  ‘low  hazard  (Class  1)’,  124  lakes  as  ‘moderate  hazard  (Class  2)’,  87  lakes  as  ‘medium  hazard  (Class  3)’,  34  lakes  as  ‘high  hazard  (Class  4)’,  6  lakes  as  ‘very  high  hazard  (Class  5)’,  and  no  lakes  as  ‘extremely  high  hazard  (Class  6)’.  Moreover,  three  lakes  were  highlighted  as  the  potentially  worst  hazardous  lakes,  based  on  overlaying  the  possible  impact  areas  of  lake  outburst  floods  with  the  areas  of  settlements  and  agriculture/pasture  fields.  All  of  these  lakes,  mentioned  also  in  Schneider  et  al.  (2010),  were  found  in  the  upper  reaches  of  the  tributaries  of  the  Gunt  valley:  Lake  V1  (N37°37’39”,  E72°16’16”)  ranked  as  ‘very  high  hazard’,  V2  (N37°36’40”,  E72°16’45”)  ranked  as  ‘high  hazard’,  and  N1  (Nimatskul)  ranked  as  ‘high  hazard’.  The  Dasht  Lake  in  2002  (just  before  causing  the  GLOF)  was  ranked  as  ‘medium  hazard  (Class  3)’,  which  is  considered  to  be  underestimation  against  the  actual  impact  to  the  downstream.          

5

5.  Remarks  on  the  Tajik-­‐Pamirian  glacial-­‐related  hazards      5-­‐1.  Assumed  glacial-­‐related  hazards  Considering  both  of  the  past  hazardous  events  (Chapter  3)  and  the  assessment  results  (Chapter  4),  the  following  three  matters:  (1)  detached  glacier,  (2)  surge  glacier,  and  (3)  glacial  lake  (in  particular  ‘guerrilla  glacial  lake’),  should  be  responsible  for  the  major  hazards  in  the  Tajik  Pamir,  especially  in  the  GBAO  area.    (1)  Detached  glacier:  A  hanging  glacier,  located  in  a  tributary  of  the  Bartang  valley,  shows  the  sign  of  glacier  detachment  along  the  transverse  crack  (Schneider  et  al.  2010).  Ice  avalanche  by  the  falling  ice  bodies  may  cause  serious  damage  to  the  downstream  villages  when  the  detachment  occurs.  (2)  Surge  glacier:  Some  of  the  surge  glaciers  terminate  their  snouts  at  the  valley  confluence  to  potentially  block  the  ice-­‐free  main  valley  after  the  surge-­‐induced  advance,  and  subsequently  to  form  a  temporary  lake,  which  is  prone  to  cause  outburst  floods  (e.g.  Medvezhiy  Glacier).  Further,  it  is  reported  that  a  collapsed  glacier-­‐tongue  itself  by  the  surge  movement  causes  an  ice-­‐water  debris  flow.  Surging  behaviors  of  such  glaciers  should  become  a  potential  disastrous  threat  in  the  area.  (3)  Glacial  lake  (in  particular  ‘guerrilla  glacial  lake’):  Potentially  hazardous  glacial  lakes  were  screened  out  through  the  hazard  assessment  studies  (Schneider  et  al.  2010;  Mergili  &  Schneider  2011)  in  the  most  areas  of  the  Tajik  Pamir  (chapter  4).    

It  should  be  noted  that  although  an  outburst  flood  from  the  relatively  small-­‐size  glacial  lake  (e.g.  32,  000  m2)  can  cause  serious  damage  to  downstream,  as  exemplified  by  the  Dasht  2002  event,  its  potential  risk  could  not  be  appropriately  evaluated  by  these  hazard  assessment  studies.  To  analyze  the  case  of  the  Dasht  2002  event,  this  type  of  glacial  lake  should  be  distinguished  as  a  ‘repeatedly  appeared’,  ‘rapidly  enlarged  (within  less  than  one  year)’,  ‘short-­‐lived  (within  less  than  two  years)’,  ‘superficially  closed’,  and  ‘relatively  small  size’  glacial  lake  on  the  ice-­‐cored  moraine,  being  appropriate  to  be  designated  as  a  guerrilla  glacial  lake.  Such  guerrilla  glacial  lakes  would  be  discharged  unexpectedly,  when  the  blockage  to  the  drainage  channels  beneath/through  the  ice-­‐cored  moraine  is  failed  (e.g.  Narama  et  al.  2010).  Because  both  of  the  blockage  and  its  failure  likely  occur  depending  on  the  invisible  factors  in  the  sub/intra-­‐moraine  conditions,  it  is  impossible  to  predict  the  timing  of  not  only  the  lake  outburst,  but  also  the  lake  appearance.  

