18
Tandem Reaction Sequences Chris Borths MacMillan Group Meeting November 21, 2000 I. Cationic Transformations II. Anionic Transformations III. Pericyclic Transformations IV. Metal-catalyzed Transformations Reviews: Ho, T.L. Tandem Organic Reactions; Wiley: New York, 1992. Tietze, L.F.; Beifuss, U. Angew. Chem. Int. Ed. Engl. 1993, 32, 131. Tietze, L.F. CHem. Rev. 1996, 96, 115. Why Tandem Reactions? Practical Considerations ! Reduction of waste ! Avoids isolation of intermediates ! Reduces labor, time to effect given transformation Academic Considerations ! Builds a large degree of complexity in one transformation ! Novel avenues of research, new reaction development ! A tandem reaction is a reaction in which several bonds are formed in sequence without isolating intermediates, changing reaction conditions, or adding reagents. A Definition:

Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tandem Reaction Sequences

Chris Borths

MacMillan Group Meeting

November 21, 2000

I. Cationic Transformations

II. Anionic Transformations

III. Pericyclic Transformations

IV. Metal-catalyzed Transformations

Reviews: Ho, T.L. Tandem Organic Reactions; Wiley: New York, 1992. Tietze, L.F.; Beifuss, U. Angew. Chem. Int. Ed. Engl. 1993, 32, 131. Tietze, L.F. CHem. Rev. 1996, 96, 115.

Why Tandem Reactions?

Practical Considerations

! Reduction of waste

! Avoids isolation of intermediates

! Reduces labor, time to effect given transformation

Academic Considerations

! Builds a large degree of complexity in one transformation

! Novel avenues of research, new reaction development

! A tandem reaction is a reaction in which several bonds are formed in sequence without

isolating intermediates, changing reaction conditions, or adding reagents.

A Definition:

Page 2: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Polyene Cationic Cyclization

CF3CO2H

CH3CHF2

-30 ºC

Me

Me

HOMe

OO

O

O

O

O+

H

Me

H

H

H

Me

Johnson, W.S. Angew. Chem. Int. Ed. Engl. 1976, 15, 9.Fish, P.V.; Johnson, W.S. J. Org. Chem. 1994, 59, 2324.

Me

H2O

MeMe

+

MeMe

OO

O+

O

O

O

O

H

Me

H

H

H

Me

! Acetals and allylic alcohols are good initiators

! Only one out of 32 possible diastereomers formed

! Double bond geometry controls stereochemistry of

product

! Vinyl fluorides can increase yield by stabilizing

intermediate carbcations

H2O

65% yield

Mannich-Cation Olefin Cyclization

N

SO2Ar

NH

TMS

CH2O

40 ºC

63% yield

NN

H

H

NN

H

H

O

H

(±)-Yohimbone

6 steps

N

SO2Ar

N

TMS

N

SO2Ar

N

TMS

+ +

Grieco, P.A.; Fobare, W.F. J. Chem. Soc. Chem. Commun. 1987, 185.

! Allylsilanes are common

terminators of cationic olefin

cyclizations

! This is the first example of an

iminium ion as the initiator

Page 3: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Cascade Polyether Cyclization

O

BnO

Me

Me

OBz

MeOMe H

O

O

DEIPS

O

MeO

Me

Me

O

OPMB

OO

O

HO

Me

O

OH

MeOH

OBz

Me

BnO

Me

Me

Me

OPMB

OO

O

HO

Me

O

OH

Me

OBz

Me

BnO

Me

Me

Me

OPMB

OMe H

C1 - C22 of Etheromycin

HCl

30% yield

PPTS(MeO)3CH

MeOH

51% yield

R

OR3Si

O O

Me

OMe

+OMe

OPMB

H

Paterson, I.; Tillyer, R.D.; Smaill, J.B. Tet. Lett. 1993, 34, 7137.Review: Koert, U. Synthesis 1995, 115.

DEIPS = diethylisopropylsilyl

! Stereochemistry of epoxide determines the stereochemistry of the polyether

Diastereoselective Ugi Reaction

Linderman, R.J.; Binet, S.; Petrich, S.R. J. Org. Chem. 1999, 64, 336.

