13
Adapted from “Crazy Cakes” activity from: Russell, S.J., Economopoulous, K., Wittenberg, L., et al. Investigations in Number, Data, and Space, Second Edition, Glenview: Pearson, 2008 Task: Crazy Cakes Divide each “cake” into two equal areas. The two parts need not be congruent.

Task: Crazy Cakes - National Council of Teachers of · PDF fileAdapted from “Crazy Cakes” activity from: Russell, S.J., Economopoulous, K., Wittenberg, L., et al. Investigations

  • Upload
    voliem

  • View
    219

  • Download
    4

Embed Size (px)

Citation preview

Adapted  from  “Crazy Cakes” activity  from: Russell,  S.J., Economopoulous, K., Wittenberg, L., et al. Investigations in Number, Data, and Space, Second Edition, Glenview: Pearson, 2008   

Task: Crazy Cakes  Divide each “cake” into two equal areas. The two parts need not be congruent.    ������������������

���

�������������� ���

Adapted  from  “Crazy Cakes” activity  from: Russell,  S.J., Economopoulous, K., Wittenberg, L., et al. Investigations in Number, Data, and Space, Second Edition, Glenview: Pearson, 2008   

������������������

��

���

��

������

���

Adapted  from  “Crazy Cakes” activity  from: Russell,  S.J., Economopoulous, K., Wittenberg, L., et al. Investigations in Number, Data, and Space, Second Edition, Glenview: Pearson, 2008   

“Created by the STEM Project @Michigan State University”

Task: Jagged Paths Find the length of each of the following paths using Unifix cubes.

Path A

Path B

“Created by the STEM Project @Michigan State University”

Path C

Path D

Adapted from the STEM Project @Michigan State University”

Task: Packing a Truck The storage area of a delivery truck is shaped like a box that is 5 feet wide, 6 feet high, and 20 feet long on the inside. What is the maximum number of boxes could fit in this truck? The box size is shown below. 3 ft. 2½ft.

2 ft.

5 ft.

6 ft.

20 ft.

5 6 7 8 9 10 11 12 13 14

0 1 3 5 6 7

4 7 10 13 16 19 22 25 28 31

0 2 4 6 8

0 2 3 4 5 6 8 7 9 10 11 12 1

3 4 5 9 10

0 5 10 15 20 25 30 35 40 45

http://nsf.gov/discoveries/disc_summ.jsp?cntn_id=123020&org=NSF    

 

Discovery  Understanding  Basic  Concepts  in  Spatial  Measurement  

 

Researchers  work  to  help  elementary  school  students  better  comprehend  basic  measurement  skills  

January  31,  2012  

In  a  first  or  second  grade  classroom,  a  teacher  asks  students  to  take  a  ruler  and  measure  (in  inches)  the  length  of  a  rectangular  block.  A  student  aligns  the  "0  inch"  mark  of  the  ruler  with  the  end  of  the  block,  and  counts  the  number  of  inches  from  the  end  of  the  ruler  to  where  the  block  ends.  

"It's  three  inches,"  the  student  says.  

In  reality,  the  block  is  two  inches.  The  student  counted  the  0  inch  mark  as  part  of  the  measurement,  instead  of  starting  at  the  1  inch  mark.  The  child  moved  from  one  end  of  the  object  to  the  other,  but  counted  the  inch  marks  on  the  ruler,  instead  of  the  intervals  of  space  between  them.  

This  is  just  one  of  common  misconceptions  that  elementary-­‐school-­‐aged  children  make  when  learning  how  to  measure  various  objects.  

To  help  prevent  students  from  having  these  misconceptions,  Jack  Smith  and  his  colleagues  at  Michigan  State  University  (MSU)  are  analyzing  curricula  that  elementary  school  teachers  and  children  currently  use  in  schools  to  learn  spatial  measurement-­‐-­‐length,  area  and  volume.  

Smith  explained  the  goal  of  their  research  is  to  inform  the  revision  of  curriculum  materials,  guide  the  design  and  implementation  of  professional  development,  pre-­‐service  education  to  improve  the  use  of  existing  curriculum  materials  and  enrich  the  nation's  research  capacity  to  build  usable  knowledge  in  this  specific  area  of  need  in  mathematics  education.  

To  achieve  this,  Smith  and  his  team  are  examining  three  elementary  mathematics  curricula,  "Everyday  Mathematics,"  "Scott-­‐Foresman-­‐Addison  Wesley  Mathematics  (Michigan  edition)"  and  "Saxon  Math,"  and  applying  what  they  have  learned  about  teacher  professional  development  with  state-­‐wide  partners  in  Michigan,  teacher  education  at  MSU  and  research  with  partners  at  other  universities.  They  also  are  working  with  curriculum  authors  to  revise  measurement  content  to  align  with  the  Common  Core  State  Standards  in  Mathematics  and  support  stronger  learning  opportunities  for  students.  

"Current  curriculum  materials  generally  focus  on  teaching  students  how  to  measure,  but  attend  little  to  why  those  procedures  work,"  said  Smith.  "The  result  is  that  what  is  not  understood  in  the  first  place  is  easily  forgotten.  This  procedural  focus  also  means  that  students  have  a  much  harder  time  adapting  to  measurement  situations  that  they  have  not  seen  and  practiced  in  school.  That's  because  they  have  learned  the  steps  in  standard,  practiced  situations  but  they  don't  know  why  those  are  there  or  how  to  adapt  them."  

http://nsf.gov/discoveries/disc_summ.jsp?cntn_id=123020&org=NSF    

 

Teaching  children  about  spatial  measurement  is  crucial  in  understanding  the  physical  world  and  for  practical  application,  such  as  being  able  to  measure  objects  accurately.    