 5-­‐2.  Recommended  mitigation  activity  to  glacier-­‐related  hazards  Not  only  glacial  lakes  assessed  as  the  dangerous  lakes,  but  also  those  displaying  similar  features  to  a  guerilla  glacial  lake,  should  be  assumed  to  cause  a  serious  hazard  to  downstream  in  the  Tajik  Pamir.  In  addition,  it  must  be  taken  into  consideration  that  the  early  detection  of  the  emergence  of  the  guerrilla  glacial  lakes  should  be  a  key  to  reducing  the  GLOF  hazards  in  this  area,  because  unpredicted  outburst  discharge  from  such  lakes  can  potentially  occur  within  less  than  one  or  more  years  after  its  appearance.  Regular  monitoring  of  identified  

6

hazard  factors  should  be  required  to  prepare  appropriate  hazard-­‐mitigation  activities.  In  other  words,  a  frequent  and  routine  monitoring  to  all  of  the  glaciers  and  glacial  lakes  should  be  conducted  continuously  to  fulfill  these  demands.  In  terms  of  the  cost  and  efficiency,  one  of  the  most  suitable  ways  to  such  monitoring  is  to  use  the  earth  observation  satellite  images.  In  near  future,  observation  of  a  certain  area  with  frequent  repetitions  may  be  practicable  by  launching  many  sets  of  microsatellites  such  as  a  50-­‐kg  class  microsatellites.  The  observation  requests  to  the  microsatellites  must  be  worth  considering.  Further,  the  risk  assessments  to  glacier-­‐related  hazards  in  the  Tajik  Pamir  have  been  accomplished  in  different  two  ways  (Schneider  et  al.  2010;  Mergili  &  Schneider  2011)  at  present;  however,  the  assessment  areas  of  these  two  hardly  overlap  each  other,  and  do  not  cover  the  whole  Tajik  Pamir.  Therefore,  the  assessment  investigation  using  both  of  the  two  approaches  should  be  pursued  urgently  to  diminishing  the  missing  areas  such  as  the  Vanch  valley.    References  Aizen,  V.  2011.  Pamirs.  In:  Singh,  V.P.  et  al.  (eds.)  Encyclopedia  of  Snow,  Ice  and  

Glaciers,  Dordrecht,  Springer,  813–815.  Kotlyakov,  V.M.  et  al.  2010a.  Glaciers  of  the  former  Soviet  Union.  In:  Williams,  

R.S.Jr.,  Ferrigno,  J.G.  (eds.)  Glaciers  of  Asia,  U.S.  Geological  Survey  Professional  Paper  1386–F–1.  

Kotlyakov,  V.M.  et  al.  2010b.  Investigations  of  the  fluctuations  of  surge-­‐type  glaciers  in  the  Pamir  based  on  observations  from  space.  In:  Williams,  R.S.Jr.,  Ferrigno,  J.G.  (eds.)  Glaciers  of  Asia,  U.S.  Geological  Survey  Professional  Paper  1386–F–1,  pp.77–93.  

Makhmadaliev,  B.  et  al.  2008.  The  second  national  communication  of  the  Republic  of  Tajikistan  under  the  United  Nations  Framework  Convention  on  Climate  Change.  State  Agency  for  Hydrometeorology  of  the  Committee  for  Environmental  Protection,  Dushanbe,  Tajikistan,  http://unfccc.int/resource/docs/natc/tainc2.pdf  (Accessed  May  25,  2012).  