N

C

OTBS +ZnCl2, THF, -78 °C, 3 d

O

OPivPivO

NH2PivO

OPiv

TBSO

NH

O

R

NSug* CHO

O

O

R

NH3ClNH3Cl

HO

O

R

NH3Cl

H+

31-99% yield

d.r. yield

Ph

CH2CH(CH3)2

(CH2)4CO2CH3

Bn

(CH2)2CF=CHC6H5

90 : 10

97 : 3

98 : 2

98 : 2

98 : 2

61%

80%

80%

85%

65%

! The opposite enantiomer can be accessed by using

a different sugar auxiliary. Diastereoselectivities are

similar (90:10 - 96:4); yields are lower (48 - 76%).

Ugi Coupling

+ HCO2H

RCHO

R

Page 4: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Ugi Reaction Mechanism

Linderman, R.J.; Binet, S.; Petrich, S.R. J. Org. Chem. 1999, 64, 336.Ugi, I. Angew. Chem. Int. Ed. Engl. 1962, 1, 8.

ArNC

HCO2-

R H

OH2N Sug*+

R H

NSug*

ZnCl2

R H

NSug*

HNSug*

RN

ArO

HN

Sug* R

N

Ar

O

HN

O

RH

Sug*

NAr

O

N

N

O

Ar

RH

Sug*

H

O~H+ N

NH

O

Ar

R

H

O

Sug*

N

C

OTBS +ZnCl2, THF, -78 °C, 3 d

O

OPivPivO

NH2PivO

PivO

TBSO

NH

O

R

NSug* CHO

+ HCO2H

TBSO

NH

O

R

NSug* CHO

Cl2Zn

+H+

Tandem Knoevenagel Diels-Alder Reaction

O

O C5H11

MeMe

Me

CHO

O

O C5H11Me Me

Me

100 °C

65% yield

O

C5H11

Me

Me

O

Me

O C5H11

O

Me

H

H

Me

MeO C5H11

OH

Me

H

H

Me

Me

i) LDA, PhSeBr

ii) MCPBA

+ Knoevenagel

[4+2]

46% yield

(+)-Hexahydrocannabol

Tietze, L.F.; Kiedrowski, G.; Berger, B. Angew. Chem. Int. Ed. Engl. 1982, 21, 221.

! The Diels-Alder reaction is controlled by the chiral center in citronellal.

! The product is a 2:1 (!:") mixture of diastereomers at the alkyl chain.

RCHO

Page 5: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tethered Biginelli Condensation

McDonald, A.I.; Overman, L.E. J. Org. Chem. 1999, 64, 1520.Coffey, D.S.; McDonald, A.I.; Overman, L.E.; Rabinowitz, M.H.; Renhowe, P.A. J. Am. Chem. Soc. 2000, 122, 4893.

R Me

NH

O

H2N Me i) O3, Me2S

ii) morpholine-HOAc (1:1.1)

Na2SO4, 70 °C

MeR1O2C

O OTBS

N

NH

OTBSCO2R1

O

R

HH Ptilomycalin A

Crambescidin 657

Neofoliispates 2

Crambescidin 800

RO

NH

O

H2N

H

CO2R1

ONH

NH2O

alkyl~H+

N

R

R

H HCO2R1

NH2

OO

alkyl

-H2ON

NH

alkyl

CO2R1

O

R

HH

O3, Me2S

uncharacterized

complex mixture

! Both cis and trans product can be accessed

based on rxn conditions and guanidine

equivalent

!

Knoevenagel

NH

X NH2

R When X=NH2+, trans product is formed

When X=O, cis product is formed

Tandem Radical Cyclization

Curran, D.P.; Kuo, S.C. J. Am. Chem. Soc. 1986, 108, 1106.

OO

MeMe

Br

MeBu3SnH

! The stereochemistry of the

vinyl bromide does not affect

reaction outcome

! Direct cyclization of the !,"-

unsaturated ketone is possible,

but favors the !-methyl

diastereomer 3:1. The cyclic

acetal shields the endo face of the

bicyclic system and favors the "-

methyl diastereomer.

OO

Me

Me

Me

OO

Me

Me

OOHMe

Me

OOHBu3Sn H

2.5 : 1 d.r.