"There  are  two  kinds  of  quantities  in  the  world  that  mathematics  and  numbers  represent,"  said  Smith.  "There  are  collections  of  objects  (discrete  quantity)  and  there  are  measurable  objects  (continuous  quantity).  Currently,  in  U.S.  classrooms  we  focus  mostly  on  the  former  and  avoid  the  latter.  This  means  that  less  attention  to  measurement  fails  to  prepare  students  to  deal  practically  with  the  physical-­‐-­‐that  is,  to  measure  things  and  think  about  measurement  in  their  everyday  world.  That's  the  immediate  impact."  

Smith  added  that  learning  about  these  foundations  of  measurement  further  prepares  students  to  comprehend  more  advanced  mathematics  and  science.  "A  lot  of  math  and  science  is  not  easily  accessible  without  understanding  the  basics  of  measurement,  which  in  this  country  and  most  others  is  learned  in  the  study  of  spatial  measurement,"  said  Smith.  

To  better  teach  measurement,  Smith  outlines  a  variety  of  techniques.  

"First,  using  length  as  an  example,  children  need  to  be  able  to  see,  think  about  and  talk  about  length  as  an  attribute  of  objects  and  distance,"  said  Smith.  "That  is,  they  have  to  be  able  to  'see'  length.  This  is  not  a  step  that  can  be  taken  for  granted."  

For  instance,  Smith  provides  the  following  example:  A  student  is  asked  to  find  the  perimeter-­‐-­‐the  length  of  the  continuous  line  forming  the  boundary  of  a  closed  geometric  figure-­‐-­‐of  a  2-­‐D  rectangle.  The  student  is  told  that  the  perimeter  of  the  rectangle  can  be  found  by  surrounding  the  rectangle  with  square  tiles,  including  tiles  at  each  of  the  four  corners.  The  student  claims  that  the  perimeter  of  the  rectangle  is  22  tiles.  However,  the  actual  perimeter  is  18  tiles.  The  student  is  not  distinguishing  the  edges  of  the  tiles  as  length  units  from  the  square  tiles  that  are  area  units-­‐-­‐the  ability  to  visualize  the  difference  is  crucial  in  understanding  what  one  is  measuring.  

 

The  following  example  illustrates  a  misconception  when  determining  the  perimeter  of  a  2-­‐D  shape:  A  student  is  asked  to  find  the  perimeter  (the  length  of  the  continuous  line  forming  the  boundary  of  a  closed  geometric  figure)  of  this  2-­‐D  rectangle.  The  student  is  told  that  the  perimeter  of  the  rectangle  can  be  found  by  surrounding  the  rectangle  with  square  tiles,  including  tiles  at  each  of  the  four  corners.  The  student  claims  that  the  perimeter  of  the  rectangle  is  22  tiles.  However,  the  actual  perimeter  is  18  tiles.  The  student  is  not  

distinguishing  the  edges  of  the  tiles  as  length  units  from  the  square  tiles  that  are  area  units-­‐-­‐the  ability  to  visualize  the  difference  is  crucial  in  understanding  what  one  is  measuring.    Credit:  Courtesy  of  Jack  Smith,  MSU  

http://nsf.gov/discoveries/disc_summ.jsp?cntn_id=123020&org=NSF    

 

Smith  explained  additional  characteristics  of  effective  instruction  and  curricula  for  elementary  school  that  include  "attention  to  core  conceptual  principles  that  underlie  and  justify  measurement  procedures;  specific  attention  to  understanding  how  measurement  tools  and  formulas  work,  as  many  of  the  nation's  fourth  graders  do  not  understand  how  rulers  work;  consistently  asking  kids  to  present  what  they  did  to  solve  problems  and  why  those  methods  worked  or  not;  tracing  common  conceptual  principles  across  the  measurement  of  different  physical  quantities  (spatial  and  non-­‐spatial);  and  attention  to  the  importance  of  motion  in  measurement."  

Another  key  in  helping  elementary-­‐school-­‐aged  children  learn  is  making  sure  that  they  have  a  strong  mathematics  foundation  in  preschool.  Smith  explained,  "For  spatial  measurement,  a  strong  preschool  focus  on  qualitative  comparisons  of  spatial  quantities  as  attributes  of  everyday  objects,  e.g.,  is  the  coat  rack  taller  than  the  door?  How  can  we  tell?,  lays  the  groundwork  for  exploring  measurement  issues  in  more  exact  ways,  e.g.,  how  much  taller  is  the  coat  rack  than  the  door?"  

Smith  suggests  that  ultimately,  measurement  plays  a  large  role  in  how  children  understand  the  foundations  of  mathematics.  "It  has  been  an  axiom  for  some  time  that  counting  and  numbers,  and  operations  on  numbers  is  the  heart  of  elementary  mathematics  education,"  said  Smith.  "But  there  is  evidence  that  this  is  a  historical  choice  rather  than  a  clearly  justified  application  of  knowledge  of  human  development."  

Investigators  John  Smith    

Related  Institutions/Organizations  Michigan  State  University  

Locations  Michigan    

 

   

 

 

“Created by the STEM Project @Michigan State University”

Task: Strange Rulers

Materials:

7 different rulers

Paperclip

A piece of yarn

Task Description:

1. Examine the rulers to answer the following questions:

a. How long is the paperclip?

b. How long is the string of yarn?

2. As you work through the task, consider the following questions:

a. Which rulers could give you an accurate measure?

b. Which rulers should you not use?

3. For each ruler describe why the ruler will or will not give an accurate measure.

One gallon of Interior BEHR PREMIUM PLUS ULTRA Paint and Primer in One, or BEHR PREMIUM PLUS is enough to cover 250 to

400 Sq. Ft. of surface area with one coat.

Dimensions of the wall: 12½ feet by 18½ feet