Tak Warrick.12 2011 Vib Princ Final

  • Upload
    cociclo

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    1/48

    B ioMolecu lar Vibrat ional Spectroscopy :

    Part 1: Princ iples o f In frared , Raman

    Spectra and Techn iques  

    Lectu res for Warwick CD Workshop, Dec. 2011

    Tim Keider l ing  

    University of I l l inoisat Chicago  

    [email protected]  

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    2/48

    Tentative Schedule — can vary with interests

    Part I:

    • Optical Spectroscopy (general)—low resolution, fast response• Vibrational Theory

     – Biologically relevant Vibrational Modes

     – IR and Raman spectra - structure (qualitative)

    • IR Instrumentation; FTIR principles

    • Raman Instumentation

    • Practical Demonstrations (lab? Break? ) – background material

    Peptide methods —solut ion, sol id

    • Protein Sampling Techniqu es (aqueous), ATR

    Part II: 

    • Application Examples

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    3/48

    Structural Biology

    • often need to know just the conformation 

    • structural determination of fold family may suffice,generally not after atomic structure

    • In BioTech processes one must monitor effect of

    mutation and environmental changes

    need to get this information rapidly and

    in a cost effective manner

    Measure all phases/types of samples

    Look at fast time-scale events

    Optical Spectroscopy is limited for determining

    structure –  lacks site specificitybut often fits important QUESTIONS

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    4/48

     Near-IR

    Electro-Magnetic Spectrum

    SpectralRegions

    Wavenumber (cm-1)

    ElectronExcitation

    ElectronTransition

    MolecularVibration

    MolecularRotation

    106 105 103 102104107 10  1 

    X-ray Ultraviolet Infrared Microwave

    14,285  4,000  400  100 

    Mid-IR Far-IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    5/48

    Vibrational Spectroscopy - Biological Applications

    There are many purposes for adapting IR or Raman

    vibrational spectroscopies to the biochemical,biophysical and bioanalytical laboratory

    • Prime role has been for determination of structure. We will

    focus on secondary structure of peptides and proteins, but

    there are more – especially DNA and lipids• Also used for following processes, such as enzyme-substrate

    interactions, protein folding, DNA unwinding

    • More recently for quality control, in pharma and biotech

    • New applications in imaging now developing, here sensitivity

    and discrimination among all tissue/cell components are vital

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    6/48

    Optical Spectroscopy - Processes Monitored

    UV/ Fluorescence/ IR/ Raman/ Circular Dichroism

    IR   –  move nuclei

    low freq. & inten.

    Raman  – nuclei,inelastic scatter

    very low intensity

    CD –  circ. polarizedabsorption, UV or IR

    Raman:  DE = hn0-hns

    Infrared: DE = hnvib 

    = hnvib

    Fluorescence

    hn = Eex - Egrd 

    0

    Abs

    orption

    hn = Egrd - Eex 

    ExcitedState

    (distorted

    geometry)

    Ground

    State (equil.

    geom.)

    Q

    n0 nS

    molec. coord.

    UV-vis absorp. 

    & Fluorescence. move e- (change

    electronic state)

    high freq., intense

    Analytical Methods

    Diatomic Model

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    7/48T 

    Essentially a probe technique sensing changes in the local environment of fluorophores 

    Optical Spectroscopy Electronic

    Example Absorption and Fluorescence

    Intrinsic fluorophores

    eg. Trp, Tyr

    Change with tertiary

    structure, compactness     (   M  -   1  c  m  -   1   )

    What do you see?

    (typical protein)

    Amide absorption broad,

    Intense, featureless, far UV

    ~200 nm and below

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    8/48T 

    Optical Spectroscopy - IR Spectroscopy

    Protein and polypeptide secondary structural obtained from

    vibrational modes of amide (peptide bond) groups

    Amide I

    (1700-1600 cm-1

    Amide II

    (1580-1480 cm-1) 

    Amide III

    (1300-1230 cm-1) 

    Aside: Raman is similar, but different

    amide I, little amide II, intense amide III 

    What do you see? –  LOTS!