65% yield

Me

Me H

Me

Me

Me

Me

Me

Me

1) H3O+

2) NH2NH2

66 - 80% yield?

(±)-Siliphiperfol-6-ene

Page 6: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

A Biomimetic Cyclization

Me

Me

Me

BnO

HO

HO

H

i) Swern

ii) NH3

iii) HOAc, 70 ºC

82% yield MeHN

Me

OBn

Swern

Me

Me

Me

BnO

O

O

H

NH3

Me

Me

Me

BnO

N

H HOAc

r.t

MeN

Me

Me

OBn

70 ºC

Imino-ene reaction

Isolated intermediates

Heatchcock, C.H. Angew. Chem. Int. Ed. Engl. 1992, 31, 665.

Diels-Alder

H

H

Tandem Michael Reaction

NHBnHO

O2NMe

r.t.

quant. yield+

NBn

HO NH

HO2C

MeHO2CEtO2C Me

O2N

(-)-!-Kainic Acid

Formal

Synthesis

NH

HO

CO2Et

NMe

Bn

O

O-

+

N

Bn

EtO2C

CO2Et

-H+Me

N

O

O-

-

+

+H+

Barco, A.; Benetti, S.; Pollini, G.P.; Spalluto, G.; Zanirato, V. J. Chem. Soc. Chem. Comm. 1991, 390.

! Nitro group used as a

removable electron-withdrawing

group

Page 7: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

BrMgO

Tandem Alkylation, Oxy-Cope, Cyclization

O

CO2Me

O

PMB

5

Me

BrMg Me

OO

OMOM

O

O

OPMB

Me

5

OMOM

Me

O

O2

53% yield

Chen, C.; Layton, M.E.; Sheehan, S.M.; Shair, M.D. J. Am. Chem. Soc. 2000, 122, 7424.

OPMB

Me

5

RMeO O

Oxy-Cope

BrMgOOPMB

Me

5

RMeO O

Grignard addition Dieckmann cyclization

! Grignard addition sets up an anion-accelerated oxy-Cope which rearranges through a chair transition state

! The enolate resulting from the oxy-Cope spontaneously cyclizes onto the methyl ester

Tandem Fries rearrangement, Cyclization, Deprotection

O

O

Me

5

OMOM

Me

O

O2

Chen, C.; Layton, M.E.; Sheehan, S.M.; Shair, M.D. J. Am. Chem. Soc. 2000, 122, 7424.

! This intermediate was elaborated iinto (+)-CP-263,114.

O

OMOM

MeO

O

TMSOTf

(MeO)3CH

O

O

Me

5

OMOM

Me

O

O2

O

OMOM

TMSOMe

O

O

OMe

5

2

O

O

MeOOO

MeO

OMeTMS

O

MeO

TMS

OMe

5

2

O

OH

MeOO

O

Fries-like

rearrangement

OO

MeO2CMeO2C

MeO2C MeO2C

Page 8: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tandem Diels-Alder Retro Diels-Alder

136 °C

N

O

O

Me

Me

Me

MeO

Me N

O Me

OMe

Me

MeMeO

O

O

Me

OMe

Me

Me

O

OH

Me

O

Me

Me

O

poor formal

synthesis

136 °C

(±)-Paniculide-A

Jacobi, P.A.; Kaczmarek, C.S.R.; Udodong, U.E. Tet. Lett. 1984, 25, 4859.

- CH3CN

! Intramolecular Diels-Alder reaction assures regiocontrol over

product

! The rest of the synthesis involves several oxidation-reduction

and deprotonation-reprotonation sequences.

Me

Oxy-Cope, Diels-Alder, Retro Diels-Alder

O

O

N

O

MeOH

MeO

Me

O

O

160 ºC O

N

O

Me

Me

Me

O

O

H

N

O

O

Me

HO

MeO

Me

MeMe

O

O

Me

HO

Me O

Me

!-Me 45% yield of Gnididione

"-Me 57% yield of Isognididone

[3,3]

Jacobi, P.A.; Selnick, H.G. J. Am. Chem. Soc. 1984, 106, 3041.