Mergili,  M.,  Schneider,  J.F.  2011.  Regional-­‐scale  analysis  of  lake  outburst  hazards  in  the  southwestern  Pamir,  Tajikistan,  based  on  remote  sensing  and  GIS.  Natural  Hazards  and  Earth  System  Sciences,  11,  1447–1462.  

Mergili,  M.  et  al.  2012.  Changes  of  the  cryosphere  and  related  geohazards  in  the  high-­‐mountain  areas  of  Tajikistan  and  Austria:  a  comparison.  Geografiska  Annaler,  Series  A,  93,  79–96.    

Müllebner,  B.  2010.  Modelling  of  potential  permafrost  areas  in  the  Pamirs  and  Alai  mountains  (Tajikistan)  using  remote  sensing  and  GIS  techniques.  Master’s  thesis,  BOKU  University.    

Narama,  C.  et  al.  2010.  The  24  July  2008  outburst  flood  at  the  western  Zyndan  glacier  lake  and  recent  regional  changes  in  glacier  lakes  of  the  Teskey  Ala-­‐Too  range,  Tien  Shan,  Kyrgyzstan.  Natural  Hazards  and  Earth  System  Sciences,  10,  647–659.  

Quincy,  D.J.  et  al.  2007.  Early  recognition  of  glacial  lake  hazards  in  the  Himalaya  using  remote  sensing  datasets.  Global  and  Planetary  Changes,  56,  137–152.  

7

Schneider,  J.F.  2005.  Glacier  retreat,  glacial  lake  outburst  and  surging  glaciers  in  the  Pamir,  Tajikistan.  Geophysical  Research  Abstracts,  Vol.  7,  08129.  

Schneider,  J.  F.  et  al.  2010.  Remote  geohazards  in  high  mountain  areas  of  Tajikistan.  Assessment  of  hazards  connected  to  lake  outburst  floods  and  large  landslide  dams  in  selected  areas  of  the  Pamir  and  Alai  mountains.  Report  of  the  TajHaz-­‐Project  by  the  BOKU  University  Vienna  and  FOCUS  Humanitarian  Assistance.  

Shodomonov,  M.  2012.  Remote  geohazards  in  Tajikistan:  Assessment  of  the  hazards  connected  to  lake  outburst  floods  and  large  landslides  in  selected  areas  of  the  Pamir  and  Alai  mountains.  Andean-­‐Asian  Mountain  Global  Knowledge  Exchange  on  Glaciers,  Glacial  Lakes,  Water  and  Hazard  Management,  An  Adaption  Partnership  Workshop,  131–132.  

Watanabe,  T.  2000.  Environmental  impact  assessment:  geomorphology  of  the  Bartang  and  Kudara  valleys.  In:  Alford,  D.,  Schuster,  R.  (eds.)  Usoi  Landslide  Dam  and  Lake  Sarez—An  Assessment  of  Hazard  and  Risk  in  the  Pamir  Mountains,  Tajikistan:  Geneva,  Switzerland,  United  Nations,  ISDR  Prevention  Series  No.  1,  pp.  53-­‐58.    

 Dr.  Tetsuya  Komatsu  is  a  research  student  at  the  Faculty  of  Environmental  Earth  Science,  Hokkaido  University,  Japan.  He  received  his  PhD  from  Hokkaido  University  in  2010  for  his  doctoral  thesis  entitled  “Late  Quaternary  lake-­‐glacier  interaction  in  the  Karakul  closed-­‐basin,  eastern  Pamir.”  His  major  fields  of  study  are  Geomorphology  and  Quaternary  Science.  Since  2006,  he  has  focused  his  research  largely  on  Quaternary  landscape  reconstruction  and  hazard  assessment  study  in  the  Pamir.    Dr.  Teiji  Watanabe  is  a  professor,  Faculty  of  Environmental  Earth  Science,  Hokkaido  University,  Japan.  His  first  visit  to  Tajikistan  was  1999  as  a  member  of  the  Lake  Sarez  assessment  team  sent  by  the  UN-­‐ISDR.  He  has  been  involved  in  GLOF  and  landscape  change  research  in  the  Nepal  Himalaya  since  1987,  and  has  been  leading  a  team  to  the  Tajik  and  Kyrgyz  Pamir  since  2005  for  establishing  sustainable  mountain  society.