          D         x

       1   0   5

    -4

    -2

    0

    2

    2000 1800 1600 1400 1200 1000

    Wavenumbers (cm-1)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

       A   b   s   o   r   b   a   n   c   e I

    II

    III

    9.0 x 108

    a) human serum albumin

       I   R    +

       I   L

     

    0

    935

    1640

    16651300

    1340

    4.3 x 105

    ROA

     0

     

       I   R   -

       I   L

     

    800 1000 1200 1400 1600

     

    wavenumber / cm-1

     

    Goal — try to give this meaning

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    9/48T 

    Spectroscopic Process (covered)

    • Molecules contain distribution of charges (electrons and

    nuclei, charges from protons) which is dynamicallychanged when molecule is exposed to light

    • In a spectroscopic experiment, light is used to probe a

    sample. What we seek to understand is:

     –  the RATE at which the molecule responds to this perturbation(this is response or spectral intensity – probability of transition)

     – why only certain wavelengths cause changes (this is spectrum,

    the wavelength dependence of the response – energy levels)

     –

    the process by which the molecule alters the radiation thatemerges from the sample (absorption, scattering, fluorescence,

    photochemistry, etc.) so we can detect it

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    10/48

    Spectroscopic Process (covered)

    • Molecules contain distribution of charges (electrons and

    nuclei, charges from protons) which is dynamicallychanged when molecule is exposed to light

    • In a spectroscopic experiment, light is used to probe a

    sample. What we seek to understand is:

     –  the RATE at which the molecule responds to this perturbation(this is response or spectral intensity – probability of transition)

     – why only certain wavelengths cause changes (this is spectrum,

    the wavelength dependence of the response – energy levels)

     –

    the process by which the molecule alters the radiation thatemerges from the sample (absorption, scattering, fluorescence,

    photochemistry, etc.) so we can detect it

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    11/48

    Quantum mechanical picture

    Full Hamiltonian describes electron and nuclear motion

    H = -S

    ab

     [

     

    2 /2Ma

    a

    2 - 2 /2me

    i2 - Zae2 /r ia + e2 /r ij + ZaZbe2 /Rab ] 

    i.e. n-KE e-KE n-e attr. e-e repul. n-n repul

    • Born-Oppenheimer approx. separate electron-nuclear w/f

    y

     (r,R) =c

    u (R)f

    el (r,R) -- product fct. solves sum H  

    • Electronic Schröding er Equation  – issue for CD (do ne prev.)  

    H el fel (r,R) = Uel (R) fe (r,R) – electron sol’n  – nucl. pot.

    Vn(R) =S

    ab [Uel(R) + ZaZbe2 /Rab] – nuclear potential energy

    • Nuc lear Sch rödin ger Equation  

    H n cu(R) = -[Sa (ħ2 /2M

    a

    ) a

    2 + Vn (R)] cu(R) = Eu cu(R)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    12/48

    Solving Vibrational QM

    • Nuclear Hamiltonian is 3N dim.  –  N atom, move x,y,z

     – Simplify   Remove (a) Translation (b) Rotation

     – Result: (3N – 6) internal coordinates vibration

    • Harmonic Approximation – Taylor s eries expansio n:  

    V(R) = V(Re) +S

    ab

     

    V/

    Ra

    Re(Ra-Re) +

    ½ Sab 2V/Ra

    Rb

    Re(Ra  – Re)(Rb  – Re) + … 

     – 3rd term –non-zero / non-const. - harmonic  –  ½ kx2 

     –   Ra, Rb  mixed

     Solution

     “Normal coordinates” 

    Qi = S jcij q j H  = -Si [ 2 /2 2 /Qi

    2+½ kQiQi2] = Si h i  (Qi)

    hi ci(Qi) = Ei ci(Qi) E j = (u j + ½) hn j  solve as if independent  

    Diatomic:n

     = (1/2p

    ) √k/m

      k – force const.m

     = MAMB /(MA + MB)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    13/48

    Harmonic Oscillator 

    Model for vibrational spectroscopy

    r e 

    r q

    v = 1

    v = 2

    v = 3

    v = 4

    v = 0hn 1 

    2hn

    2

    hn

    2hn

    2hn

    2hn

    E

    r e 

    Ev = (v+½)hnDv =  1

    DE = hn

    n = (1/2p)(k /m)