Diels-Alder

Retro

Diels-Alder

- HCN

Me

HO

Me O

MeO

hydrolysis

! Note: Each olefin geometry (E and Z) was prepared selectively and subjected to the reaction conditions

! Oxy-Cope rearrangement proceeds through a chair transition state, possibly stabilized by intramolecular hydrogen bonding.

Analysis of crude reaction mixtures indicated that less than 2% of material rearranged through the boat conformation.

! Regiocontrol over the Diels-Alder reaction was established by geometrical constraints, and the retro Diels-Alder was

entropically favored.

H

N

O

Page 9: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tandem Oxy-Cope Claisen

O OTIPS

Me

MeMe

[3,3]O OTIPS

Me

MeMe

200 ºC

Me

Me

O

OTIPS

Me

Me

Me

O

OTIPS

Me

Me

Me

O

OMe

Me

1) KF-2H2O

2) CH2N2[3,3]

Me

MeO

OMe

H

(+)-dihydrocostunolide

30% yield

7 steps

Raucher, S.; Chi, K.W.; Hwang, K.J.; Burks, J.E. J. Org. Chem. 1986, 51, 5503.

! Rearrangement shows no evidence of silyl migration. When TBS is the silyl group, the rearrangement is complicated

by silyl migration.

! Both [3,3] rearrangements occur through chair transition states.

Aza-Cope Mannich Reaction

NMe

O

Bn C9H19

Me

NMe

Bn C9H19

O

Me

NMe

Bn C9H19

HO

3 steps

(+)-Preussin

NMe

O

Bn C9H19

MeN C9H19

OH

MeBn

N

C9H19

MeBn

OH

N

MeN

N

MeN

Bn

C9H19

HO

Me

Me

Me

MeOH

MeBn C9H19

OH

MeBn

Me

C9H19

BnHO

MeC9H19

H+

H+

[3,3]

[3,3]

C-C

rotation

C-C

rotation

NMe

Bn C9H19

O

Me

NMe

Bn C9H19

O

Me

NMe

Bn C9H19

O

Me

NMe

Bn C9H19

O

Me

Mannich

Mannich

Mannich

Mannich

80% ee

Deng, W.; Overman, L.E. J. Am. Chem. Soc. 1994, 116, 11241.

favored favored

favored

disfavored

CSA

CF3CH2OH

61 - 68% yield

Page 10: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tandem Claisen-Ene Reaction

MeO

OMe

PO

HOMe

CO2Me

P = Si

Me

Me

Me

Me

Me

Me

180 ºC

60 h

O

CHOMe

CO2Me

H

H

76% yield

after hydrolysis

+

MeO

O

MePO

MeO2C

OMe

POR

OMe

PO CO2Me

H

H

HPO

H

O

MeCO2Me

H

H

PO

Mikami, K.; Takahashi, K.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 4035.Mikami, K.; Takahashi, K.; Nakai, T.; Uchimaru, T. J. Am. Chem. Soc. 1994, 116, 10948.

MeCO2Me

! Claisen rearrangement proceeds through a chair transition state--evidinced by high 8,14 syn selectivity and the 14S configuration

! Ene rearrangement proceeds through the bicyclic transition state with the A,B ring at a pseudo-equatorial position

8

14

Cascade Aromatic Annulation

Danheiser, R.L.; Cha, D.D. Tet. Lett. 1990, 31, 1527.

MeON2

O

OTIPS

+

OMe

OTIPS

OH

nBu99

nBu

h! O2, TBAF

54% yield 67% yield

OMe

OH

O

nBu9O

O

HMeO

O R

OTIPSMeO

OOMe

R

OTIPS

photochemical Wolff

rearrangement

[2+2] 4 electron electrocyclic

ring opening

Maesanin

6 electron ring closure

and tautomerization

Page 11: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tandem [2,3] Rearrangement, Diels-Alder

OH

Me

Me

Me

PhSCl

Et3NO

Me

Me

Me

S

Ph

Me

Me

SPh

O

Me

Me

Me

SPh O

Me

S

Me

Me

Ph

O

Me

H

r.t.

38 h

H

H [2,3]

[4+2]

Me

Me

Me

H

H

(+)-Sterpurene70% yield

1) MeMgBr, Ni(dppp)Cl22) Na, NH3, tBuOH

43% yield

Gibbs, R.A.; Okamura, W.H. J. Am. Chem. Soc. 1988, 110, 4062.

! Chirality of secondary alcohol is effectively transferred to the axial chirality of the allene intermediate

! The intramolecular Diels-Alder sets two stereocenters enatio- and diastereoselectively from the allene intermediate

H

Pericyclic Domino Reaction

Iglesias, B.; Torrado, A.; de Lera, A.R. J. Org. Chem. 2000, 65, 2696.

Me

Me Me

MeOH

Me R

Me

S(O)Ph

Me

PhSCl

Et3N

61% yield

OTBS

OTBS

R

Me

O

Me

OTBS

S

Ph

R

Me

Me

OTBS

S(O)PhR

PhS

Me

Me

OTBSO

R

Me

Me

OTBS

OS

Ph

R

R

Me

S(O)PhMe

OTBS

H

A

A

! [2,3]-allyl sulfenate and [2,3]-allyl sulfoxide shifts are reversible. The [1,5] sigmatropic hydride migration is the

stereodifferentiating step in this reaction sequence.

= R

Page 12: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

CoCp

CoCp

Cobalt-Mediated [2+2+2] Cycloaddition

N

NHAc

O

CpCo(C2H4)2

C2H4, THF, 0 °C

47% yieldN

O

H

NHAc

CoCp

Eichberg, M.J.; Dorta, R.L.; Lamottke, K.; Vollhardt, K.P.C. Org. Lett. 2000, 2, 2479.

N

N

OH

H

H

Strychnine

8 steps

N

NHAc

O

TMS OMe

CpCo(CO)2

46% yieldN

O

H

TMS

OMe

NHAc

N

BnN

O

CpCo(CO)2

40% yield

1:1 syn:anti

N

O

H

BnN

! Cyclization tolerates a wide range of

functionality as olefin equivalents

C C C CC N

C O N C O

Nickel-Catalyzed [2+2+2] Cyclizations

O

Ph Ph

O

Me

HPh

O

Me

O

Ph

75% yield

Ni

H

Ph

O

Ph

O

Me

Ni

Ph

HPh

O

Me O

L

L

20 mol% Ni(COD)2

100 mol% PPh3

Montgomery, J.; Seo, J. Tetrahedron 1998, 54, 1131.Seo, J.; Chui, H.M.; Heeg, M.J.; Mongomery, J. J. Am. Chem. Soc. 1999, 121, 476.

Ni

PhO PhLnLn

O

Ph

10 mol% Ni(COD)2

tBuLi, ZnCl2

HPh

O

52% yield

+

! Radical mechanism eliminated as a possibility due to high stereoselectivities of products in model systems.

! E and Z enones yield same product stereochemistry.

H

NiOPh Ln

Ph

Page 13: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Nickel-Catalyzed Cyclization

O X

O

N

O

OTBS

NO

O

MeMe

Ni

N

O

O

X

O

OTBS

Ln

N

O

O

LnNi OTBSMe2AlO

X

Me

N

O

O

Me OTBSO

X 4 steps

NH

Me

HO2C

HO2C

(+)-!-allokainic acid

AlMe3

Ni(COD)2

10 mol% Ni(COD)2

300 mol% AlMe3

Chevliakov, M.V.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 11139.Seo, J.; Fain, H.; Blanc, J.B.; Mongomery, J. J. Org. Chem. 1999, 64, 6060.

73% yield

>97:3 d.r.

! Metallocycle formation proceeds through a transitions state with all substituents in a pseudo-equatorial configuration

! Unsaturated acyl oxazolidinones show greater reactivity and selectivity than unsaturated esters.

COX

NOTBS

H

O

O

NiLn

Palladium Polyene Cyclization

PhO2S

PhO2S

OMe

OMe

PhO2S

PhO2S

HPd(OAc)(SbPh3)2

PhO2S

PhO2S

OMe

PdHLn

R

PhO2S

PhO2S

H

OMe

PdLn

R

OMe

PhO2S

PhO2SR

PdLn H PdLn

2.5 mol% (dba)3Pd2CHCl310 mol% HOAc

10 mol% SbPh3

65 °C

77% yield

Trost, B.M.; Shi, Y. J. Am. Chem. Soc 1993, 115, 9421.Review: Overman, L.E.; Abelman, M.M.; Kucera, D.J.; Tran, V.D.; Ricca, D.J. Pure Appl. Chem. 1992, 64, 1813.