    ½

    (virtual

    state)

    Raman

    IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    14/48

    Spectral Regions and Transitions

    • Infrared radiation induces stretching of

    bonds, and deformation of bond angles – • Couples like motions into molecular mode

    • (ignore rotations for biomolecules in solution)

    symmetrical

    stretch

    H-O-H

    asymmetrical

    stretch

    H-O-H

    symmetrical

    deformation

    (H-O-H bend)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    15/48

    Characteristic vibrations and structure

    • heavier molecules  bigger m - lower frequency

    • H2 ~4000 cm-1 C –H ~2900 cm-1 C –D ~2100 cm-1 

    • HF ~4141 cm-1 HCl ~2988 cm-1 

    • F2  892 cm-1  Cl2  564 cm

    -1 I –I ~214 cm-1 

    • stronger bonds – higher k - higher frequency

    •  CC ~2200 cm-1 C=C ~1600 cm-1 C –C ~1000 cm-1 

    • O=O 1555 cm-1  N O 1876 cm-1  N

    N 2358 cm-1 

    • frequency depends mass + bond strength

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    16/48

    Frequency structure, small and large molec.

    Same for vibrational modes of amide (peptide bond) groups

    Amide I

    (1700-1600 cm-1) 

    Amide II(1580-1480 cm-1) 

    Amide III

    (1300-1230 cm-1) I II

    a

    b

    rc

    For polymer -- repeated structural elements have overlap/coupled spectra

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    17/48

    Vibrational Transition Selection Rules

    Harmonic oscillator : only one quantum can change

    D

     vi = ± 1,  D v j = 0; i   j . 

    These are fundamenta l  vibrations

    Anharmonicity permits overtones and combinations

    Normally transitions will be seen from only vi = 0, since most excited

    states have little population.

    Population, ni

    , is determined by thermal equilibrium, from the Boltzman 

    relationship:

    ni = n0 exp[-(Ei-E0)/kT], 

    where T is the temperature (ºK) – (note: kT at room temp ~200 cm-1)

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    18/48

    T ( r - r e )/r e 

    E/De 

    DE01 = hnanh--fundamental

    D0 — dissociation energy

    Anharmonic Transitions

    Real molecules are anharmonic to some degree so other transitions dooccur but are weak. These are termed overtones (D vi = ± 2,± 3, . .) or

    combination bands (D vi = ± 1, D v j = ± 1, . .). [Diatomic model] 

    DE02 = 2hnanhrm - overtone

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    19/48

    Vibrational Selection Rules• Interaction of light with matter can be described as the

    induction of dipoles , mind , by the light electric field, E:

    mind = a .  E  where a is the polarizability

    • IR absorption strength is proportional to

    ~ ||

    2

    transition moment betweenY

    i Y

    f  

    • To be observed in the IR, the molecule must change its electricdipole moment, µ , in the transition—leads to selection rules

    dµ / dQi  0 relatively easy, ex. C=O str. intense

    • Raman intensity is related to the polarizability,

    I ~ 2

    , where da / dQi  0 for Raman trans.

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    20/48

    Complementarity: IR and Raman

    If molecule is centrosymmetric, no overlap of IR and Raman 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    21/48

    Peak Heights

    • Beer-Lambert Law:

    •A =

    lc – A = Absorbance

     –  = Absorptivity

     – l = Pathlength

     – c = Concentration

    An overlay of 5 spectra of Isopropanol (IPA) in water. IPA Conc.

    varies from 70% to 9%. Note how the absorbance changes with

    concentration. 