6

! The geometry of the double bonds controls the ring-fusion geometry. 1,1-disubstituted olfins form spiro ring systems - 1,2-disubstituted olefins form fused ring systems.

! The two new bonds formed with the "-system are cis to one another due to the syn addition of the Pd species.

! This tandem cyclization process can be initiated by an alkyne in the presence of HOAc or by a vinyl halide.

= X

Page 14: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Enantioselective Heck-Anion Addition

OTf

Me

2.5 mol% [Pd(allyl)Cl]26 mol% (S)-BINAP

200 mol% NaBr

77% yield

87% ee

TBDPSO CO2Et

CO2Et

-

Na+

H

Me

CO2EtEtO2C OTBDPS

8 stepsH

Me

MeMe

H

H

(-)-Capnellene

Me

Pd

PP

*H

MePdLn*

R R

-

! Heck reaction is

enantiodifferentiating

! Nucleophile adds to less hindered

carbon

! Wide range of soft nucleophiles will

add to the !-allyl Pd species

Oshima, T.; Kagechika, K.; Adachi, M.; Sodeoka, M.; Shibasaki, M. J. Am .Chem. Soc. 1996, 118, 7108.

H

Me

PdLn*

Na+

Enantioselective Michael Aldol

O

BnO2C CO2Bn

Me

O

HCO2Me

5

5 mol% catalyst4.5 mol% NaOtBu O

O

O

OAl

Li

catalyst

O

CMe(CO2Bn)2

HCO2Me

OH

5

84% yield

92% ee

6 : 1 - 17 : 1 d.r

O

O

O

OAl

Li

O

Nu

Na

O

O

O

OAl

Li

O

Nu

Na

Yamada, K.; Arai, T.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1998, 63, 3666.

! Enantioselectivity is determined in the Michael addition.

! When simple malonates were used as nucleophiles, low yields resulted.

Page 15: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Enantioselective Tandem Mukaiyama Aldol Reaction

OTBS

Me

O

H CO2Me2

10 mol% TiCl2(OiPr)2

10 mol% (R)-BINOL

CH2Cl20 ºC, 3 h

+MeO2C CO2Me

OH OHO

1 : 4 E : Z

MeO2C CO2Me

OH OHOTBS

77% yield

>99% de

>99% ee

HCl

MeOH

OTBS

Me

MeO2C

OH OTBS

MeO2C

OH OTBS

(S)

MeO2C CO2Me

OH OHO

MeO2C CO2Me

OH OHO

MeO2C CO2Me

OH OHO

(R,R)

meso

(S,S)

kR = 129

kS = 1

kR,R = 3.4

kR,S = 0.1

kS,R = 17

kS,S = 1

Mikami, K.; Matsukawa, S.; Nagashima, M.; Funabashi, H.; Morisima, H. Tet. Lett. 1997, 38, 579.

! ee of major product of

first reaction amplified

! minor product of first

aldol converted into

meso product

preferentially

Tandem Sakurai Ene Reaction

MeOtBu

Me

TMS

O

Me

d.r. 1:1:1:0.1

TMSOTfMe

OtBu

MeMe

O

H

TMS

TMS

Me

OtBu

MeMe

O

H

TMS

TMS

Me

OtBu

MeMe

O

H

TMS ~H+

OtBu

Me

OMe

OtBu

Me

OMe

H

TMS

Me OtBu

H

H

H

TMS

HMe

HO

Sakurai

52% yield

Ene

Tietze, L.F.; Rischer, M. Angew. Chem. Int. Ed. Engl. 1992, 31, 1221.

! High diastereoselectivity of the tandem sequence was observed when a mixture of all four olefin isomers was

submitted to the reaction conditions.

(R)

Page 16: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Prins-Pinacol Reaction

CHO

TIPSO

Me

Me

Me

HO

OH

TMS

p-TsOH•H2O

MgSO4

76% yield

Me

Me

Me

O

O

TMSTIPSO

+10 mol% SnCl4

88% yield

O

Me

CHMe2

O

Me

OTIPS

TMS

Cl4Sn

O

Me

CHMe2

O

Me

OTIPS

TMS

Cl4Sn

O

Me

Me

MeHOHC

Me

OTIPSTMS

HH

O

Me

MeH H

O

H H

Me

Me

HO

alleged structure of

Sclerophytin AOverman, L.E.; Pennington, L.D. Org. Lett., 2000, 2, 2683.for a previous example: MacMillan, D.W.C.; Overman, L.E. J. Am. Chem. Soc. 1995, 117, 10391.

Prins Pinacol

! Diastereomeric mixture yielded only one diastereomer of the product under reaction conditions.

! no olefin isomerization was observed

Tandem Acyl-Claisen Rearrangement

ClR2

O10 mol% Yb(OTf)3

i-Pr2EtN, CH2Cl2N

N

R1

O

O

+

excess

N N

O

R2

R1

R2

O

O O

R1

Me

Cl

CN

SPh

OBz

Me

Me

Me

yield

97%

96%

81%

70%

86%

98%

97%

100%

d.r.

97:3

>95:5

>95:5

93:7

91:9

95:5

97:3

94:6

R2

Me

Me

Me

Me

Me

NPhth

OPv

Bn

Dong, V.M.; MacMillan, D.W.C. unpublished results.

! The tandem acyl claisen tolerates a wide range of functionality with excellent yields and diastereocontrol.

Page 17: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

Tandem Acyl–Claisen Rearrangement: Stereocontrol

ClMe

O 10 mol% Yb(OTf)3

i-Pr2EtN, CH2Cl2N

N

Me

O

O

! Rearrangment via the trans morpholine is favored in the first rearrangement

N

LAO Me

+O

NR2

Me

[3,3]+

N

O

Me

Me

O

N

O

syn

N N

O

Me

Me

Me

O

O O

syn-anti isomer

N N

O

Me

Me

Me

O

O O

syn-syn isomerdisfavored

N

OLAMe

+

OMe

H

NR2O

Me

H

N

LAO Me

+O

favored

HMe

Me

O

NR2favored

intermediate

ClMe

O

2nd equiv.

! A1,2 strain controls the second rearrangement

Amino-Thio Tandem Acyl-Claisen

O

N

Me

Me

SiPr

O

ClR

20 mol% TiCl4, iPr2EtN

-30 °C, 1 d

N

O

Me

SiPr

RCl4TiO

Me

N SiPr

O

O

R

Me

Me

O

ClOTBDPS

5 eq. Me2AlCl, iPr2EtN

-50 °C, 4 d

N

O

O

SiPr

O

R

Me

OTBDPS

Me

Seo, J.; MacMillan, D.W.C. unpublished results."Felkin-Anh" control in a [3,3] rearrangement: Hatakeyama, S.; Saijo, K.; Takano, S. Tet. Lett. 1985, 26, 865.

yield d.r. (syn, anti, anti):(syn, syn, anti)

Me

OTBDPS

OBn

83%

80%

80%

12 : 1

9 : 1

7 : 1

Me

R(iPr)

HS

Me Me

R(iPr)

H MeS

OLATBDPSO

LAO

iPr

OTBDPS

favored disfavored

! Stereochemistry of first rearrangement is controlled by a chair transition state

! Stereochemistry of second rearrangement is dictated by "Felkin-Anh" type control

! When the OTBDPS group on the second acid chloride is substituted with a smaller substituent, the

diastereoselectivity decreases

iPr

R

Page 18: Tandem Reaction Sequences€¦ · Mannich-Cation Olefin Cyclization N SO2Ar NH TMS CH2O 40 ¼C 63%yield N N H H N N H H O H (±)-Yohimbone 6 steps N SO 2Ar N TMS OAr N TMS + + Grieco,

The Conclusion Slide

! There are many tandem reaction sequences, grouping together almost any pair of reactions with compatable reaction

conditions.

! Tandem reactions are typically calssified by the mechanism of each step.

! There are few enantioselective tandem reactions.

! Tandem reaction sequences can quickly build significant complexity into a molecule.