    • The size (intensity) of absorbance bands depend upon molecular

    concentration and sample thickness (pathlength)

    • The Absorptivity () is a measure of a molecule’s absorbance at a givenwavenumber normalized to correct for concentration and pathlength – but asshown can be concentration dependent if molecules interact 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    22/48

    Peak Widths

    • Peak Width is Molecule Dependent

    • Strong Molecular Interactions = Broad Bands

    • Weak Molecular Interactions = Narrow Bands

    WaterWater

    Benzene

    At i l ti

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    23/48

    Level of structure

    determination neededdepends on the

    problem

    Atomic resolution Ca chain

    Secondary structure Segment fold (tertiary)23

    Structural

    Biology

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    24/48

    Chain conformation depends on f, y angles

    Far UV absorbance broad, l i ttle f luorescence  — 

    coupling impact small

    Detection requires method sensitive to amide coupling

    If (f,y

    repeat, they determine secondary structure  

    Polymer analysisStudy the repeat units

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    25/48

    Physical method of detection must sense

    secondary structure —  e.g. couple amides

    IR/Raman —  coupl ing comparable to band width , intensitymaximum is characteristic of structure –  frequency basis

    Circular dichroism --dipole and through-bond chiral coupling oflocal modes (excitations) circularly polarized transitions,

    DA = AL-AR   - Develops characteristic band shapes (intensity)

    Theoretically try to understand spectra/structure relationIR ~ D=

    m

    .

    m~|dm/d

    Q|

    2

     

    (Raman ~ |da/dQ|2)

    ECD, VCD ~ R = Im(m.m)

    Computable with ab initio QM techniques, ECD needs excited states

    IR & VCD relatively easy, Raman more basis set sensitive

    Major activity,for analysis!}

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    26/48

    Characteristic Amide Vibrations

    I - Most useful;

    IR intense, less interference(by solvent, other modes,etc)

    Less mix (with other modes)

    II - IR intense

    III - Raman Intense

    A – often obscured

     by solvent

    IV – VII – difficult

    to detect, discriminate

    ~3300 cm-1

    ~1650 cm-1

    1500-50 cm-1

    1300-1250 cm-1

    700 cm-1

    mix

    M d l l tid IR t A id I d II

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    27/48

    Wavenumbers (cm-1

    )

    1450150015501600165017001750

          A      b      s 

         o      r

          b      a      n     c      e 

    0

    1

    2

    3   helix

     -structure

    randomcoil

     Model polypeptide IR spectra -- Amide I and II

    Differentiation of conformations mostly due to coupl ing of amides

    not to H-bonds or other factors, although they contribute

    Helix  — small frequency

    dispersion, central onesmost intense, amide I,

    higher ones for amide II

    Sheet  — large frequency

    dispersion, characteristic

    split amide I, broad amide II

    Coil  — less well-defined

     broad amide I and II

    I II

    Frequency based

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    28/48

    Temperature dependent IR

    spectra of the helical peptide

    Temperature dependence of

    amide I’ frequency 

    IR frequency shift shows a sigmoidal curve and

    spectra have an isobestic point for thermal unfolding

    However, frequency shift is ~1635 ~1645 cm-1  –  solvated helix

    Monitoring structural change - temperature

     folded

    unfolded

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    29/48

    6 b  b sheet

    , 2 )

    Tyr97

    Tyr25

    Tyr92

    H1

    H3H2

    Tyr76

    Tyr115

    Tyr73

    • 124 amino acid residues, 1 domain, MW= 13.7 KDa

    • 3a

    -helices

    • 6b

    -strands in an AP b

    -sheet

    • 6 Tyr residues (no Trp), 4 Pro residues (2 cis, 2 trans)

    Ribonuclease A

    combined

    uv-CD and

    FTIR study

    Simona Stelea,Prot Sci 2001 

    Optical spectra senses dynamic equilibrium - unstructured systems29

    0.06

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    30/48

    Wavelength (nm)

    260 280 300 320

    Ellipticity

    (mdeg)

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    Near-UV CD

    Wavenumber (cm-1)

    1600162016401660168017001720

    Absorbance

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05FTIR

    Wavelength (nm)190 200 210 220 230 240 250

    Ellipticity(mdeg)

    -15

    -10

    -5

    0

    5

    Far-UV CD

    Temperature 10-70oC

    FTIR  — amide I

    Loss of b-sheet

    Ribonuclease A

    Far-uv CDLoss of a-helix

    Near – uv CDLoss of tertiary struct.

    Spectral Change

    30

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    31/48

             C 

             i         1

    (x10

    2)

    -8.0

    -7.6

    -7.2

    -6.8

    -6.4

    -1.0

    -0.5

    0.0

    0.5

    1.0

    FTIR

             C          i         1

    -17

    -15

    -13

    -11

    -9

    -7

    -5

             C   i         2

    -15

    -10

    -5

    0

    5

    10

    Near-UV CD

     

    0 20 40 60 80 100

    Ci1

    -13

    -12

    -11

    -10

    Ci2

    -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    Far-UV CD

    Ribonuclease A

    PC/FA loadings

    Temp. variation

    FTIR (a,b)

    Near-uv CD(tertiary)

    Far-uv CD(a-helix)

    Pre-transition  evident in far-uv CD and FTIR, not near-uv CD

    Temp.

    31

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    32/48

    Nucleic acid IR

    Nucleic Acids  – less variation —helicity all about the same 

    a)  – monitor ribose conformation 

    b)  – single / duplex / triplex / quad  – H-bond link bases 

    O h bi l

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    33/48

    Sugars –  little done, spectra broad, some branch appl.

    Lipids –  monitor order –  self assemble –  polarization

    Example is CH2 wag, but

    also stretch and scissor

     bend are characteristic

    Self assemble to lipid

     bilayer –  membrane

    Polarization can tell

    orientation of lipid or

     protein in membrane

    Other biopolymers

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    34/48

    Combining Techniques: Vibrational CD “CD” in the infrared region 

    Vibrational chiralityMany transitions / Spectrally resolved / LocalTechnology in place DA ~10-5 - limits S/N / Difficult < 700 cm-1

    Same transitions as IR  

    same frequencies, same resolutionBand Shape from spatial relationships 

    neighboring amides in peptides/proteins

    Relatively short length dependence 

    AAn

     oligomers VCD have DA/A ~ const with n

    vibrational (Force Field) coupling plus dipole coupling

    Development -- structure-spectra relationships

    Small molecules –  theory / Biomolecules -- empirical,

    Recent —  peptide VCD can be simulated theoretically 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    35/48

    Wavenumber (cm-1)

    1600165017001750

    Absorbance

    0.0

    0.5

    1.0

          DA

    x105

    -10

    -5

    0

    5

    10

    VCD

    IR

    (a)

    Wavenubmer (cm-1)

    1600165017001750

    Absorbance

    0.0

    0.5

    1.0

          DA

    x105

    -4

    -2

    0

    2

    IR

    VCD

    (b)

    Poly Lysine in D2O –  Amide I’– Secondary structure

    VCD

    High pH –  helix High pH, heating –  sheet  Neutral pH - coil

    Wavenumber (cm-1)

    1600165017001750

    Absorbance

    0.0

    0.5

    1.0

          DA

    x105

    -15

    -10

    -5

    0

    5

    IR

    VCD

    (c)

    VCD of DNA vary A T to G C ratio

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    36/48

    -1

    VCD of DNA, vary A-T to G-C ratio

     base deformations sym PO2- stretches

     big variation little effect

    All B-DNA forms

    DNA VCD f PO d i B t Z f t iti

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    37/48

     A B

    DNA VCD of PO2- modes in B- to Z-form transition

    Experimental Theoretical

    Z

    B B, A

    Z

    Protein RAMAN & ROA spectra

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    38/48

    800 1000 1200 1400 1600

    0

    1683ROA

    1240

    1426

    1462

    15541299 1342

    1641

    1665

    2.6 x 105

    IR-IL

    c) hen lysozyme

    6.3 x 108

     

    IR+IL

    0

    1220

    13451241

    1658

    16771295 1316

    4.7 x 105

    ROA

    IR-IL

    2.5 x 109

     b) jack bean concanavalin A

    IR+

    IL

    0

    935

    1640

    166513001340

    4.3 x 105

    ROA

    0

    9.0 x 108

    a) human serum albumin

    IR-IL

    IR+IL

    Protein RAMAN & ROA spectra

    hSA 

    Con A

    HEWL

    I II 

    ROA sign patterns

    stable but

    frequencies

    shift. Chirality

    selects out

    amide modes

     but  Raman

     spectra

    dominated by

    aromatics

    Barron data

    IR & R I t t ti O tli

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    39/48

    IR & Raman Instrumentation - Outline

    • Principles of infrared spectroscopy

    • FT advantages

    • Elements of FTIR spectrometer

    • Acquisition of a spectrum

    Useful Terminology

    • Mid-IR sampling techniques

     – Transmission

     – Solids

    • Raman instrumentation comparison

    • (Note—more on sampling variations later) 

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    40/48

    Dispersive spectrometers (old) measure transmission as a function

    of frequency (wavelength) - sequentially--same as typical UV-vis

    Interferometric spectrometers measure intensity as a function of

    mirror position, all frequencies simultaneously--Multiplex advantage

    Sample

    radiation

    sourcetransmitted

    radiation

    Techniques of Infrared Spectroscopy

    Infrared spectroscopy deals with absorption of radiation--

    detect attenuation of beam by sample at detector  

    Frequency

    selector

    detector

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    41/48

    T  Nicolet/Thermo drawings

    Comparison of IR Methods –  

    Dispersive & Fourier Transform

    But add to this now many laser-based technologies!

    N i li d i ill di i IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    42/48

    New specialized experiments still use dispersive IR

    T/jump IR with

    diode laser

    Dispersive VCD for Bio Apps

    2-D IR setup with 4-wave mixing

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    43/48

    Major Fourier Transform Advantages 

    • Multiplex Advantage 

     – All spectral elements are measured at the same time,

    simultaneous data aquisition. Felgett’s advantage. 

    • Throughput Advantage

     – Circular aperture typically large area compared to dispersive

    spectrometer slit for same resolution, increases throughput.

    Jacquinot advantage

    • Wavenumber Precision

     – The wavenumber scale is locked to the frequency of an internal

    He-Ne reference laser, +/- 0.1 cm-1. Conne’s advantage 

    T i l El t f FT IR

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    44/48

    Typical Elements of FT-IR

    IR Source (with input collimator)

     –

    Mid-IR: Silicon Carbide glowbar element, Tc > 1000

    o

    C; 200 - 5000 cm

    -1

     

     – Near IR: Tungsten Quartz Halogen lamp, Tc > 2400oC; 2500 - 12000 cm-1

    IR Detectors:

     – DTGS: deuterated triglycine sulfate - pyroelectr ic b olom eter (thermal)

    • Slow response, broad wavenumber detection

     – MCT: mercury cadmium telluride - photo conduct ing d iode (quantum)

    • must be cooled to liquid N2 temperatures (77 K)

    • mirror velocity (scan speed) should be high (20Khz)

    Sample Compartment 

     – IR beam focused (< 6 mm), permits measurement of small samples.

     – Enclosed with space in compartment for sampling accessories

    Interference Moving Mirror Encodes Wavenumber

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    45/48

    Interference - Moving Mirror Encodes Wavenumber 

    Source

    Detector

    Paths equal  all

    n

     in phase

    Paths vary 

    interfere vary for

    different n

    Interferograms for different light sources

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    46/48

    Interferograms for different light sources

    Dispersive Raman Single or Multi channel

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    47/48

    Single, double or

    triple monochromator

    Detector:

    PMT or

    CCD for

    multiplexFilter

    Polarizer

    Lens

    Sample

    Laser –  n0

    Dispersive Raman - Single or Multi-channel 

    Eliminate the intense Rayleigh

    scattered & reflected light

    -use filter or double monochromator

     –Typically 108 stronger than the

    Raman light

    •Disperse the light

    onto a detector to

    generate a

    spectrum 

    Scattered Raman - ns 

    Synchrotron Light Sources – the next big thing

  • 8/18/2019 Tak Warrick.12 2011 Vib Princ Final

    48/48

    Synchrotron Light Sources    the next big thing

    Broad band, polarized

    well-collimated and

    very intense

    Light beam output

    Where e-beam turns

    Brookhaven National

    Light Source

    (and fixed in space!)